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Abstract
Hematoxylin and eosin (H&E)-stained histopathological slides contain abundant
information about cellular and tissue morphology and have been the cornerstone of
tumor diagnosis for decades. In recent years, advancements in digital pathology
have made whole-slide images (WSIs) widely applicable for diagnosis, prognosis,
and prediction in brain cancer. However, there remains a lack of systematic tools
and standardized protocols for using handcrafted features in brain cancer histo-
logical analysis. In this study, we present a protocol for handcrafted feature analysis
in brain cancer pathology (PHBCP) to systematically extract, analyze, model, and
visualize handcrafted features from WSIs. The protocol enabled the discovery of
biomarkers from WSIs through a series of well-defined steps. The PHBCP com-
prises seven main steps: (1) problem definition, (2) data quality control, (3) image
preprocessing, (4) feature extraction, (5) feature filtering, (6) modeling, and (7)
performance analysis. As an exemplary application, we collected pathological data
of 589 patients from two cohorts and applied the PHBCP to predict the 2-year
survival of glioblastoma multiforme (GBM) patients. Among the 72 models
combining nine feature selection methods and eight machine learning classifiers,
the optimal model combination achieved discriminative performance with an
average area under the curve (AUC) of 0.615 over 100 iterations under five-fold
cross-validation. In the external validation cohort, the optimal model combina-
tion achieved a generalization performance with an AUC of 0.594. We provide an
open-source code repository (GitHub website: https://github.com/XuanjunLu/
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PHBCP) to facilitate effective collaboration between medical and technical experts,
thereby advancing the field of computational pathology in brain cancer.

KEYWORD S
brain cancer pathology, handcrafted features, protocol, whole-slide images

1 | INTRODUCTION

Histopathological slides, recognized as the “gold standard” for
tumor diagnosis,[1] hold significant value not only in the
morphological assessment of diseases but also in critical
biomedical information such as tumor heterogeneity, micro-
environment characteristics, and molecular phenotypes.[2] In
the diagnosis and treatment of brain cancer, histopathological
analysis using hematoxylin and eosin (H&E)-stained slides
provides indispensable diagnostic evidence for clinical
decision-making.However, the traditional diagnosticworkflow
relies on pathologists' visual inspection of slides under a mi-
croscope from low to high magnification. This qualitative
analytical approach has inherent limitations. First, subjective
interpretation is prone to variability because of differences in
experience, leading to diagnostic inconsistency.[3] Second,
conventional examination has difficulty in quantitatively
extracting subvisual tissue features, which may include crucial
prognostic information.[4] Third, the efficiency bottleneck of
manual analysis becomes apparent when dealing with large
numbers of slides.[5] Thus, an accurate, objective, and inter-
pretable protocol is an important goal in brain cancer pathology.

In recent years, the development of digitized whole-slide
image (WSI) technology has revolutionized the field of pa-
thology by enabling permanent digital storage of histopatho-
logical slides.[6] Leveraging WSI, handcrafted features—i.e.,
features extracted by manually designed algorithms guided by
domain-specific prior knowledge and empirical expertise—
have been employed to extract attributes for the discovery of
biomarkers. These features can derive quantitative prognostic,
predictive, and other pathological information from H&E-
stainedWSIs, potentially transforming precision oncology and
improving patient outcomes. Over the past few years, bio-
markers based on handcrafted features have been extensively
applied in numerous cancers, including head and neck squa-
mous cell carcinoma,[7] urothelial cancer,[8] papillary thyroid
carcinoma,[9] hepatocellular carcinoma,[10,11] lung cancer,[12,13]

oropharyngeal squamous cell carcinoma,[14] and colorectal
cancer.[15] However, their application in brain cancer remains
insufficient and is scarcely reported in the literature.

Current brain cancer research mainly focuses on radi-
ology images,[16–19] with few studies dedicated to histo-
pathological analysis. Even within the limited pathological
investigations, deep learning approaches dominate,[20] yet
their “black-box” nature results in a lack of interpretability,
significantly hindering broader clinical translation. The
substantial computational resource requirements and intri-
cate preprocessing pipelines associated with deep-learning
models pose additional barriers, further limiting their
accessibility and practical adoption in clinical settings.

In this study, we present a protocol for handcrafted feature
analysis in brain cancer pathology (PHBCP) based on H&E-
stained WSIs. The protocol represents a simple, flexible, and
modular open-source pipeline. We demonstrate the use of the
protocol using two cohorts of glioblastomamultiforme (GBM).
By following this protocol, medical and technical experts will
be able to promote communication and collaboration, develop
novel biomarkers, and collectively tackle clinical challenges in
brain cancer, ultimately improving patient outcomes.

2 | METHODS

2.1 | Overview of the protocol

The protocol comprises seven main steps (Figure 1): (1)
problem definition, (2) data quality control, (3) image pre-
processing, (4) feature extraction, (5) feature filtering, (6)
modeling, and (7) performance analysis. The problem-
definition step specifies the precise clinical objectives to be
analyzed. The data quality-control step aims to eliminate slides
that contain contamination, artifacts, and other issues. The
image-preprocessing step provides a WSI-based standardized
preprocessing process, encompassing the region of interest
(ROI) acquisition, WSI slicing, and color normalization. The
feature-extraction step details the types, roles, extraction, and
aggregation approaches for handcrafted features. The feature-
filtering step refines a large set of redundant features to identify
those most relevant to the label. The modeling step involves

Key points

What is already known about this topic?
� Hematoxylin and eosin (H&E)-stained whole-
slide images (WSIs) contain abundant informa-
tion about cellular and tissue morphology. How-
ever, there remains a lack of systematic tools and
standardized protocols for using handcrafted
features in brain cancer histological analysis.

What does this study add?
� This study presents a protocol for handcrafted
feature analysis in brain cancer pathology to
systematically extract, analyze, model, and visu-
alize handcrafted features from WSIs, thereby
promoting efficient collaboration between medi-
cal and technical experts.
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constructing models based on the filtered features to achieve
optimal analytical performance. Lastly, the performance-
analysis step visualizes important features and conducts
downstream analyses. In this study, we use H&E-stainedWSIs
from two independent cohorts [The Cancer Genome Atlas
(TCGA) and The Cancer Imaging Archive (TCIA)][21] to
demonstrate how to use the PHBCP. The uniqueness of the
protocol lies in its use of interpretable handcrafted features,
rather than deep learning, to establish the complex relationship
betweenWSI and the clinical question. Subsequently, Sections
2.2–2.8 correspond to steps 1–7, respectively.

2.2 | Problem definition

First, the clinical problem is determined, followed by the
collection of tissue samples and corresponding pathology
reports from patients. Slicing and staining operations were
performed on the tissue samples. Stained tissue slides are
converted into digital whole-slide histology images using
digital scanners for subsequent computational pathology
analysis. For example, one may want to interrogate the
relationship between the nuclear shape features and the
grade of tumor of the central nervous system.

2.3 | Data quality control

The collected WSIs may be scanned by diverse clinical
personnel utilizing different scanners across multiple in-
stitutions, which inevitably results in heterogeneous image
quality. To mitigate the potential influence of these external

variables on the experimental results, it is necessary to exclude
substandard slides. However, the manual inspection of image
quality in a high-throughput experimental context is often
unfeasible. Consequently, a tool referred to as HistoQC[22] is
usually employed as an objective and rapid quality control
process, identifying and flagging issues such as reagent
contamination, artifacts, tissue folding, and staining irregu-
larities, thereby enabling automated assessment of WSI
quality. Combined with a pathological image viewer-
QuPath,[23] substandard data are excluded. Multicenter batch
effects, such as stain variations, which may affect the
robustness of themodel. It is recommended to useBatchEffect
Explorer[24] to unveil the batch effect between cohorts.

2.4 | Image preprocessing

In Section 2.3, we create a tissue mask, which excludes ar-
tifacts, tissue folding, and other external influences. In this
step, the ROI of the current task is extracted from the tissue
mask and split into image tiles of the desired size and
magnification, for example, 224 � 224 pixels at 20x
magnification, using the OpenSlide library,[25] which is a
Python library used for processing WSIs. To ensure a rela-
tively dense tissue distribution, only those image tiles con-
taining more than a certain proportion of tissue area are
selected, for example, with 80% tissue area. To reduce
computational load and avoid subjective selection bias, K-
means clustering is performed on the tiles of each WSI to
group tiles with similar phenotypes together. To ensure no
critical regions are missed, E tiles are selected from each
cluster, resulting in L � E tiles being used to characterize

F I GURE 1 Conceptual overview of the protocol. Seven main steps transform images into quantitative feature information, thereby supporting
experimental conclusions (Sections 2.2–2.8 correspond to steps 1–7 shown in Figure 1, respectively).
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each patient, in which L is the number of clusters. Due to
staining variations across different centers, deconvolution-
based color normalization[26–28] is applied to the selected
tiles to eliminate color discrepancies between WSIs.

2.5 | Feature extraction

Feature extraction refers to the process of transforming images
into quantitatively described feature values. Five types of
handcrafted features are provided in this protocol: first-order
statistics (n = 17), gray level co-occurrence matrix (GLCM)
features (n = 24), gray level run length matrix (GLRLM)
features (n= 16), nuclear shape features (n= 25), and nuclear
texture features (n = 13). First-order statistics describe the
distribution of pixel intensity values within the tissue region.
The GLCM features characterize the frequency of pairs of
identical pixel intensity values in the tissue region. The
GLRLM features describe the continuity of pixel intensity
values over a specified distance in the tissue region. The nu-
clear shape features are employed to quantify the geometric
properties of nuclear contours, thereby reflecting the charac-
teristic patterns of nuclear deformation and cellular morpho-
logical changes during tumor progression. The nuclear texture
features, by quantifying the heterogeneity and spatial config-
uration of chromatin distributionwithin the nucleus, enable an
in-depth analysis of the structural distortions in the intra-
nuclearmicroenvironment during tumor evolution. In total, 95
features can be extracted for each image tile. The details of the
five types of features are as follows:

First-order statistics[29]:

Energy¼
X

Np

i¼1
ðX ðiÞ þ cÞ2 ð1Þ

Entropy¼ −

X

Ng

i¼1
pðiÞlog2ðpðiÞ þ eÞ ð2Þ

Minimum¼minðX Þ ð3Þ

The 10thpercentile of X ð4Þ

The 90thpercentile of X ð5Þ

Maximum¼maxðX Þ ð6Þ

Mean¼
1
Np

X

Np

i¼1
X ðiÞ ð7Þ

Median¼medðX Þ ð8Þ

Interquartile range¼ 75th percentile − 25th percentile ð9Þ

Range¼maxðX Þ − minðX Þ ð10Þ

Mean absolute deviation¼
1
Np

X

Np

i¼1

�

�X ðiÞ − X
�

� ð11Þ

Robust mean absolute deviation

¼
1

N10−90

X

N10−90

i¼1

�

�X10−90ðiÞ − X 10−90
�

� ð12Þ

Root mean squared¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Np

X

Np

i¼1
ðX ðiÞ þ cÞ2

v

u

u

t ð13Þ

Skewness¼

1
Np

P

Np

i¼1
X ðiÞ − X
� �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Np

P

Np

i¼1
X ðiÞ − X
� �2

s

 !3 ð14Þ

Kurtosis¼

1
Np

P

Np

i¼1
X ðiÞ − X
� �4

1
Np

P

Np

i¼1
X ðiÞ − X
� �2

 !2 ð15Þ

Variance¼
1
Np

X

Np

i¼1
X ðiÞ − X
� �2

ð16Þ

Uniformity¼
X

Ng

i¼1
pðiÞ2 ð17Þ

where X is a set of Np pixels included in the ROI, X is the
average of X , c is an optional drift value, e is an arbitrarily
small positive number. PðiÞ is the first-order histogram with
Ng discrete intensity levels, and pðiÞ:

pðiÞ ¼
PðiÞ
Np

ð18Þ

GLCM features[29]:

Autocorrelation¼
X

Ng

i¼1

X

Ng

j¼1
pði; jÞij ð19Þ

Joint average¼
X

Ng

i¼1

X

Ng

j¼1
pði; jÞi ð20Þ

Cluster prominence¼
X

Ng

i¼1

X

Ng

j¼1
iþ j − μx − μy
� �4

pði; jÞ

ð21Þ

Cluster shade¼
X

Ng

i¼1

X

Ng

j¼1
iþ j − μx − μy
� �3

pði; jÞ ð22Þ

4 of 14 - LU ET AL.

 2
8

3
5

3
1

5
3

, 2
0

2
5

, 2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/b

rx
2

.7
0

0
3

0
 b

y
 U

N
IV

E
R

S
IT

Y
 O

F
 S

H
E

F
F

IE
L

D
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

3
/0

6
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



Cluster tendency¼
X

Ng

i¼1

X

Ng

j¼1
iþ j − μx − μy
� �2

pði; jÞ ð23Þ

Contrast¼
X

Ng

i¼1

X

Ng

j¼1
ði − jÞ2pði; jÞ ð24Þ

Correlation¼

P

Ng

i¼1

P

Ng

j¼1
pði; jÞij − μxμy

σxðiÞσyðjÞ
ð25Þ

Difference average ðDAÞ ¼
X

Ng−1

k¼0
kpx−yðkÞ ð26Þ

Difference entropy¼
X

Ng−1

k¼0
px−yðkÞlog2 px−yðkÞ þ e

� �

ð27Þ

Difference variance¼
X

Ng−1

k¼0
ðk − DAÞ2px−yðkÞ ð28Þ

Joint energy¼
X

Ng

i¼1

X

Ng

j¼1
ðpði; jÞÞ2 ð29Þ

Joint entropy¼ −

X

Ng

i¼1

X

Ng

j¼1
pði; jÞlog2ðpði; jÞ þ eÞ ð30Þ

Informational measure of correlation 1

¼
HXY − HXY1
maxðHX;HYÞ

ð31Þ

Informational measure of correlation 2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2ðHXY2−HXYÞ
p

ð32Þ

Inverse difference moment¼
X

Ng−1

k¼0

px−yðkÞ
1þ k2

ð33Þ

Maximal correlation coefficient

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

second largest eigenvalue of Q
p

Qði; jÞ ¼
X

Ng

k¼0

pði; kÞpðj; kÞ
pxðiÞpyðkÞ

ð34Þ

Inverse difference moment normalized

¼
X

Ng−1

k¼0

px−yðkÞ

1þ k2
Ng2

� � ð35Þ

Inverse difference¼
X

Ng−1

k¼0

px−yðkÞ
1þ k

ð36Þ

Inverse difference normalized¼
X

Ng−1

k¼0

px−yðkÞ

1þ k
Ng

� � ð37Þ

Inverse variance¼
X

Ng−1

k¼1

px−yðkÞ
k2

ð38Þ

Maximum probability¼maxðpði; jÞÞ ð39Þ

Sum average¼
X

2Ng

k¼2
pxþyðkÞk ð40Þ

Sum entropy¼
X

2Ng

k¼2
pxþyðkÞlog2 pxþyðkÞ þ e

� �

ð41Þ

Sum squares¼
X

Ng

i¼1

X

Ng

j¼1
i − μxð Þ2pði; jÞ ð42Þ

where e is an arbitrarily small positive number, Pði; jÞ is the
co-occurrence matrix, Ng is the number of discrete intensity
levels, σx is the standard deviation of px, σy is the standard
deviation of py, and the other parameters are as follows:

pði; jÞ ¼
Pði; jÞ
P

Pði; jÞ
ð43Þ

pxðiÞ ¼
X

Ng

j¼1
pði; jÞ ð44Þ

pyðjÞ ¼
X

Ng

i¼1
pði; jÞ ð45Þ

μx ¼
X

Ng

i¼1
pxðiÞi ð46Þ

μy ¼
X

Ng

j¼1
pyðjÞj ð47Þ

pxþyðkÞ ¼
X

Ng

i¼1

X

Ng

j¼1
pði; jÞ; iþ j¼ k; k ¼ 2; 3; :::; 2Ng ð48Þ

px−yðkÞ ¼
X

Ng

i¼1

X

Ng

j¼1
pði; jÞ; ji − jj ¼ k; k ¼ 0; 1; :::;Ng − 1

ð49Þ

HX¼ −

X

Ng

i¼1
pxðiÞlog2 pxðiÞ þ eð Þ ð50Þ

HY¼ −

X

Ng

j¼1
pyðjÞlog2 pyðjÞ þ e

� �

ð51Þ
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HXY¼ −

X

Ng

i¼1

X

Ng

j¼1
pði; jÞlog2ðpði; jÞ þ eÞ ð52Þ

HXY1¼ −

X

Ng

i¼1

X

Ng

j¼1
pði; jÞlog2 pxðiÞpyðjÞ þ e

� �

ð53Þ

HXY2¼ −

X

Ng

i¼1

X

Ng

j¼1
pxðiÞpyðjÞlog2 pxðiÞpyðjÞ þ e

� �

ð54Þ

GLRLM features[29]:

Short run emphasis¼

P

Ng

i¼1

P

Nr

j¼1

Pði;jjθÞ
j2

NrðθÞ
ð55Þ

Long run emphasis¼

P

Ng

i¼1

P

Nr

j¼1
Pði; jjθÞj2

NrðθÞ
ð56Þ

Gray level non − uniformity¼

P

Ng

i¼1

P

Nr

j¼1
Pði; jjθÞ

 !2

NrðθÞ
ð57Þ

Gray level non − uniformity normalized

¼

P

Ng

i¼1

P

Nr

j¼1
Pði; jjθÞ

 !2

NrðθÞ2
ð58Þ

Run length non − uniformity¼

P

Nr

j¼1

P

Ng

i¼1
Pði; jjθÞ

 !2

NrðθÞ
ð59Þ

Run length non − uniformity normalized

¼

P

Nr

j¼1

P

Ng

i¼1
Pði; jjθÞ

 !2

NrðθÞ2
ð60Þ

Run percentage¼
NrðθÞ
Np

ð61Þ

Gray level variance¼
X

Ng

i¼1

X

Nr

j¼1
pði; jjθÞði − μÞ2

μ¼
X

Ng

i¼1

X

Nr

j¼1
pði; jjθÞi

ð62Þ

Run variance¼
X

Ng

i¼1

X

Nr

j¼1
pði; jjθÞðj − μÞ2

μ¼
X

Ng

i¼1

X

Nr

j¼1
pði; jjθÞj

ð63Þ

Run entropy¼ −

X

Ng

i¼1

X

Nr

j¼1
pði; jjθÞlog2ðpði; jjθÞ þ eÞ ð64Þ

Low gray level run emphasis¼

P

Ng

i¼1

P

Nr

j¼1

Pði;jjθÞ
i2

NrðθÞ
ð65Þ

High gray level run emphasis¼

P

Ng

i¼1

P

Nr

j¼1
Pði; jjθÞi2

NrðθÞ
ð66Þ

Short run low gray level emphasis¼

P

Ng

i¼1

P

Nr

j¼1

Pði;jjθÞ
i2j2

NrðθÞ
ð67Þ

Short run high gray level emphasis¼

P

Ng

i¼1

P

Nr

j¼1

Pði;jjθÞi2
j2

NrðθÞ
ð68Þ

Long run low gray level emphasis¼

P

Ng

i¼1

P

Nr

j¼1

Pði;jjθÞj2
i2

NrðθÞ
ð69Þ

Long run high gray level emphasis

¼

P

Ng

i¼1

P

Nr

j¼1
Pði; jjθÞi2j2

NrðθÞ
ð70Þ

where e is an arbitrarily small positive number, Ng is the
number of discrete intensity levels, Nr is the number of
discrete run lengths, Np is the number of pixels, Pði; jjθÞ is
the run length matrix for a direction, and the other param-
eters are as follows:

NrðθÞ ¼
X

Ng

i¼1

X

Nr

j¼1
Pði; jjθÞ; 1 ≤ NrðθÞ ≤ Np ð71Þ

pði; jjθÞ ¼
Pði; jjθÞ
NrðθÞ

ð72Þ

Nuclear shape features are as follows:

Area ratio¼
area

areamax
ð73Þ
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where area is the area of a nucleus, and areamax represents
the area of a circle with a radius equal to the maximum
Euclidean distance from the centroid of the nucleus to its
contour points.

Distance ratio¼
distancemean
distancemax

ð74Þ

where distancemean is the average Euclidean distance from
the centroid to the contour points, and distancemax is the
maximum Euclidean distance from the centroid to the con-
tour points in a nucleus.

Distance std¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N − 1

X

N

i¼1
dci − dc
� �2

v

u

u

t ð75Þ

where dc is the set of the centroid to contour points stan-
dardized Euclidean distances in a nucleus, dc is the average
of dc, and N is the number of the contour points.

Distance var¼ Distance std2 ð76Þ

Long or short distance ratio¼
disumL

disumS
ð77Þ

where disumL is the long-distance sum of contour points in
a nucleus. Specifically, it is calculated by uniformly sam-
pling a certain number of points among the contour points
with a longer sampling interval and then summing up the
Euclidean distances between adjacent sampled points.
Similarly, disumS is the short-distance sum of contour
points.

Perimeter ratio¼
perimeter2

area
ð78Þ

where perimeter is the perimeter of a nucleus.

Smoothness¼
X

N

i¼1

�

�

�

�

di −
di−1 þ diþ1

2

�

�

�

�

ð79Þ

where di is the Euclidean distance from the contour point of
a nucleus to the centroid.

Invariant moment1 ¼ η20 þ η02 ð80Þ

Invariant moment2 ¼ η20 − η02ð Þ2 þ 4η11
2 ð81Þ

Invariant moment3 ¼ η30 − 3η12ð Þ2 þ 3η21 − η03ð Þ2 ð82Þ

Invariant moment4 ¼ η30 þ η12ð Þ2 þ η21 þ η03ð Þ2 ð83Þ

Invariant moment5 ¼ η30 − 3η12ð Þ η30 þ η12ð Þ

η30 þ η12ð Þ2 − 3 η21 þ η03ð Þ2
h i

þ 3η21 − η03ð Þ η21 þ η03ð Þ

3 η30 þ η12ð Þ2 − η21 þ η03ð Þ2
h i

ð84Þ

Invariant moment6 ¼ η20 − η02ð Þ

η30 þ η12ð Þ2 − η21 þ η03ð Þ2
h i

þ 4η11 η30 þ η12ð Þ η21 þ η03ð Þ

ð85Þ

Invariant moment7 ¼ 3η21 − η03ð Þ η30 þ η12ð Þ

η30 þ η12ð Þ2 − 3 η21 þ η03ð Þ2
h i

− η30 − 3η12ð Þ η21 þ η03ð Þ

3 η30 þ η12ð Þ2 − η21 þ η03ð Þ2
h i

ð86Þ

where ηpq is the normalized central moment[30] calculated
based on the contour point set of a nucleus.

Fractal dimension¼ slope lg
1
rk

� �

; lgL rkð Þ

� �m

k¼1

� �

ð87Þ

where slope is the slope of linear regression, rk is the kth
sampling interval of the contour points in a nucleus, L rkð Þ is
the fractal length at the kth sampling interval,[31] andm ¼ N =2

Fourier descriptor¼ z Re Z0ð Þ;Re Z1ð Þ; :::;Re Z9ð Þ½ � ð88Þ

where z is the discrete Fourier transform of a set of contour
points in a nucleus, and Z is the Fourier descriptor.

Nuclear texture features are as follows:

Contrast energy¼
X

k
ckð Þ2pc ckð Þ ð89Þ

where ck is the absolute difference of intensity-level pairs,
and pc ckð Þ is the normalized co-occurrence probability of the
corresponding intensity-level pairs.

Contrast inverse moment¼
X

k

1
1þ ck2

pc ckð Þ ð90Þ

Contrast averageðCAÞ ¼
X

k
ckpc ckð Þ ð91Þ

Contrast variance¼
X

k
ck − CAð Þ2pc ckð Þ ð92Þ

Contrast entropy¼ −

X

k
pc ckð Þln pc ckð Þ ð93Þ
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Intensity averageðIAÞ ¼
X

l
mlpm mlð Þ ð94Þ

where ml is the average of intensity-level pairs, and pm mlð Þ is
the normalized co-occurrence probability of the corre-
sponding intensity-level pairs.

Intensity variance¼
X

l
ml − IAð Þ2pm mlð Þ ð95Þ

Intensity entropy¼ −

X

l
pm mlð Þln pm mlð Þ ð96Þ

The other features, including entropy, energy, correla-
tion, informational measure of correlation 1, and informa-
tional measure of correlation 2, are derived from GLCM
features. Note that there are other types of handcrafted fea-
tures, such as the spatial interaction between histological
primitives,[32,33] that can be integrated into the PHBCP.

In summary, for each WSI, a feature matrix of size
(L � E) � N can be obtained, in which N is the total number
of extracted features. Based on this, users can aggregate and
concatenate features using various methods according to
their needs, for example, mean, standard deviation, and
skewness.

2.6 | Feature filtering

Feature filtering is a critical step in machine learning that
identifies the most relevant and informative features from the
feature matrix while eliminating redundant and irrelevant
features. This process not only reduces the dimensionality of
features but also mitigates overfitting, enhances model
interpretability, and improves computational efficiency. In
this study, the protocol employs comprehensive feature-
selection methods to ensure robust and reliable features.

Firstly, to address multicollinearity and reduce feature
redundancy, the PHBCP calculates the pairwise Spearman's
rank correlation coefficient matrix among all features. Fea-
tures with a correlation coefficient greater than the threshold,
for example, 0.9 is generally used for removing features
having more than 90% synchronicity, are removed. Subse-
quently, the feature matrix is standardized using the Z-score
method.[34] The above steps ensure that only non-redundant
features are retained for further analysis.

Secondly, the protocol uses comprehensive feature se-
lection methods to capture diverse aspects of feature
importance and interactions. These methods include Lasso
regression (LR), random forest (RF), elastic-net (EN),
recursive feature elimination (RFE), univariate analysis
(UA), minimum redundancy maximum relevance (MRMR),
t-test, Wilcoxon rank-sum test (WRST), and mutual infor-
mation (MI) methods, which are implemented in Python

using scikit-learn, mrmr_selection, and scipy libraries. Here,
users can select an appropriate number of features based on
the sample size to achieve a suitable predictive performance
and avoid overfitting and the curse of dimensionality.

Finally, each feature selection method is integrated with
a classifier, and multi-fold cross-validation with user-defined
iterations is performed to assess the consistency and reli-
ability of the selected features across multiple data splits.

By combining correlation-based filtering with compre-
hensive feature selection methods and cross-validation, the
protocol provides a robust framework to identify the most
discriminative features while minimizing redundancy and
overfitting.

2.7 | Modeling

In this step, the PHBCP combines the feature selection
methods and classifiers one by one to construct potential
models. The protocol employs eight machine learning clas-
sifiers, including quadratic discriminant analysis (QDA),
linear discriminant analysis (LDA), RF, K-nearest neighbors
(KNN), linear support vector machine (LSVM), Gaussian
naive bayes (GNB), stochastic gradient descent (SGD), and
adaptive boosting (AdaBoost), which are implemented in
Python using scikit-learn library. The eight classifiers are
implemented in conjunction with the top features selected
using the nine feature selection methods. The classifiers are
evaluated with multi-fold cross-validation with user-defined
iterations within a training cohort. Ultimately, the PHBCP
identifies the optimal model combination from the 72
different combinations based on the highest average area
under the curve (AUC) across user-defined iterations.

2.8 | Performance analysis

Based on the optimal model combination determined during
the modeling phase, one can conduct performance analysis
focusing on the visualization of the top features' feature
distribution, feature importance, and survival analysis in the
external validation cohort.

Firstly, the PHBCP calculates the mean, median, and
skewness of the top feature values, and then divides the
feature values into equal bins to obtain 10 intervals. The
distribution of the top features is visualized using histograms
overlaid with kernel density estimation (Gaussian kernel)
curves. Secondly, a horizontal bar is used to visualize the
selection frequency percentage of the top features across the
multi-fold cross-validation with user-defined iterations,
highlighting the most important features and understanding
their contributions to the optimal model combination. A
higher selection frequency indicates a greater predictive
contribution to the model and a stronger clinical relevance to
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the research question. Finally, the PHBCP locks down the
optimal model combination and corresponding top features
in the training cohort and conducts survival analysis in the
external validation cohort. A Kaplan–Meier curve is used to
evaluate, for example, the survival probability between

predicted long- and short-term survival patients. The log-
rank test was employed to examine survival differences,
indicating the prognostic significance of the categorical
variable on the survival endpoint. All tests are two-sided,
with the significance level set at 0.05.

3 | RESULTS

Given that GBM is the most common and aggressive type of
malignant primary brain tumor,[35,36]we used aGBM survival
prediction problem as an exemplary task to demonstrate how
to use the PHBCP. First, WSI data and corresponding basic
clinical information were obtained from two independent
cohorts through The Cancer Genome Atlas (TCGA) (389
cases) and The Cancer Imaging Archive (TCIA, 200
cases).[21] Subsequently, the entire tissue region was defined
as the ROI, with overall survival (OS) established as the
endpoint. For patients whose death occurred during the
follow-up period, OS of less than or equal to 2 years was
classified as short-term survival, while OS greater than 2 years
was classified as long-term survival. For censored patients, the
final follow-up time was used as the OS, with cases whose OS
exceeded 2 years classified as long-term survival, while cases
with an OS of less than or equal to 2 years were considered
missing information and excluded from the analysis. OS was
defined as the time from surgery to death.

In Section 2.3, HistoQC was used to exclude WSIs with
fewer than 250,000 usable pixels as well as those exhibiting
significant issues such as extensive blurring, tissue folding,
reagent contamination, and abnormal staining. The detailed
settings are provided in the supplementary parameter set-
tings for HistoQC. For patients with multiple slides, one
slide was selected for subsequent analysis based on its
image quality using the pathological image viewer-QuPath.
Inclusion and exclusion criteria were applied to both co-
horts. Inclusion criteria: (1) patients who underwent
resection and were confirmed to have GBM through sur-
gical pathological specimens; (2) patients whose OS in-
formation was complete; (3) patients who contained

TABLE 1 Baseline and clinical characteristics in the training cohort
and external validation cohort.

Training cohort
(N = 207)

External validation
cohort (N = 57) p

Age 0.8546

≤ 65 150 (72.5%) 42 (73.7%)

> 65 57 (27.5%) 15 (26.3%)

Sex 0.9723

Male 124 (59.9%) 34 (59.6%)

Female 83 (40.1%) 23 (40.4%)

Race <0.0001

White 189 (91.3%) 24 (42.1%)

Asian 3 (1.4%) 19 (33.3%)

Other 11 (5.3%) 13 (22.8%)

Unknown 4 (1.9%) 1 (1.8%)

History of LGG

Yes 3 (1.4%) NA

No 204 (98.6%) NA

Event status 0.4987

Occurred 191 (92.3%) 51 (89.5%)

Censored 16 (7.7%) 6 (10.5%)

Survival status 0.5731

Long term
(>2 years)

54 (26.1%) 17 (29.8%)

Short term
(≤2 years)

153 (73.9%) 40 (70.2%)

The p-values were calculated by Pearson's Chi-square test.

TABLE 2 AUC performance of eight different classifiers with nine different feature selection methods in the training cohort.

QDA LDA RF KNN LSVM GNB SGD AdaBoost

LR 0.595 � 0.022 0.550 � 0.029 0.597 � 0.037 0.591 � 0.028 0.511 � 0.034 0.601 � 0.028 0.533 � 0.038 0.610 � 0.033

RF 0.593 � 0.028 0.564 � 0.025 0.586 � 0.033 0.580 � 0.029 0.521 � 0.039 0.582 � 0.030 0.536 � 0.046 0.578 � 0.032

EN 0.572 � 0.029 0.547 � 0.021 0.598 � 0.038 0.579 � 0.032 0.527 � 0.034 0.567 � 0.027 0.532 � 0.038 0.584 � 0.035

RFE 0.585 � 0.032 0.509 � 0.032 0.577 � 0.036 0.583 � 0.039 0.454 � 0.034 0.575 � 0.022 0.513 � 0.040 0.572 � 0.034

UA 0.576 � 0.028 0.565 � 0.023 0.577 � 0.034 0.557 � 0.033 0.530 � 0.032 0.553 � 0.028 0.541 � 0.040 0.590 � 0.033

MRMR 0.573 � 0.027 0.566 � 0.022 0.586 � 0.032 0.558 � 0.033 0.540 � 0.031 0.554 � 0.026 0.545 � 0.034 0.595 � 0.040

t-test 0.572 � 0.032 0.568 � 0.020 0.579 � 0.035 0.562 � 0.030 0.537 � 0.029 0.555 � 0.024 0.535 � 0.038 0.594 � 0.035

WRST 0.596 � 0.031 0.577 � 0.025 0.588 � 0.041 0.574 � 0.036 0.532 � 0.038 0.587 � 0.028 0.548 � 0.036 0.605 � 0.034

MI 0.594 � 0.025 0.528 � 0.032 0.567 � 0.039 0.615 ± 0.027 0.467 � 0.036 0.591 � 0.024 0.531 � 0.041 0.586 � 0.037

Note: The bold values represent the AUC and standard deviation of the optimal model combination.
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follow-up information. Exclusion criteria: (1) missing
H&E-stained WSIs of 20x magnification and (2) histo-
pathological slides that did not meet the standard re-
quirements for analysis. Ultimately, 207 patients from
TCGA were included as the training cohort, while 57 pa-
tients from TCIA were incorporated as the external vali-
dation cohort. Table 1 presents a summary of the basic
clinical information and distribution differences between
the training cohort and the external validation cohort.

In Section 2.4, the tissue mask generated through His-
toQC was aligned with the corresponding WSI, and image
tiles of 224 � 224 pixels were extracted at 20x magnification
without overlap. The tiles from each WSI were clustered into
10 classes, and 50 tiles were randomly selected from each
class to ensure a comprehensive analysis of all regions. Stain
normalization was performed on 500 selected tiles for sub-
sequent feature extraction.

In Section 2.5, three types of features were extracted:
First-order statistics, GLCM features, and GLRLM features,
totaling 57 features. For each WSI, a feature matrix of size
500 � 57 was obtained, and the feature matrix was averaged
to aggregate a 1 � 57 feature vector.

In Sections 2.6 and 2.7, in order to avoid the curse of
dimensionality and overfitting, we set the number of top
features to six, based on the experimental experience that the
number of selected features should be approximately one-
10th of the number of minority class samples. In this
study, the training cohort contained 54 minority class sam-
ples and thus the top six features were chosen. The
Spearman correlation threshold was set to 0.9. The predic-
tive performance of the model in the training cohort was
evaluated by performing 100 iterations of five-fold cross-
validation in 72 model combinations to avoid incidental re-
sults. The detailed results are presented in Table 2. Table 2

F I GURE 2 The distribution of the top six feature values in the training cohort (A–F) approximate a normal distribution. The x-axis represents the
binned feature intervals (10 bins), and the y-axis indicates the frequency of samples.

10 of 14 - LU ET AL.

 2
8

3
5

3
1

5
3

, 2
0

2
5

, 2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/b

rx
2

.7
0

0
3

0
 b

y
 U

N
IV

E
R

S
IT

Y
 O

F
 S

H
E

F
F

IE
L

D
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

3
/0

6
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



shows that the optimal model combination was MI-KNN
(AUC = 0.615 � 0.027). The results for accuracy and F1
score are presented in Tables S1 and S2, respectively.

The top six features and their distribution from the MI-
KNN model combination in Section 2.8 are illustrated in
Figure 2. Six features closely approximated a normal dis-
tribution. The normal distribution indicates that these fea-
tures were relatively stable within the patients, reflecting
limited interindividual variability. The features shown in
Figure 3 were used to analyze the contribution of the top 12
selected features to the MI-KNN model combination. The
top two features, glcm_Contrast_average_20 and glcm_Im-
c1_average_20, were considered the most relevant to patient
outcomes because of their highest selection frequency,
underscoring their potential as biomarkers for GBM survival
prediction. Finally, in the survival analysis of the external
validation cohort, long-term survival patients showed higher
survival probabilities compared with short-term survival
patients, with statistically significant differences between the
two groups (Figure 4), indicating that the constructed clas-
sification model had significant predictive value for survival
endpoints in GBM patients. Based on the top six features of
the MI-KNN model combination in the training cohort, a
KNN classifier was trained. In the external validation cohort,
the classification performance was observed with an AUC of
0.594, an ACC of 0.754, and an F1 score of 0.848.

4 | DISCUSSION

In this paper, we develop and present a PHBCP. The pre-
sented protocol, termed PHBCP, offers a systematic,
modular, and open-source framework and provides WSI
processing and analysis guidelines in brain cancer. The re-
sults and methodology outlined in this protocol demonstrate
its potential to enhance the discriminability and efficiency of
brain cancer prediction and prognosis.

Features can be primarily categorized into two types:
handcrafted features and deep learning-derived features.
Handcrafted features are those extracted through manually
designed algorithms, typically based on domain-specific
knowledge or experience, such as texture features, statisti-
cal features, and geometric features.[32] Given an input,
these features yield a fixed and interpretable output. In
contrast, deep learning-derived features are primarily
learned automatically from data by deep learning models,
without the need for manual design. Examples include
features extracted by ResNet,[37] CONCH[38] and UNI.[39]

In practical application, models based on handcrafted fea-
tures can provide interpretable and clinically relevant in-
sights, which are essential for building trust among medical
and technical experts. In contrast, although deep learning
models have shown excellent performance in many tasks,
these models typically rely on large amounts of data and

F I GURE 3 The top 12 features at selection frequency and their percentage contributions to the MI-KNN model combination across 100 iterations of
five-fold cross-validation.
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cannot extract discriminative features from small samples.
Additionally, the internal feature representations of deep
learning models are complex, their decision-making pro-
cesses are opaque, and it is difficult to explain their
reasoning logic, resulting in poor interpretability. It is also
challenging to incorporate specific medical prior knowledge
into these deep learning models. These issues limit the
widespread application of deep learning-derived features in
clinical practice and, to some extent, hinder efficient
collaboration between medical and technical experts. In this
paper, PHBCP indicates the importance of these features in
discovering novel biomarkers and improving the under-
standing of tumor heterogeneity, a key challenge in brain
cancer research.

In the exemplary task of predicting 2-year survival
in GBM, four of the top six features were related to
GLCM, one feature was associated with first-order
statistics, and one feature was connected to GLRLM. The
glcm_Contrast_average_20 feature was identified as the most
prognostically relevant image feature because of its highest
selection frequency. This feature is utilized to quantify the
local intensity variation. Through analysis, it was observed
that the magnitude of contrast is often closely correlated with
the area and distribution of tumors and necrotic regions. This
correlation can be used to explain the reasoning logic behind
survival prediction using image features. When combined
with multiomics data, the biological significance underlying
these images can be further elucidated.

By providing a step-by-step guide, the protocol enables
seamless collaboration between medical and technical

experts, fostering the development of innovative solutions to
clinical problems. In this paper, the 2-year survival predic-
tion in GBM serves merely as an exemplary task. Re-
searchers can also conduct other brain cancer-related
analyses based on PHBCP, such as isocitrate dehydrogenase
(IDH) mutation analysis. The open-source nature of the
protocol ensures its accessibility to a wide range of re-
searchers, promoting reproducibility and scalability across
different institutions and datasets.

The protocol has limitations. Although we have estab-
lished a protocol for handcrafted features in brain cancer
pathology, it does not encompass all types of handcrafted
features. However, other researchers can add comprehensive
handcrafted features to the PHBCP. As new pathological
insights emerge, the reliance on handcrafted features may
require continuous refinement. We anticipate that future
contributions from medical and technical experts will
enhance and expand this protocol.

5 | CONCLUSION

The protocol presented in this study is a significant step
forward in the analysis of handcrafted features for brain
cancer pathology. By providing a structured and collabora-
tive framework, it empowers pathologists and clinicians to
harness histopathological data for improved brain cancer
care. We anticipate that this protocol will serve as a valuable
resource for the scientific community, driving innovation and
promoting the diagnosis and treatment of brain cancer.

F I GURE 4 The Kaplan–Meier curve of GBM patients from the external validation cohort was stratified by the MI-KNN model combination into long-
term and short-term survival groups.
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