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Impacts of leaf traits on vegetation optical
properties in Earth system modeling

Yujie Wang 1,2,6 , Renato K. Braghiere 2,3,6, Woodward W. Fischer2,

Yitong Yao2, Zhaoyi Shen 2, Tapio Schneider 2, A. Anthony Bloom3,

David Schimel 3, Holly Croft4, Alexander J. Winkler 5, Markus Reichstein 5 &

Christian Frankenberg 2,3

Quantifying surface energy and carbon budgets is essential for projecting

Earth’s climate. Earth System Models (ESMs) typically simulate land surface

processes based on plant functional types (PFTs), neglecting the diversity of

plant functional traits or characteristics (PFCs; e.g., chlorophyll content and

leaf mass per area). Here, we demonstrate substantial differences in modeled

leaf optical properties (LOP) and surface albedobetween traditional PFT-based

and PFC-based approaches, particularly in tropical and boreal forests. We

configure the canopy radiative transfer scheme in the Community Earth Sys-

tem Model using PFC-based LOP. This new configuration produces lower

shortwave surface albedo in the tropics but higher albedo in boreal regions

(>5Wm−2 radiative flux differences), and a weaker tropical but stronger boreal

carbon sink. Through land-atmosphere coupling, the PFC-based configuration

further alters atmospheric processes, leading to different temperature, cloud

cover, and precipitation patterns. Our findings highlight the need to move

beyond traditional PFT-based approaches in ESMs.

Global average surface temperature has increased by about 1.5 °C in

2024 compared to 1850–1900. This additional warming has driven

elevated regional and seasonal temperature extremes1,2, reduced snow

cover and sea ice3, and intensified heavy rainfall2,4. The unprecedented

global climate change also poses increasing threats to plants, animals,

and human societies3,5, with widespread impacts on biodiversity, food

security, and human health. To meet the 2 °C goal set in the Paris

Agreement, countries must take drastic climate actions to reduce

greenhouse gas emissions and increase carbon capture6,7. Terrestrial

plants affect surface albedo8, sequester about 3.3 ± 0.8 Gt C per year

during the 2013–2022 decade (about 31% of total CO2 emissions)9, and

recycle moisture, contributing ~39 ± 10% to precipitation via

transpiration10. Thus, accurately modeling vegetation dynamics is key

for quantifying Earth’s surface fluxes of energy, water, and carbon,

projecting atmospheric CO2 concentration, and assessing nature-

based climate solutions (such as reforestation and soil carbon

capture).

In recent years, much effort has been devoted to implementing

and improving the global carbon cycle in ESMs11–13. Land surface

models (LSMs) in ESMs have also improved their process representa-

tions of the vegetation energy balance, including the incorporation of

multilayer canopy and canopy heterogeneity14–18. Despite significant

advances, systematic biases persist in the modeled surface energy

balance19,20, potentially leading to biases in future climate projections.

These biases may arise from the following issues: (1) Radiative transfer

(RT) schemes are often oversimplified limiting their ability to capture

the spectrally resolved optical properties of plants and incoming

radiation sources20,21; (2) Key coupled processes remain under-

represented, such as the impact of leaf water content (LWC) dynamics

on leaf reflectance and transmittance22–24 and leaf angles; (3) The Plant
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Functional Type (PFT) paradigm commonly employed to represent

plant diversity has limitations in capturing important variations in

vegetation traits or characteristics within PFTs12,25,26, such as variations

in leaf optical and other ecophysiological properties. The reliance on

PFTs in LSMs reflects a historical legacy from their initial development

in the 1980s, when observational data and computational resources

were limited27. This legacy poses significant challenges to fully

restructuring LSMs around trait-based approaches.

Over the past 40 years, great advances have beenmade in leaf and

canopy RT models, permitting more sophisticated representations of

radiation profiles across hyperspectral wavelengths in a vertically

resolved canopy15,17,21,22,28–30. Moreover, the value of implementing

plant physiological processes into vegetation modeling, such as the

importance of plant hydraulics in regulating stomatal responses to

environmental conditions, has been increasingly recognized31–35. A

growing number of global datasets of Plant Functional Characteristics

(PFCs) derived from global databases36–39 and remote sensing

observations40–42 further enabled a shift from PFT-based (categorical)

to PFC-based (continuous) modeling43. However, incorporating these

advances into ESMs faces grand challenges given the complex nature

of ESMs and the lack of data needed to configure and calibrate

them44,45. For example, complex RT models require substantial com-

putational resources; limited trait data is available to feed process- and

trait-based vegetation models (e.g., certain plant hydraulic traits are

laborious to measure).

Due to limited knowledge of key leaf and canopy parameters and

computational efficiency, canopy RT schemes in LSMs often simulate

the shortwave radiation scattering and absorption with two broad

bands: one covering the visible light that promotes photosynthesis

(also known as photosynthetically active radiation, PAR; 400–700nm)

and another covering the near-infrared radiation (NIR;

700–2500nm)19,46–53. Recently, it has been proposed that a portion of

the NIR spectrumbetween 700–750nmbe included as PAR, given that

chlorophyll in the light-harvest complexes can also absorb far-red

photons for photosynthesis21,54. Leaf reflectance (ρ) and transmittance

(τ) within the two broad bands are typically predefined to be constants

basedonPFT (SupplementaryNote 1). Although thePFT-based look-up

table approach can qualitatively represent general variations among

vegetation groups such as trees and grasses, it does not accurately

represent the spatial and temporal diversity in associated plant

traits25,55. For example, higher leaf chlorophyll content (CHL) reduces

both reflectance and transmittance in the PAR range; higher leaf mass

per area (LMA) decreases reflectance and transmittance primarily in

the NIR range (Fig. 1a). However, in current LSMs, the broadband leaf ρ

and τ values are prescribed from the PFT-based look-up tables, irre-

spective of variation in CHL, LMA, or other traits46–53. Promisingly,

recent advances in RT modeling, remote sensing technologies, and

plant trait databases have allowed the implementation of more com-

plex and process-based schemes in LSMs and ESMs due to the

increasing amount of observations that can be used to understand,

initialize, and calibrate vegetation processes29,39,42,43,56.

In this study, we aim to reconcile (a) the requirement of compu-

tational efficiency by ESMs and (b) the needs of advancing canopy RT

modeling, coupling vegetation processes, and representing vegetation

biodiversity. We propose to use a trait- or PFC-based approach along

with spatially resolved leaf optical properties (LOP), insteadof the PFT-

based approach with predefined LOP per PFT. First, we derived global-

scale monthly hyperspectral LOP based on CHL42 and LMA37 using the

next-generation LSM developed within the Climate Modeling Alliance

—CliMALand17,21, which supports hyperspectralRTschemeandenables

tight process-trait coupling. We then computed the monthly mean

broadband values (PAR and NIR) from the hyperspectral LOP. Second,

we used the annual mean ρ and τ per grid cell to supersede the PFT-

based look-up table values in the Community Land Model (CLM; ver-

sion 5), the land component of the Community Earth System Model

(CESM; version 2)52,57. Third, we performed simulations with CESM at

different climate scenarios: two land-atmosphere coupled simulations

and three land-only (coupled historical 1950–2004, coupled Socio-

economic Pathways [SSP] 585 2015–2099, uncoupled historical

1985–2019, and uncoupled SSP 245 and 585 from 2015 to 210458; see

Fig. 1 | Leaf optical properties from CliMA Land based on global scale leaf

chlorophyll content (CHL) and leaf mass per area (LMA). a Leaf hyperspectral

reflectance (ρ, shaded green) and transmittance (τ, shaded blue) vary with CHL and

LMA. The shaded gray regions plot the reflectance (ρ) and transmittance (τ) of a

tropical broadleaf evergreen PFT. Dashed curves: leaf with higher CHL. Dotted

curves: leaf with higher LMA. b–g Leaf broadband ρ, τ, and absorptance

(α = 1 − ρ − τ) for photosynthetically active radiation (PAR, 400–700nm) and near-

infrared radiation (NIR, 700–2500nm). The red open dots on the color bars plot

values from the look-up table from the Community Earth System Model. Panels

(b–g) made with Nature Earth. Free vector and raster map data @

naturalearthdata.com.
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Methods formore details). By comparing the CESMoutputs using PFT-

and PFC-based approaches, we assessed the impacts on the global

surface energy budget, carbon cycle, and climate predictions.

Results
Leaf optical properties
The PFC-based (or trait-based) LOP derived from CliMA Land showed

different patterns and ranges compared to the PFT-based look-up

tables used in CESM (Fig. 1b–g). For example, annual mean ρPAR
computed from CHL and LMA ranged from0.06 to 0.32 globally while

being set to 0.07, 0.10, and 0.11 in CLMdepending on the PFT (Fig. 1b).

Similarly, annualmean τPAR computed fromCHL and LMA ranged from

0.04 to 0.35 while being set constant at 0.05 in CLM for all PFTs

(Fig. 1c). The look-up table values in CESM matched the PFC-based

annualmeanonly in tropical and temperate forestswith highCHL42but

showed much higher PAR absorption in boreal regions (Fig. 1d).

Regarding NIR, the PFC-based ρNIR ranged from 0.34 to 0.39, while the

look-up table values were0.35 and 0.45, with the broadleaf PFTs (0.45)

falling out of the modeled range (Fig. 1e; Supplementary Note 1). The

PFC-based τNIR ranged from 0.41 to 0.47, consistently higher than the

leaf reflectance settings of 0.10, 0.25, and 0.34 in CESM (Fig. 1f).

Consequently, leaf-level NIR absorptance was consistently higher in

the PFT-based setup.

Due to CHL seasonality42, the PFC-based ρPAR and τPAR also

exhibited seasonal variations, particularly in the middle- and high-

latitude regions (Supplementary Note 1). In boreal regions, disparities

in ρPAR and τPAR were reduced during summer because of higher CHL

(Supplementary Note 1). In contrast, since CHL played a minor role in

the NIR region, its seasonality had little influence on the modeled ρNIR
and τNIR (SupplementaryNote 1).We also comparedour PFC-based leaf

ρ and τ to other LSMs46–51,53. Their PFT-based ρPAR and τPAR were gen-

erally similar to those in CLM, aligning with the lower bounds of the

PFC-based estimates. Notably, CLASSIC53 and JSBACH50 scaled canopy

albedo directly from leaf ρ, requiring lower leaf ρ to match other LSMs

(Supplementary Note 1).

Surface energy budget
When implementing PFC-based LOP in CESM, the overall spatial pat-

terns of surface PAR and NIR albedo did not show substantial differ-

ences (Supplementary Note 2). However, the PFC-based approach

showed lower mean surface PAR and NIR albedo in tropical regions

and higher surface albedo in boreal regions, with differences >0.05

(Fig. 2a, b). Similar patterns were found across CESM simulations fol-

lowing SSP245 and SSP585 (Supplementary Note 2). In the coupled

simulations, CESM predicted slightly more variable albedo differences

(e.g., lower surface albedo in some boreal forest regions; Supple-

mentary Note 2); but the general patterns of higher boreal and lower

tropical albedo persisted.

In regions where the surface albedo changed by >0.005 (other-

wise no discernible impact was detected), the PFC-based annual mean

PAR and NIR albedo agreed better with the MODIS MCD43C3 (v61)

black sky albedo59 in the tropics. Specifically, themean PAR albedobias

decreased from— 50.1% to 16.2% andmean NIR albedo bias decreased

from—78.5% to 62.8% from 23°S to 23°N (highlighted in cyan in

Fig. 2c–f). However, in the boreal regions, the PFC-based annual mean

albedo showed slightlyworse agreementwithMODISMCD43C3 (mean

Fig. 2 | Spatial patterns of surface albedo differences between PFT- and PFC-

based leaf optical property configurations. The simulations were made from

1985 to 2019 under the historical pathway (uncoupled). PAR: photosynthetically

active radiation, NIR: near-infrared radiation, PFT: plant functional type, PFC plant

functional characteristic. a PFT- and PFC-based surface PAR albedo difference.

b PFT- and PFC-based surface NIR albedo difference. c-d Differences between

MODIS and PFT-based surface PAR and NIR albedo in the regions where the

difference between PFT- and PFC-based albedo is≥0.005. e-f Differences between

MODIS and PFC-based surface PAR and NIR albedo in the regions where the dif-

ference between PFT- and PFC-based albedo is ≥0.005. The cyan rectangles mark

the regions with potential improvements in the tropical rainforests. We excluded

the regions with changes <0.005 for better visualization. Made with Nature Earth.

Free vector and raster map data @ naturalearthdata.com.
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PAR albedo bias increased from—34.5% to 48.2% andmean NIR albedo

bias increased from— 70.6% – 85.1%; Fig. 2c–f). When comparing the

albedo patterns on a monthly basis, we found overestimated PFC-

based PAR and NIR albedo compared to MODIS MCD43C3 in the

boreal regions from May to October (Supplementary Note 2), which

led to the overall bias. The overestimated PFC-based PAR albedo in

boreal regions suggested that CHL may be underestimated (Fig. 1a),

while the overestimated PFC-based NIR albedo suggested that LMA or

LWC may be underestimated (Fig. 1a). These results highlighted the

importance of coupling spatial and temporal vegetation trait varia-

tions with biophysical properties in LSMs and ESMs.

On average, the tropical regions reflected less shortwave radiation

and the boreal regions reflected more shortwave radiation after

accounting for the PFC-based LOP; the difference was >5Wm−2,

meaning a >10Wm−2 biased daytime mean (Fig. 3; Supplementary

Note 3). The changes in shortwave radiation led to compensating

changes in sensible heat, latent heat, and longwave radiation (Sup-

plementary Note 3). As air temperature was prescribed in the uncou-

pledmode (land only), the annualmean skin temperature increased by

~0.1 °C in the tropical regions while decreasing by about 0.1 °C in the

boreal regions (Fig. 3a; Supplementary Note 3). Further, changes in the

surface energy budget would propagate in the coupled land-

atmosphere simulation given the impacts on the climatic variables

(such as clouds, precipitation, and air temperature). Thus, in coupled

land-atmosphere mode, as the sensible heat exchange between the

canopy and the atmosphere was accounted for, the model predicted

more variable air and skin temperature changes (e.g., >0.4 °C warmer

in central Australia and >0.4 °C cooler in northeast Asia; Fig. 3b, c;

Supplementary Note 3). For example, the Amazon rainforest was

predicted to be about 0.1–0.2 °C warmer and Australia was predicted

to be about 0.1–0.5 °C warmer (Fig. 3b, c). The PFC-based simulations

better agreed with the ECMWF (European Centre for Medium-Range

Weather Forecasts) Reanalysis v5 (ERA5)60, though simulation differ-

ences were about 10 times smaller than the dataset “bias” (assuming

ERA5 reanalysis as the truth value; Supplementary Note 3). Compared

to the spatial and temporal patterns of LOP changes, changes in spatial

temperature showed opposite directions in many regions under the

coupled land-atmosphere simulations (Fig. 3b, c; Supplementary

Note 3). Notably, the middle- to high-latitude regions in the northern

hemispherewere predicted to be colder than the PFT-based approach,

further highlighting the need to model canopy optical properties and

surface energy budgets more accurately, which is often overlooked in

current developments of LSMs and ESMs.

Carbon cycle
Due to the increases in surface temperature, tropical regions were

predicted to be less productive despite absorbing more radiation

(Fig. 4; Supplementary Note 4). Reasons underpinning this trade-off

included the higher leaf temperature and thus leaf-to-air vapor pres-

sure deficit, and the decreased light availability in the lower canopy

layers (due to lower leaf transmittance to PAR; Fig. 1c). In the uncou-

pled mode, leaf temperature exhibited minimal changes (<0.1 K;

Fig. 3), and thus, the primary driver of gross primaryproductivity (GPP;

higher value means higher productivity) differences was likely the

altered vertical PAR profile within the canopy. For example, if ρPAR and

τPAR decrease (similar to when CHL increases), upper canopy leaves

absorbmore PAR, while lower canopy leaves absorb less. Although the

total canopy PAR absorption increases, upper canopy leaves are typi-

cally light-saturated, and the additional PAR does not enhance their

photosynthesis. Reduced PAR availability in the lower canopy, where

Fig. 3 | Changes in reflected shortwave radiation, skin temperature, and air

temperature after accounting for the PFC-based leaf optical properties.

a Simulation results for uncoupled historical simulations from 1985 to 2019.

b Simulation results for the coupled run from 1950 to 2005. c Simulation results for

the coupled run from 2015 to 2100. ΔSW out refers to the change in reflected

shortwave radiation at the last 20 years of the simulation period; ΔTskin: change in

skin temperature at the last 20 years of the simulation period; ΔTair: change in air

temperature at the last 20 years of the simulation period. Made with Nature Earth.

Free vector and raster map data @ naturalearthdata.com.

Article https://doi.org/10.1038/s41467-025-60149-x

Nature Communications |         (2025) 16:4968 4

www.nature.com/naturecommunications


photosynthesis is often light-limited, can decrease overall GPP61. In

contrast, though absorbing less solar radiation, the boreal forests were

predicted to be a stronger carbon sink (Fig. 4; Supplementary Note 4).

Reasons for the elevated photosynthesis included lower leaf tem-

perature and thus leaf-to-air vapor pressure deficit, and the increased

light availability in the lower canopy layers (due to higher leaf trans-

mittance of PAR61; Fig. 1c).

Further, because of the higher magnitude and variation of chan-

ges in temperature under the coupled mode, changes in GPP also

showed higher variations (Fig. 4). Overall, the PFC-based simulations

suggested a slightly stronger land carbon sink, given the increased

globally integrated GPP (Fig. 4c; Supplementary Note 4). When com-

pared to a global GPP product trained from eddy covariance flux

tower, remote sensing data, and machine learning62, both PFT- and

PFC-based GPP simulations agreed well with the reference data (Sup-

plementary Note 4). However, no significant differences could be

detected given that the magnitude of ΔGPP was 10-folder smaller than

total GPP (Supplementary Note 4).

Cloud fraction and precipitation
Changes in the surface energy budget can propagate through the cli-

mate system, adding uncertainties in climate projections beyond those

from internal variability. When vegetation absorbs more solar radia-

tion, increased surface air and skin temperatures enhance global

moisture cycling, leading to shifts in cloud formation and precipita-

tion, further impacting the Earth’s energy budget. Indeed, we found

different climate projections for the simulation period of the coupled

historical and future runs. For example, in the coupled future run, the

mean cloud fraction and precipitation during the simulation period

could differ by >3% and >250mm year−1, respectively (Fig. 5; Sup-

plementary Note 5). Though dominated by surface-reflected short-

wave radiation, the changes in cloud cover and surface/air

temperatures propagated and impacted the top-of-atmosphere (TOA)

outgoing radiation flux (Fig. 5b; Supplementary Note 5). At the

monthly scale, for the coupled future run, the monthly mean cloud

fraction could differ by >7%, the TOA outgoing radiation flux differed

by >10Wm−2, and themonthly cumulativeprecipitation coulddiffer by

>40mm (Supplementary Note 5). On average, the Earth’s outgoing

radiation flux increased by 0.16Wm−2 during the coupled simulation

for the PFC-based configuration, although the globally integrated

energy budget showed substantial interannual and seasonal variations

( −3 to 3Wm−2 annually, and −5 to 6Wm−2 monthly; Supplemen-

tary Note 5).

Discussion
The evolution of state-of-art LSMs46–53, corresponding to the “green-

ing” of LSMs and ESMs11, has mostly focused on improving repre-

sentations of terrestrial carbon cycle processes, such as stomatal

resistance, PFT distinctions, dynamic vegetation modeling, and crop-

land modeling12. In contrast, progress in improving the representation

of surface energy fluxes in LSMs has lagged behind14,15. Despite sub-

stantial updates in hyperspectral RT models22,23,29,63 and 3D ray-tracing

RT models28,64,65, these advances are not yet directly supported by

ESMs given the demand for more computation resources and the lack

of comprehensivemodel parameters. Addressing these limitations will

advance ESM development, improve model representation of surface

processes, and better harness the growing volume of remote sensing

data for model calibration.

Indeed, when incorporating PFC-based LOP, which were derived

from trait databases and remote sensing data, into CESM, we found

potentially improved surface energy budgets, particularly in the tro-

pics. Although the planetary energy budget tends to average out when

integratedglobally due to systematic differences between the PFT- and

PFC-based surface albedo (i.e., the PFC-based approach has lower

albedo in the tropics and higher albedo in boreal regions) (Supple-

mentaryNote 5), substantial regional differences could be identified in

energy budgets, carbon fluxes, and climate projections. Recent work

also demonstrated that land process uncertainty, particularly in sur-

face fluxes such as albedo, can substantially impact the climatological

meanstate of temperature andprecipitation through land-atmosphere

coupling66. These findings highlight the value of improving the

representation of canopy RT in ESMs and re-calibrating the model

parameters under the new configuration, given that RT simulations

influence multiple other coupled processes.

ESMs often have different configurations of key parameters like

the response of plants to soil moisture67 and the number and cate-

gories of PFTs in different LSMs68. Further, the look-up table values in

thesemodels have substantial differences even for the same PFT, such

Fig. 4 | Changes in global carbon cycle after implementing PFC-based leaf

optical properties. a Changes in gross primary productivity (ΔGPP; higher value

for higher productivity) for uncoupled SSP585 simulations from 1985 to 2019.

b ΔGPP for the coupled future run from 2015 to 2100. c, Time series of ΔGPP for

various scenarios ("c-his” for coupled historical run, “u-his” for uncoupled historical

run, “u-245” for uncoupled SSP245 run, “u-585” for uncoupled SSP585 run, and “c-

585” for coupled SSP585 run). d ΔGPP of tropical (from 23°S to 23°N) and boreal

(>50°S or >50°N) regions for various scenarios. The arrows plot the standard

deviation of all grid cells. PFT plant functional type, PFC plant functional char-

acteristic. Panels (a and b)madewith Nature Earth. Free vector and rastermapdata

@ naturalearthdata.com.
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as the leaf level ρ and τ (Supplementary Note 1). For example, while

LSMs have their ρPAR and τPAR close to or lower than the lower

boundary predicted by the PFC-based approach, they differ more in

their ρNIR and τNIR settings (Supplementary Note 1). Notably, three

other LSMs (CoLM46, JULES48,49, and ORCHIDEE47) showed similar pat-

terns as CLM in their PFT-based ρNIR values falling within or exceeding

the PFC-based range, while their τNIR values falling within or lower than

the PFC-based range (Supplementary Note 1). Therefore, we expect

that implementing the PFC-based LOP into these LSMs would yield

similar results as the CESM/CLM models used in this study. One

exception is the CABLE model51 with both lower ρNIR and τNIR, sug-

gesting a generally lowerNIR albedo thanother LSMs. Superseding the

PFT-based static look-up tables with the PFC-based configurations will

help reduce the configuration-resulted differences among the LSMs

and ESMs68,69. Yet, quantitatively and systematically evaluating the

impacts of replacing the PFT-based approachwithmore trait-informed

approaches would require more investigations, for example, adding

surface albedo information anddesigning new experiments in the next

phases of the Coupled Model Intercomparison Project (CMIP)70,71 and

TRENDY72 would help accelerate this transition.

Accurately modeling the surface energy budget requires: (1) reli-

able LOP such as ρ and τ and background soil albedo in multiple

spectral bands, (2) accurate canopy structural parameters such as leaf

area index, clumping index, and leaf angle distributions40,73–75, and (3)

an appropriate canopy RT model that captures the interactions

between radiation and vegetation. Currently, most LSMs employ sim-

ple broadband RT schemes developed in the 1980s14,15 along with the

PFT-based look-up table approach. While some recent work has

examined the impact of foliar clumping18 on energy fluxes, major

limitations with the broadband RT model have not been addressed.

For instance, the broadband leaf ρ and τ values depend not only on leaf

biophysical traits and states such as CHL, LMA, and LWC22, but also the

spectral incident light (e.g., leaf absorbs less green light than blue and

red light). Addressing these limitations would require RT models to

move from broadband to higher spectral resolutions or to make cor-

rections based on leaf and canopy optical characteristics20. In either

case, more accurate observations and representations of plant traits

and states are critical inputs to advance leaf and canopy RT models.

In the present study, we used globally griddedCHL42 and LMA37 to

derive broadband leaf ρ and τ. We note here that, while the PFC-based

LOP approach has substantial potential to better represent the spatial

and temporal variations of vegetation diversity in comparison to the

time-invariant PFT approach, these derived parameters still rely on the

accuracy of the input parameters. To investigate the sensitivity of

simulated surface albedo to different prescribed leaf trait inputs, we

used CliMA Land to perform a series of simulations with varying

combinations of CHL and LMA. Specifically, we tested a total of 14

combinations from two CHL datasets42,76 and seven LMA

datasets37,38,77–81. In each CHL and LMA combination, we simulated the

hyperspectral surface albedo, calculated the mean broadband albedo

over the relevant spectral ranges, and compared the results to MODIS

albedo products59. Our results show a potentially improved PAR

albedo in the tropics across all tested combinations. However,

improvements in NIR albedo were only observed in three out of seven

LMA datasets (Supplementary Note 6). These findings highlight that

the large uncertainties inherent in prescribed PFCs, such as CHL and

LMA, can significantly influence the simulated surface energy budget

and its coupled processes. In addition, the lack of seasonal variation in

these prescribed traits likely introduces extra biases in model simula-

tions, for example CHL42 exhibits well-documented seasonality (Sup-

plementary Note 2). LMA is also known to vary over time, since (1)

leaves are built in a progressive manner from the beginning of a

growing season, (2) plants tend to invest more in leaf mass under

water-stressed conditions82, (3) the relative contributions of different

species to total leaf area can shift seasonally. Despite this knowledge,

the lack of detailed and species-specific data on LMA seasonality and

plant life history strategies precluded us from incorporating dynamic

LMA fields into our simulations. We acknowledge this as a limitation

and suggest that future work should prioritize the development of

temporally resolved trait datasets to better capture these dynamics.

Besides CHL and LMA, many key plants traits or characteristics

necessary for the leaf hyperspectral model are not typically directly

measured. For example, the leaf mesophyll structural parameter (N)

that partitions a leaf into N homogeneous layers was set to be a con-

stant of 1.4 in our simulations, which is unrealistic for grasses with

palisade mesophyll on both sides (i.e., N > 2 should be used for grass).

LWC, which impacts NIR absorption22,23, was assumed to be 5 mol m−2,

and a spatially and temporally resolved water content setting would

further improve the accuracy inmodeling vegetation RT. For example,

whenwe changed the default LWC to 10molm−2, ρPAR and τPAR showed

minimal changes, but ρNIR and τNIR both decreased because of the NIR

absorption by water (Supplementary Note 6). Moreover, leaf water

dynamics could also impact leaf angle distribution and thus the light

extinction coefficient within the canopy, particularly during a drought

as the leaves may wilt and curl. Yet, to date, LSMs do not usually

account for these impacts.

Further, vegetation traits exhibit pronounced phenological

dynamics and may have asymmetric acclimation and stress responses

to environmental conditions within a growing season (e.g., CHL42,83), as

well as to the rapidly changing climate (e.g., species distributions and

ranges84). In the present study, we prescribedCHL, LMA, leaf structural

N, and LWC to derive global-scale LOP, aggregated them to annual

means, and used the averages for all scenarios including the past and

future. Despite the potential improvements in the tropics that have

weaker seasonality, this simplification could introduce biases into the

surface energy and carbon budgets, particularly for the regions with

substantial seasonal variations such as in deciduous temperate forests.

To address these limitations, future work should integrate physiolo-

gical or empirical models that dynamically simulate vegetation accli-

mation to the environment, enabling the derivation of LOP in response

to changing environmental conditions in real time. For example, we

performed site-level simulations with CliMA Land, theorizing a dry-

down experiment under four scenarios: (1) moderate CHL, moderate

LMA, and constant LWC, (2) doubled CHL, moderate LMA, and

Fig. 5 | Changes in global climate projections for the coupled SSP585 run from

2015 to 2100. a Changes in annual mean cloud fraction (vertically integrated).

b Changes in top-of-atmosphere (TOA) outgoing radiation flux (sum of shortwave

and longwave radiation).cChanges in annualmeanprecipitation. All plotted results

are averaged from the last 20 years of the simulation period. Made with Nature

Earth. Free vector and raster map data @ naturalearthdata.com.
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constant LWC, (3) moderate CHL, doubled LMA, and constant LWC,

and (4) moderate CHL, moderate LMA, and dynamic LWC. While the

general patterns of GPP and evapotranspiration (ET) remained largely

unchanged, the outgoing shortwave radiation (sum of PAR and NIR)

could differ >7 W m−2, 28 W m−2, and 3 W m−2 for the high CHL, high

LMA, and dynamic LWC scenarios, respectively (Supplementary

Note 6). These simulations further highlighted the importance of

capturing temporal variations of vegetation characteristics in ESMs,

which are typically overlooked. More research to quantify the spatial

and temporal patterns of key plant traits or states (such as N, LMA,

other leaf pigments, LWC) and their plasticity to climate variability is

crucial for advancing ESMs configurations.

In addressing the role of LOP in ESMs, particularly their influence

on temperature and key carbon cyclefluxes, it is crucial to consider the

complexities introduced by canopy structure. Factors such as foliar

clumping, leaf angle distribution, and the penumbra effect sig-

nificantly influence the interception and scattering of solar radiation

within forest canopies. These structural attributes are themselves

affected by leaf size, shape, and spatial arrangement. For instance, leaf

clumping can alter the effective leaf area index perceived by RT

models, thus impacting simulations of photosynthesis, ET, and energy

fluxes17,18,73,74,85. Similarly, the leaf angle distribution affects the direc-

tional reflectance of the canopy, which in turn influences the energy

balance and microclimate75. Additionally, the penumbra effect, which

refers to the shading patterns created by overlapping leaves, can lead

toheterogeneity in light distribution, thereby affecting photosynthetic

efficiency and thermal regulation within the canopy86–88. These factors

may also co-vary with LOP and change with the environment. Future

research therefore would benefit from the integration of detailed

observations andmodeling of canopy structure, in combination to the

LOP. We note here that extra attention should be paid to the under-

lying assumptions and simplifications of differentmodels, which could

lead to inconsistencies that result in unexpected biases89.

We envision that future ESMs would transit from PFT-based con-

figurations to more process- and PFC-based configurations. Such shift

would require numerous incremental quantitative changes, new

schemes, and optimization of existing schemes. To make it easier for

other LSMs to utilize the PFC-based LOP, our model output datasets

are publicly available90. As the leaf reflectance and transmittance are

globally gridded, integration of these PFC-based maps to other LSMs

and ESMs should be readily applicable. For example, the function calls

to read PFT froma given latitude and longitude, and then to readρ and

τ from the PFT can be redirected to a new function call, where ρ and τ

aredirectlyprovided from the globally griddedmaps. Further, with the

advances in data science, remote sensing data, and retrieval techni-

ques, more sophisticated vegetation characteristic maps will be avail-

able in the near future, helping curate new and more reliable datasets

to feed LSMs and ESMs. For example, the recently launched and to-

launch satellites with hyperspectral sensors such as EMIT91, PACE92,

and SBG93 missions could provide more spectral information about

NIR reflectance that is sensitive to LMA and LWC, helping constrain

these less studied vegetation characteristics.

In summary, we showed that accounting for the spatial and tem-

poral variations in leaf biophysical traits can substantially impact the

surface and TOA energy budgets, as well as estimates of the land car-

bonuptake—bothmodulating climate projections. Differences of >5W

m−2 in reflected shortwave radiation caused by underrepresented leaf

trait diversity within PFTs underlines the need to further improve RT

schemes and configurations in ESMs. Moving beyond simplified

modeling approaches to more advanced model designs (e.g., from

broadband to hyperspectral, from PFT- to PFC-based) in future-

generation LSMs would allow for a more accurate representation of

land surface process, and hence better leverage data to understand

how these processes evolve over time12. Enhanced precision of climate

projections would enable policymakers and scientists to developmore

effective strategies for mitigating and adapting to climate change.

These advances are essential for ensuring sustainable ecosystem

management and achieving global climate goals.

Methods
Leaf optical properties
We ran global simulations with a spatial resolution of 2. 5° × 1.875° (144

longitudes and 96 latitudes) following the procedure used in CESM.

Weobtained theCHL and LMAper grid cell usingGriddingMachine.jl94.

For LMA, we used the 0. 5° × 0. 5° dataset37 as the primary data source

and a secondary 0. 5° × 0. 5° dataset38 to fill the missing points. For

CHL, we used the weekly 0. 5° × 0. 5° dataset42 and resampled the data

to the monthly mean per grid. We then resampled the CHL and LMA

maps to 2. 5° × 1.875° using the Blender module from

GriddingMachine.jl94.

Per 2. 5° × 1.875° grid, we derived the hyperspectral leaf reflec-

tance and transmittance spectra using the LeafOptics.jl module from

CliMA Land, which is adapted from the PROSPECT model22,23,43,56. The

key leaf biophysical characteristics (trait or state) required are meso-

phyll structural parameter (N), leaf pigment constitutes (anthocyanin,

brown pigments, chlorophyll, and carotenoid), LMA, and water con-

tent. Due to the limited data availability of these characteristics, we

used a constant N = 1.4, anthocyanin content of 0, brown pigments

content of 0, carotenoid content to be 1/7 of CHL42, and a constant

water content of 5molm−2 (equivalent to a thickness of 0.09mm).

Then, we computed the hyperspectral reflectance and transmittance,

and used the average solar radiation spectrum [E(λ)] to weigh the

broadband leaf ρ and τ at PAR and NIR ranges:

ρ*** =

R λ2
λ1

EðλÞ � ρðλÞ � dλ
R λ2
λ1

EðλÞ � d λ
ð1Þ

τ*** =

R λ2
λ1

EðλÞ � τðλÞ � dλ
R λ2
λ1

EðλÞ � d λ
ð2Þ

where the subscript “***” means either PAR or NIR, and λ1 and λ2 the

lower and upper bounds of the wavelength ranges of PAR

(400–700nm) and NIR (700–2500 nm). With the monthly broadband

ρ and τ, we further computed the annual means.

CESM simulations
CESM2 is the most recent coupled ESM developed at the National

Center for Atmospheric Research (NCAR) in partnership with uni-

versities and other research institutions57. Our global simulations were

based on CESM 2.1, for which the atmosphere component is the

Community AtmosphereModel (CAM) version 6, the land component

is CLM version 5, the land ice component is the Community Ice Sheet

Model (CISM) version 2, the ocean component is the Parallel Ocean

Program (POP) version 2, the river runoff component is the Model for

Scale Adaptive River Transport (MOSART), the sea ice component is

Community Ice CodE (CICE) version 5, and the wave component is the

WaveWatch version 352,57,95–97. With the PFC-based annual means per

grid, we modified CESM’s land component CLM (version 5) to replace

the PFT-based broadband leaf ρ and τ.We then ran theCESMusing two

branches of CLM: a default branch using the PFT-based look-up table

values (control) and the modified CLM using the PFC-based values

(treatment). We ran CESM with five setups: uncoupled historical run

from 1985 to 2019 using the component set IHistClm50BgcCrop,

uncoupled SSP245 scenario run from 2015 to 2104 using the compo-

nent set ISSP245Clm50BgcCrop, uncoupled SSP585 scenario run from

2015 to 2104 using the component set ISSP585Clm50BgcCrop, cou-

pled historical run from 1950 to 2004 using the component set

FHIST_BGC, and coupled future run from 2015 to 2099 using the
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component set BSSP585. We output monthly means per setup for

analysis. We compared the results from 2015 to 2089 for the coupled

future simulations.

Data availability
The CHL42 and LMA37,38 maps and benchmark datasets62,98 used in this

study are available from GriddingMachine.jl94. Global scale LOP maps

derived using CliMA Land, CESM modifications, and CESM model

output are available at https://doi.org/10.5281/zenodo.757031490.

Code availability
The CliMA Landmodel used to simulate leaf hyperspectral reflectance

and transmittance is available at https://github.com/CliMA/Land. All

figures were generated using Python with the matplotlib and cartopy

modules. The code for generating and analyzing the data can be found

at https://doi.org/10.5281/zenodo.757031490.
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