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Abstract
Evidence-accumulation models (EAMs) are powerful tools for making sense of human and animal decision-making 
behavior. EAMs have generated significant theoretical advances in psychology, behavioral economics, and cognitive 
neuroscience and are increasingly used as a measurement tool in clinical research and other applied settings. Obtaining 
valid and reliable inferences from EAMs depends on knowing how to establish a close match between model assumptions 
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Evidence-accumulation models (EAMs) are powerful 
tools for understanding human and animal decision-
making (Donkin & Brown, 2018; Evans & Wagenmakers, 
2019; Gold & Shadlen, 2007; P. L. Smith & Ratcliff, 2024). 
They enable quantitative measurement of latent decision 
processes that are confounded in typical (e.g., linear 
model) analyses of response time (RT) and error rate 
(Lerche & Voss, 2020). EAMs explain key benchmark 
phenomena that arise in decision-making tasks (e.g., 
speed/accuracy trade-offs, asymmetries in the speed of 
correct and incorrect responses, and the characteristic 
positive skew of RT distributions; Ratcliff & McKoon, 
2008). Since their introduction in the 1960s and 1970s 
(Audley & Pike, 1965; Laming, 1968; Link & Heath, 1975; 
M. Stone, 1960; Vickers, 1970), EAMs have become one 
of the most successful theoretical frameworks in cogni-
tive psychology (Evans & Wagenmakers, 2019; Ratcliff 
et al., 2016; Ratcliff & McKoon, 2008; P. L. Smith & Ratcliff, 
2024) and cognitive neuroscience (Forstmann et  al., 
2016; Forstmann, Wagenmakers, et  al., 2011; Gold & 
Shadlen, 2007; Mulder et  al., 2014; Schall, 2019; P. L. 
Smith & Ratcliff, 2004). Furthermore, they are increas-
ingly being used to answer questions in domains such 
as behavioral economics (Busemeyer et al., 2019; Krajbich 
et al., 2014; Krajbich & Rangel, 2011) and human factors/
ergonomics (Boag et al., 2023) and in clinical/health-care 
settings (Copeland et al., 2023; Ratcliff et al., 2022; White 
et al., 2010).

Obtaining valid inferences from EAMs relies on 
achieving a close match between model assumptions 
and features of the task and data to which the model is 
applied. Failing to achieve an appropriate task-model 
match can lead to misleading or spurious conclusions 
(e.g., Cassey et al., 2014; Ratcliff & Kang, 2021). How-
ever, the EAM literature lacks a comprehensive articula-
tion of how to achieve a good task-model match. In this 
article, we provide practical guidance for designing tasks 
appropriate for EAMs, relating experimental manipula-
tions to EAM parameters, planning for sample size, 

collecting and preparing data, and conducting and 
reporting an EAM analysis. We point out problems that 
can arise if the models are used without sufficient regard 
for the factors that determine their validity. Sometimes, 
there is no one-size-fits-all answer, and finding an appro-
priate design may require careful judgment and consid-
eration of trade-offs (e.g., collecting more trials vs. 
maintaining participant engagement). To aid this pro-
cess, we highlight the key issues and potential pitfalls 
affecting EAM analyses so that readers can better plan 
experiments for reliable EAM analysis. Our advice is 
grounded in prior methodological studies and our years 
of collective experience using EAMs to understand 
human and animal decision-making. 

By encouraging good task-design practices, we hope 
to improve the quality and trustworthiness of future EAM 
research and applications. To make our advice as broadly 
applicable as possible, we do not focus on the details of 
specific EAMs. Instead, we focus on the common proper-
ties and design considerations shared by the most promi-
nent basic EAM architectures (i.e., relative-evidence 
models, e.g., Ratcliff, 1978; Wagenmakers et  al.,  
2007; Wagenmakers, van der Maas, et al., 2008; racing-
accumulator models, e.g., Brown & Heathcote, 2008;  
Tillman et  al., 2020; Usher & McClelland, 2001). Our 
advice is intended for researchers and students who wish 
to apply an existing “off-the-shelf” EAM to an experimen-
tal task to measure the cognitive processes driving decision- 
making behavior. Although our recommendations are 
intended for EAMs, many also apply more broadly to 
other cognitive-modeling approaches (e.g., reinforcement 
learning, R. C. Wilson & Collins, 2019).

In the next section, we outline the general features and 
assumptions of EAMs. The remainder of the article is struc-
tured according to a typical EAM-study workflow, illus-
trated in Figure 1. We first consider whether an EAM is 
the appropriate tool for  a given research question. Next, 
we look at how to design EAM-appropriate experimental 
tasks and strategies for collecting informative data. We 

and features of the task/data to which the model is applied. However, this knowledge is rarely articulated in the EAM 
literature, leaving beginners to rely on the private advice of mentors and colleagues and inefficient trial-and-error 
learning. In this article, we provide practical guidance for designing tasks appropriate for EAMs, relating experimental 
manipulations to EAM parameters, planning appropriate sample sizes, and preparing data and conducting an EAM 
analysis. Our advice is based on prior methodological studies and the our substantial collective experience with EAMs. 
By encouraging good task-design practices and warning of potential pitfalls, we hope to improve the quality and 
trustworthiness of future EAM research and applications.

Keywords
evidence-accumulation models, experimental design, decision-making, response time, model-based cognitive 
neuroscience
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cover sample-size planning and discuss best practices for 
experimental procedure, assessing the quality of collected 
data, and fitting and evaluating models to obtain valid and 
reliable inferences. We discuss interpreting and reporting 
the results of an EAM analysis and close with advice on 
what to do when the standard models fail.

The Architecture of Standard EAMs

EAMs assume that when presented with a stimulus (e.g., 
a left- or right-facing arrow), the decision maker samples 
evidence for the available actions or choice options (e.g., 
“Should I press the left or right arrow key?”) until a 
threshold amount of evidence is reached. Many promi-
nent models assume within-trials noise in this accumula-
tion process (Ratcliff, 1978; Tillman et al., 2020; Usher 
& McClelland, 2001), although it is possible to capture 
key RT phenomena assuming only (nonsystematic) 
between-trials noise (Brown & Heathcote, 2008). Reach-
ing a threshold immediately triggers the motor move-
ment for the overt response (e.g., pressing the left arrow 
key). Total RT is assumed to be the sum of three strictly 
sequential processing stages: (a) stimulus encoding, (b) 
decision-making (evidence accumulation), and (c) 
motor-response execution1 (Bompas et al., 2023; Kelly 
et al., 2021; Servant et al., 2021; Weindel, Gajdos, et al., 
2021). As we show, this places constraints on the timing 

and structure of decision-making tasks appropriate for 
use with EAMs.

Figure 2 depicts the two prominent classes of EAM 
architectures. In relative-evidence models, decisions are 
based on accumulating the difference in evidence 
between response options (e.g., Ratcliff, 1978; Ratcliff & 
McKoon, 2008; Ratcliff & Rouder, 1998; van Ravenzwaaij 
et  al., 2017; Wagenmakers et  al., 2007; Wagenmakers, 
van der Maas, et  al., 2008). Relative-evidence models 
have historically been limited to decisions involving  
two choice options (but see Churchland et  al., 2008; 
Ditterich, 2010; Kvam, 2019a; Niwa & Ditterich, 2008; P. L. 
Smith et al., 2020). By contrast, in racing-accumulator 
models, decisions are based on accumulating the abso-
lute evidence for response options in separate modular 
accumulators (e.g., Bogacz et al., 2007; Brown & Heathcote, 
2008; Heathcote & Love, 2012; Kirkpatrick et al., 2021; 
Rouder et al., 2015; Teodorescu & Usher, 2013; Tillman 
et al., 2020; Tsetsos et al., 2011; Usher et al., 2002; Usher 
& McClelland, 2001). Racing-accumulator models can 
accommodate any number of choice options, typically 
with an accumulator per choice. Although relative- and 
absolute-evidence models differ regarding how they 
conceptualize evidence, they have similar requirements 
for achieving a good task-model match and often arrive 
at the same substantive conclusions (Donkin, Brown, 
Heathcote, & Wagenmakers, 2011). In both architectures, 
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considerations can compromise the robustness and informativeness of an EAM analysis. EAM = evidence-accumulation 
model.
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decision-making is governed by the same three or four 
parameters, which are interpreted similarly across mod-
els (Voss et al., 2004). Moreover, both architectures have 
similar data-quality requirements and often give conver-
gent results when applied to the same data (Donkin, 
Brown, Heathcote, & Wagenmakers, 2011; Dutilh et al., 
2019).

A comprehensive overview of key model parameters 
and their uses is given in the section Mapping EAM 
Parameters to Experimental Manipulations. However, 
briefly, the models contain parameters controlling the 
evidence starting point (allowing for a priori biases), 
accumulation rate (controlling the speed of processing), 
threshold/boundary separation (controlling the amount 
of evidence required to make a response), and nondeci-
sion time (the sum of time taken for stimulus encoding 
and motor-response production). The basic frameworks 
also allow for nonsystematic across-trials variability in 
accumulation rate, starting point, and nondecision time, 
which account for commonly observed differences in 
the speed of correct and incorrect responses (Ratcliff & 
Rouder, 1998; Ratcliff & Tuerlinckx, 2002).

As will be discussed (see section Going Beyond the 
Standard Models), the basic architecture has been 
extended to include additional mechanisms (e.g., Fific 
et  al., 2010; McDougle & Collins, 2021; Miletić et  al., 
2021; Nosofsky & Palmeri, 1997, 2015; Pedersen et al., 

2017) and to account for tasks/situations that violate 
various processing assumptions of the standard models 
(e.g., Diederich, 2024; Diederich & Trueblood, 2018; 
Hawkins et  al., 2015; Holmes et  al., 2016; Holmes & 
Trueblood, 2018; P.-S. Lee & Sewell, 2024; Little et al., 
2018; P. L. Smith & Ratcliff, 2022; Ulrich et al., 2015; Voss 
et al., 2019; White et al., 2011; Zhang et al., 2014; for a 
review, see Evans & Wagenmakers, 2019). Most of the 
advice in this article will apply when working with these 
models. However, researchers should be aware that 
extended models may use a different set of processing 
assumptions and thus have idiosyncratic (mechanism-
specific) design constraints.

Processing Assumptions of Standard EAMs

Here, we outline the core assumptions of the basic EAM 
framework that have implications for the design of tasks 
suitable for EAMs (summarized in Table 1). For data from 
an experimental task to be suitable, the task must satisfy 
the assumptions of the model. The core structural 
assumption of the models is that each decision is the 
result of a single, continuous (uninterrupted) evidence-
accumulation process and culminates in a single discrete 
response. In short, the models apply to tasks in which 
one decision is followed by one response (Brown & 
Heathcote, 2008; Busemeyer & Townsend, 1993; Ratcliff, 
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1978; Usher & McClelland, 2001). Misapplying the mod-
els to decisions/tasks with different processing assump-
tions undermines their interpretability.

During a trial/decision, the models assume within-
trials stationarity, which refers to the assumption that 
model parameters (e.g., accumulation rates and thresh-
olds) do not change systematically while a decision is 
in progress (Ratcliff, 1978). For accumulation rates, this 
means that evidence accumulates at a constant average 
rate2 (although potentially with substantial nonsystem-
atic noise) for the duration of the trial (i.e., from stimulus 
onset to response onset; Brown & Heathcote, 2008;  
Ratcliff, 1978; for alternatives, see Stine et al., 2020). In 
practice, this means that stimuli should provide a con-
stant input to the evidence-accumulation process (i.e., 
the stimulus representation should not change in strength 
or sign over the course of a trial; P.-S. Lee & Sewell, 2024; 
P. L. Smith & Lilburn, 2020). For thresholds, within-trials 
stationarity means that thresholds are set before stimulus 

onset and do not change in value during a trial. This 
means that individuals are assumed to keep the same 
cognitive control/speed-accuracy trade-off settings 
throughout a decision and to not increase or decrease 
in caution during a trial (for models that allow dynamic 
thresholds, see Hawkins et  al., 2015; P. L. Smith &  
Ratcliff, 2022; Voskuilen et al., 2016). Misapplying the 
models to tasks involving nonstationary evidence or 
thresholds can lead to biased or misleading parameter 
estimates.

Across trials, the standard application of EAMs assumes 
within-conditions stationarity, which refers to the assump-
tion that model parameters do not change systematically 
across trials (of the same type) within a condition. This 
assumption is important for model fitting, which relies 
on pooling information across trials of the same type. 
Theoretically, the assumption is that trials of the same 
type are independent measurements of the same underly-
ing process (generated from the same cognitive settings), 

Table 1. Standard EAM Assumptions and Implications for Task Design

EAM assumption Explanation Design implications

Decisions well described 
by a single, continuous 
accumulation process 
resulting in a discrete 
response

The outcome of each decision (trial) is 
a discrete response resulting from an 
uninterrupted evidence-accumulation 
process running from stimulus to 
response onset (i.e., one decision ↦ 
one response).

Trials should have a clear stimulus onset.
The response modality should allow 

precise measurement of response 
onset.

Within-trials stationarity Model parameters do not change during 
a decision (trial). Stimulus evidence 
should not change systematically (e.g., 
ramp up or change sign) during a trial. 
Thresholds do not change dynamically 
within a trial or in response to 
information unknown before stimulus 
onset.

Use static stimuli that provide a consistent 
evidentiary input from stimulus onset 
to the response.

Use sufficiently long intertrial intervals to 
avoid interference from processes that 
ran on previous trials (e.g., process 
overlap and proactive interference).

Within-conditions stationarity Model parameters do not change 
systematically across trials of the same 
type. Trials of the same type should be 
independent observations generated 
by the same latent cognitive settings. 
Necessary for pooling observations for 
model fitting.

Minimize learning effects that are not 
modeled.

Minimize fluctuations of attention and 
potential changes in strategy.

Positively skewed RT 
distributions

Owing to the geometry of models 
with flat response thresholds, RT 
distributions for each response should 
be positively skewed and free from 
truncation in the tails.

Use a well-calibrated response window 
(calibrated to the mean RT and 
variance of a typical participant 
performing the target task).

Use response deadlines that do not 
induce collapsing bounds.

Data free of contaminant 
processes

Data come from an evidence-
accumulation process (and not some 
other process, e.g., fast guessing). 
Participants perform the task as 
instructed.

Provide clear task instructions.
Monitor participant behavior.
Display corrective feedback following 

undesirable responses (e.g., “Too 
fast!”).

Allow participants sufficient breaks.

Note: EAM = evidence-accumulation model; RT = response time.
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which can include random (nonsystematic) trial-to-trial 
variability. Empirically, the expectation is that participant 
performance is stable for the duration of the experiment3 
(e.g., RT distributions do not systematically change in 
shape or scale over time). As with within-trials stationar-
ity, failing to account for systematic across-trials trends 
can compromise model inferences and interpretability.

The reviewed EAM assumptions have implications for 
the (choice-RT) data to which they are applied. For one, 
the standard models can predict only positively skewed 
RT distributions. This owes to the geometry of EAMs 
with constant (flat) response thresholds whereby equal 
differences in accumulation rate are projected as unequal 
differences in decision time (see Fig. 2; Ratcliff &  
McKoon, 2008). In practice, this means that the models 
can fit only empirical RT distributions with characteristic 
positive skewness and fail to fit RT distributions that are 
normal or negatively skewed in shape (Evans, Hawkins, 
& Brown, 2020). For example, short response deadlines 
can induce collapsing bounds (thresholds that decrease 
with the passage of time), which produce more normally 
distributed RTs. Ignoring issues of skewness can lead to 
biases in parameter estimation (Verdonck & Tuerlinckx, 
2016). The section Planning Tasks That Meet EAM 
Assumptions contains advice on ensuring data satisfy 
this assumption.

Finally, EAMs assume the data are free of contaminant 
processes. That is, data come from an evidence- 
accumulation process and not some other process, such 
as random guessing or nonresponding (Ratcliff, 1993; 
Ratcliff & Tuerlinckx, 2002), that can lead to biased 
parameter estimates if ignored. Strategies for identifying 
and accounting for contaminants are discussed through-
out the article.

With this background in place, in the remainder of 
this article, we step through the components of a typical 
EAM-study workflow, giving advice on how to plan and 
conduct a robust study. In doing so, we regularly refer 
back to the model assumptions outlined in this 
section.

Planning Research Questions for EAM 
Analysis

Before the task-design and modeling process can begin, 
the researcher must first decide whether an EAM analysis 
is the appropriate tool to answer the research question. 
Although EAMs have many uses (Crüwell, Stefan, & 
Evans, 2019), our present focus is on using EAMs as a 
cognitive-measurement model (Donkin & Brown, 2018; 
M. D. Lee et al., 2019; see also, Batchelder, 2010, 2016; 
Batchelder & Riefer, 1999; J. B. Smith & Batchelder, 
2010). Measurement studies typically focus on interpret-
ing the parameters of an existing “off-the-shelf” EAM that 
is taken a priori to adequately characterize the processes 

individuals use to perform the target task (e.g., Huang-
Pollock et  al., 2017; Janczyk & Lerche, 2019; Klauer 
et al., 2007; Ratcliff & Rouder, 2000; Ratcliff, Thapar, & 
McKoon, 2004). To understand what kinds of research 
questions are suitable for EAM analysis, it is helpful to 
consider the output of an EAM that has been fit to par-
ticipant data. For each participant, the model provides 
parameters that represent measurements of that indi-
vidual’s latent cognitive settings (e.g., accumulation  
rate, threshold, bias, and nondecision time). Additional 
population-level parameters characterizing group differ-
ences can be obtained using hierarchical-modeling 
approaches (e.g., Chávez De la Peña & Vandekerckhove, 
2023; Gunawan et  al., 2020; Heathcote et  al., 2019;  
Stevenson, Innes, et  al., 2024; Wiecki et  al., 2013). 
Changes in cognitive processes are quantified by changes 
in the values of this set of model parameters. Therefore, 
suitable research questions involve assessing how model 
parameters differ within or between groups (e.g., Ratcliff 
et al., 2003; Steyvers et al., 2019), individuals (e.g., Evans, 
Steyvers, & Brown, 2018), or experimental conditions/
treatments (e.g., Heathcote, Loft, & Remington, 2015; 
Ratcliff et  al., 2003; Strickland et  al., 2023) and how 
parameters relate to other individual-level covariates (e.g., 
eye tracking, Cavanagh et al., 2014; Fiedler & Glöckner, 
2012; Krajbich & Rangel, 2011; neurophysiological mea-
sures, e.g., electroencephalogram, magnetoencephalog-
raphy, and functional [MRI], Forstmann, Tittgemeyer, 
et al., 2011; Harris & Hutcherson, 2022; Nunez et al., 2023, 
2024; Turner et al., 2013; Turner, Forstmann, & Steyvers, 
2019; Turner, Palestro, et al., 2019). EAMs allow multiple 
data sources to be analyzed under a common model and 
results interpreted in terms of well-supported cognitive 
theory (Forstmann, Wagenmakers, et al., 2011).

For an EAM analysis to be useful, questions must map 
to the cognitive processes represented by EAM param-
eters (i.e., accumulation rate, threshold, bias, and non-
decision time). Questions are typically posed in a similar 
manner to traditional confirmatory experimental 
research, in which the goal is to understand the effect 
of particular experimental manipulations, treatments/
interventions, or clinical disorders on some measured 
outcome variable (Donkin & Brown, 2018). For example, 
in a series of studies, Ratcliff and collaborators asked 
whether age-related slowing is due to slower evidence 
accumulation (cognitive-impairment hypothesis), higher 
thresholds (conservative-responding hypothesis), or  
longer nondecision time (physical-slowing hypothesis;  
Ratcliff et  al., 2003, 2006; Ratcliff, Thapar, Gomez, & 
McKoon, 2004; Ratcliff, Thapar, & McKoon, 2004; Thapar 
et al., 2003). This question presents a clear test of three 
competing hypotheses that can be instantiated in EAMs 
and evaluated. To give an example involving a subject-
level covariate, Forstmann et al. (2008) asked whether 
cue-induced threshold adjustments (a measure of 
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top-down cognitive control) are correlated with fMRI 
blood oxygen level dependent (BOLD) signal in the 
striatum and presupplementary motor area (two struc-
tures hypothesized to be involved in such adaptive con-
trol). This question, posed in terms of individual-differences 
correlations, presents a clear test of the relationship 
between the model-based measure (magnitude of thresh-
old adjustment) and the hypothesized neural covariates 
(striatal and presupplementary motor area BOLD signal). 
Operationalizing questions in this way is necessary to 
develop clear, testable hypotheses, that is, hypotheses 
that can be instantiated in an EAM and subjected to 
model comparison and evaluation. We explore this topic 
further in the section Mapping Experimental Manipula-
tions to EAM Parameters.

Unsuitable questions for standard EAMs are those that 
involve violations of their assumptions. For example, 
asking questions about how parameters change from 
trial to trial (violating within-conditions stationarity) 
requires extended models/methods that allow trial-wise 
parameter estimation (Boehm et  al., 2014; Ho et  al., 
2012; Van Maanen et al., 2011) or the ability to specify 
systematic across-trials trends (e.g., by linking parame-
ters to trial-wise covariates; Stevenson, Donzallaz, et al., 
2024; Wiecki et  al., 2013). Likewise, asking questions 
about how parameters change within a trial (e.g., “How 
does late-presented evidence affect the accumulation 
process during a decision?” or “Do thresholds decrease 
as the response deadline approaches?”) requires (com-
putationally expensive) models with dynamic evidence 
or threshold mechanisms (Diederich, 2024; Hawkins, 
Forstmann, et al., 2015; Holmes & Trueblood, 2018; P. L. 
Smith & Ratcliff, 2022). Formulating good research ques-
tions requires a sound understanding of theory of both 
EAMs and the target domain. The EAM literature, espe-
cially measurement studies in which the focus is on 
interpreting parameter effects (e.g., Boag et  al., 2023; 
Evans, Steyvers, & Brown, 2018; Huang-Pollock et al., 
2017; Ratcliff & Rouder, 2000; Weigard et al., 2018), can 
be a rich source of ideas and help build intuition for 
developing suitable research questions. Getting the 
research question right is important because it ultimately 
dictates many experimental design and analysis choices 
(e.g., sample-size planning and whether to use hierarchi-
cal or independent-subjects approaches).

Planning Tasks That Meet EAM 
Assumptions

Having formulated a research question, focus turns to 
designing an experimental task that will be informative 
for the research question and that meets the processing 
assumptions of EAMs. In this section, we discuss EAM-
specific constraints on task design, relating each back 
to the relevant EAM assumptions. Our advice is intended 

to assist researchers in designing tasks that satisfy the 
assumptions of the basic EAM framework but allows for 
judicious deviations, such as when the focus is on devel-
oping a new model (Crüwell, Stefan, & Evans, 2019).

One decision, one response

As noted earlier, EAMs assume decisions involve a single, 
uninterrupted evidence-accumulation stage, culminating 
in a discrete response. Evidence is assumed to accumu-
late continuously from stimulus onset to the response. 
EAM-appropriate tasks need clearly defined stimulus and 
response onsets that do not overlap with processes out-
side of the response window. Stimulus evidence should 
be of fixed strength within a trial. Ideally, stimuli should 
be presented for the entire duration of the response 
window (from stimulus onset to response initiation) to 
ensure there is a consistent input to the decision process 
until a response is initiated. Stimuli can be briefly flashed 
(e.g., as occurs in visual-signal-detection paradigms), 
provided it can be assumed that a durable representation 
of the stimulus is maintained in visual short-term mem-
ory for the time needed to make a decision (Ratcliff & 
Rouder, 2000; P. L. Smith & Ratcliff, 2009). Ultimately, the 
primary concern here is to ensure one can assume a 
consistent (stationary) input to the evidence-accumulation 
process for the duration of the decision.

Furthermore, each decision should culminate in a 
single, discrete response chosen from a set of two or 
more choice options. This is because in standard EAMs, 
evidence always terminates at a single, discrete response 
threshold. Consequently, tasks that involve open-ended 
response options (e.g., free-recall tasks) or the possibil-
ity of submitting more than one response during a single 
trial (e.g., change-of-mind tasks, C. Stone et al., 2022; 
double-response paradigms, Evans, Dutilh, et al., 2020) 
require extensions beyond standard EAMs.

Within-trials stationarity

EAMs assume that the parameter settings of the model do 
not change systematically during a decision. Specifically, 
EAMs assume that threshold and bias settings are unal-
tered in response to stimulus features used to make a 
decision, and most assume that evidence accumulates at 
a constant average rate from stimulus onset to response 
onset. When designing an experiment, researchers should 
be aware that any information intended to affect threshold 
or bias settings must be presented before the onset of the 
stimulus. Likewise, any information not intended to affect 
decision-making and cognitive-control settings should be 
kept outside of the response window. With regard to 
experimental design, this means that the evidence input 
to the decision process should not change systematically 
during a trial, meaning that decision-relevant stimulus 
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features (or their representation in visual short-term mem-
ory) should be constant throughout a trial (P. L. Smith & 
Lilburn, 2020). For example, stimuli in a perceptual  
decision-making task should not change in brightness or 
contrast partway through a trial because this would 
require a corresponding change in accumulation rate. 
Tasks involving dynamic evidence can be modeled using 
(computationally expensive) extensions to the basic EAMs 
(e.g., Diederich, 2024; Diederich & Trueblood, 2018; 
Holmes et al., 2016; Holmes & Trueblood, 2018;).

Within-conditions stationarity

EAMs also assume stationarity across trials of the same 
type within a condition. This is because model fitting 
requires trials of the same type to be treated as indepen-
dent observations of the same latent cognitive settings. 
Aside from nonsystematic trial-to-trial variation accounted 
for in the model’s across-trials variability parameters, 
there should be no systematic changes in threshold or 
mean accumulation rate across trials of the same type. 
This assumption is important for statistical power and 
measurement precision, which relies on information 
pooled across many observations (trials; P. L. Smith & 
Little, 2018). When designing experiments, researchers 
should attempt to minimize factors that could cause 
parameters to change systematically across trials. For 
example, accumulation rates are known to increase with 
learning, initially rising steeply before tapering off to a 
stable asymptotic level (e.g., Fontanesi et al., 2019; Miletić 
et al., 2021; Pedersen et al., 2017; Sewell et al., 2019). 
Rates can also decrease with fatigue or inattention/task 
disengagement (Huang-Pollock et  al., 2020; Ratcliff & 
Van Dongen, 2011; Walsh et al., 2017). Thresholds may 
also decrease over the course of an experiment because 
of participants becoming impatient and trading accuracy 
for speed in an effort to complete the experiment sooner 
(Hawkins et al., 2012; Larson & Hawkins, 2023).

Trial-to-trial variability is unavoidable (Aschenbrenner 
et  al., 2018; Rouder et  al., 2023) because of noise at 
many levels, including the noise inherent in neural sys-
tems (Faisal et  al., 2008; P. L. Smith, 2010, 2023) and 
dynamic fluctuations in cognitive and affective states 
(Miletić et al., 2024; Schurr et al., 2024). Standard EAMs 
account for such noise sources via their across-trials 
variability parameters. Nevertheless, researchers should 
take reasonable measures to ensure such variability is 
kept as nonsystematic as possible.

Stimuli

Stimuli provide the critical input to the decision-making 
process. Stimuli supply the evidence on which decisions 
are based and largely determine the cognitive domain 
engaged by a task. For example, in a psychophysics task, 
evidence might be based on the objective luminance 

values of stimuli (e.g., Sewell & Smith, 2012; van  
Ravenzwaaij et  al., 2020). By contrast, evidence in a 
preferential-choice task could be subjective value elic-
ited by viewing images of food items (e.g., Huseynov & 
Palma, 2021; Milosavljevic et al., 2010). In working-mem-
ory and categorization tasks, evidence may derive from 
the strength with which items are activated in memory 
(Ratcliff, 1978; Shadlen & Shohamy, 2016) or the strength 
of learned associations between stimuli and expected 
response outcomes (Dutilh et al., 2009; Dutilh, Krypotos, 
& Wagenmakers, 2011; Miletić et al., 2021; Sewell et al., 
2019). As noted, the evidence supplied by stimuli should 
be fixed within a trial (i.e., unchanging in strength for 
the duration of the trial) to provide a consistent (station-
ary) input to the decision process.

Across trials or blocks, stimuli are often the target of 
manipulations designed to affect the signal-to-noise ratio 
of the evidence entering the decision process (e.g., dis-
criminability, difficulty). When designing experiments, 
it is important to calibrate stimuli to be of an appropriate 
difficulty level. This is because EAMs can struggle to fit 
floor effects4 (chance-level accuracy) and ceiling effects 
(e.g., near-perfect accuracy with too few errors; Dutilh, 
Wagenmakers, et al., 2011). Floor effects occur when a 
task is too difficult and usually mean that participants 
cannot discriminate between choice options. Conse-
quently, participants may be using a guessing strategy 
rather than sampling evidence, as assumed in EAMs. By 
contrast, ceiling effects occur when a task is too easy, 
causing very few incorrect responses to be observed. As 
we discuss in the section on sample-size planning, it is 
important to elicit enough error observations for reliable 
model estimation (Lüken et al., 2025). We recommend 
calibrating stimuli to produce error rates of 5% to 35% 
(Dutilh, Wagenmakers, et al., 2011; Lüken et al., 2025; 
Ratcliff & Childers, 2015). Calibration can be achieved 
through pilot testing or via more advanced optimization 
methods that perform individualized calibration based 
on task performance (e.g., methods based on “adaptive 
staircase” algorithms; Myung et al., 2009, 2013; J. Yang 
et al., 2021). Individual calibration is especially impor-
tant in individual-differences research because floor/
ceiling effects compress the observed across-persons 
variability (Draheim et al., 2021). To prevent the calibra-
tion scheme from introducing undesirable nonstationari-
ties across trials (e.g., because of increasing/decreasing 
difficulty), calibration can be done in a pretest training 
phase before the experimental trials proper.

Response modality

Standard EAMs assume that the onset of the response 
coincides with termination of the evidence-accumulation 
process (Fig. 2). That is, the decision and motor-response 
processes occur sequentially (i.e., a motor response is 
initiated only once a decision has been reached). Thus, 
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we recommend using response modalities with a sharp, 
clearly defined response onset and short execution 
times, such as manual key presses (M = 160 ms, range = 
120–230 ms) or saccades (M = 60 ms, range = 30–100 ms; 
Bompas et al., 2023). Other response modalities, such 
as computer mouse or foot pedal, are also possible (e.g., 
Leontyev & Yamauchi, 2021; Michmizos & Krebs, 2014). 
However, responses using such modalities may produce 
relatively variable response onsets and, consequently, 
less precise estimates of nondecision time.

The most critical consideration here is that the chosen 
modality should enable the precise measurement of RT. 
For most purposes, a standard computer keyboard pro-
vides sufficiently precise RT measurements (up to the 
limit of the internal refresh rate). However, highly pre-
cise (i.e., to the millisecond) timing can be obtained with 
specialized computer systems and precision-timing soft-
ware/apparatus (Bridges et al., 2020; Plant et al., 2002).

Mapping Experimental Manipulations 
to EAM Parameters

It is important to establish clear theoretical links between 
experimental manipulations (e.g., speed vs. accuracy 
instructions, task difficulty, or working-memory load) 
and their expected effects on EAM parameters and data. 

Understanding the behavioral signatures of experimental 
manipulations can give confidence that a manipulation 
is working as intended. Becoming familiar with EAM 
theory and reading published EAM studies can help 
build intuition for which model parameters are likely to 
be affected by a given manipulation. Much of the key 
theoretical EAM literature and a variety of application 
studies are cited in this article.

Not all EAM parameters will be relevant to every analy-
sis. For example, a researcher studying consumer-choice 
preferences (e.g., preference for one product over 
another) may be uninterested in nondecision time but be 
highly interested in using accumulation rates to measure 
preference strength and starting point (or thresholds) to 
measure choice biases (Busemeyer & Townsend, 1993; 
Cerracchio et al., 2023; Krajbich et al., 2012, 2015). In 
addition, it is common practice to not estimate variability 
parameters (e.g., by fixing them to zero) unless they are 
needed to account for certain data features (e.g., fast 
guesses; Lerche & Voss, 2016; Ratcliff & Rouder, 1998).

Below, we briefly review common manipulations that 
have been used to selectively influence each standard 
EAM parameter (see Box 1). The primary uses of each 
model parameter, common mappings to experimental 
manipulations, and expected effects on behavior are 
summarized in Table 2.

Box 1. Selective Influence

“Selective influence” refers to the idea that an experimental manipulation should directly and selectively 
engage the target cognitive process. That is, a manipulation should affect only the Evidence-accumulation-
model (EAM) parameter it is theoretically expected to affect, and it should not affect other parameters ( Jones 
& Dzhafarov, 2014). Selective influence was neatly demonstrated by Ratcliff and Rouder (1998), who 
orthogonally manipulated decision difficulty and speed/accuracy instructions. Decision difficulty was found 
to selectively influence diffusion-model accumulation rates, and speed/accuracy instructions selectively 
influenced thresholds (see also, Forstmann, Tittgemeyer, et al., 2011; Hawkins et al., 2012; Starns & Ratcliff, 
2010; Usher & McClelland, 2001; Wagenmakers, Ratcliff, et al., 2008; but see, Katsimpokis et al., 2020). 
Subsequent work demonstrated selective influence for other parameters. Changing the rewards/payoffs 
associated with different responses selectively influenced starting-point bias (Voss et al., 2004), and changing 
response modality (e.g., saccades vs. manual key presses) selectively affected nondecision time (Ho et al., 
2009), consistent with the theorized role of those parameters.

Selective influence is desirable because it greatly simplifies interpreting the results of an EAM analysis. 
However, it is not strictly necessary. Many theoretically interesting violations of selective influence have been 
reported. In one prominent example, Rae et al. (2014) demonstrated that a time-pressure manipulation 
affected both accumulation rate and thresholds (a finding that has since been well replicated; e.g., Boag, 
Strickland, Heathcote, et al., 2019; Heathcote & Love, 2012; Palada et al., 2020; Starns et al., 2012; see also, 
Vandekerckhove et al., 2008). Yet other work has shown that speed-accuracy instructions can additionally 
affect nondecision time (Arnold et al., 2015; de Hollander et al., 2016; Donkin, Brown, Heathcote, & 
Wagenmakers, 2011; Dutilh et al., 2019; Heathcote & Love, 2012; Ho et al., 2012; Huang et al., 2015; Kelly 
et al., 2021; Palmer et al., 2005; Ratcliff, 2006; Rinkenauer et al., 2004; Servant et al., 2018, 2021; Voss et al., 
2004; Weindel, Anders, et al., 2021; Weindel, Gajdos, et al., 2021).

Overall, this work suggests that inappropriately assuming selective influence may lead to misleading 
conclusions or to real effects being missed provided that the chosen model describes (fits) the data well. We 
recommend comparing models that do and do not assume selective influence to ensure the extra complexity of 
more flexible models is warranted (see section Comparing and Evaluating EAMs). By contrast, a lack of selective 
influence—combined with inadequate model fit—can indicate potential problems with a model, pointing to the 
need for further model development (for a demonstration and further discussion, see Rafiei & Rahnev, 2021).
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Stimulus-response (decision outcome) 

mapping

Some tasks will have stimulus-response mappings that 
naturally correspond to objectively correct or incorrect 
decision outcomes (e.g., pressing the left arrow key in 
response to a predominantly left-moving stimulus). 
However, standard EAMs can easily accommodate tasks 
with subjective or probabilistic stimulus-response map-
pings (e.g., preferential-choice tasks, probabilistic- 
categorization tasks, and tasks with probabilistic rewards/
payoffs; D. G. Lee & Usher, 2023; Milosavljevic et  al., 
2010; Sewell & Stallman, 2020). In relative-evidence 
models (e.g., Ratcliff, 1978; Wagenmakers et al., 2007), 
which are limited to two-choice tasks, each threshold is 
mapped to one of the possible response options, and a 
single accumulation rate measures the difference in evi-
dence between options. However, in race models (e.g., 
Brown & Heathcote, 2008; Tillman et al., 2020), which 
can accommodate an arbitrary number of response 
options, each latent response is assigned an accumulator 
with its own threshold and an accumulation rate repre-
senting the absolute evidence for that response. Race 
models can also instantiate more complex decision rules 
(e.g., AND and OR rules) used for combining multiple 
stimulus attributes into a final decision (e.g., Fific et al., 

2010; Little et al., 2018; van Ravenzwaaij et al., 2020). 
Thresholds should be mapped to the latent response 
options in the task (e.g., “left/right” or “bright/dark”) 
rather than to the observed outcome of decisions (e.g., 
“correct/incorrect”).

Accumulation rate

Accumulation rates measure the strength (signal-to-noise 
ratio) of evidence extracted from the stimulus (e.g., 
salience, preference strength, or discriminability relative 
to other choice options; Gold & Shadlen, 2007; Palmer 
et al., 2005; Ratcliff & McKoon, 2008). Rates are sensitive 
to the processing abilities of the decision maker (Schmiedek 
et al., 2007) and the amount of attention or cognitive 
resources deployed to the task (i.e., the degree to which 
the participant is paying attention; Boag et  al., 2023; 
Castro et  al., 2019; Eidels et  al., 2010). Holding one 
constant allows measurement of the other (e.g., for 
equivalent stimuli, different rates reflect differences in 
attention/capacity).

In a typical experiment, rates are used to account for 
manipulations of evidence strength (e.g., low- vs. high-
discriminability stimuli), attention or processing capacity, 
and task difficulty, that is, manipulations affecting how 
easily stimuli are perceived and/or processed (Mulder 

Table 2. Mapping Experimental Manipulations to Evidence-Accumulation-Model Parameters

Parameter Common manipulations Data effect

Accumulation rate Stimulus discriminability, subjective 
task difficulty, strength of 
preference, strength of memory 
trace, attention, effort, attentional/
stimulus biases

Increasing accumulation rate produces faster, 
more accurate decisions and reduces RT 
variability.

Threshold Speed-accuracy trade-off, instructions, 
cognitive control, response biases 
(in racing-accumulator models)

Increasing threshold/boundary separation 
produces slower, more accurate decisions 
and increases RT variability.

Starting point Response biases (in relative evidence 
models), stimulus prevalence/base 
rate, reward/payoff structure, prior 
knowledge and expectations

Starting closer to a boundary makes 
that response occur more quickly and 
frequently than the nonfavored response.

Nondecision time Accounts for complexity of encoding 
and the complexity or difficulty of 
producing the motor response

Shifts RT distributions by a constant amount 
without affecting accuracy or the shape 
and skewness of the distribution.

Rate variability Accounts for decision uncertainty/
evidence variability and slower than 
average errors

Greater across-trials rate variability increases 
the proportion of slow errors.

Starting-point 
variability

Accounts for variability in prior beliefs 
or expectations and faster than 
average errors

Greater starting-point variability increases the 
proportion of fast errors.

Nondecision-time 
variability

Accounts for variability in motor 
responding and RT distributions 
with reduced skewness (e.g., a 
shallower onset of responding 
because of fast contaminants)

Greater nondecision-time variability “smears” 
the RT distribution along the time axis, 
creating fatter tails (i.e., greater probability 
of both faster and slower responses) and 
shallower onset of responding.

Note: RT = response time.
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et al., 2014; Palmer et al., 2005; Ratcliff & McKoon, 2008; 
P. L. Smith et al., 2015; P. L. Smith & Sewell, 2013). This 
is accomplished by estimating a different accumulation 
rate for each difficulty level (Ratcliff & Rouder, 1998). 
Behaviorally, a faster accumulation rate predicts faster 
responses and fewer errors, and a slower rate predicts 
the converse (Ratcliff & McKoon, 2008). Accumulation is 
typically faster for easier decisions (Ratcliff & Rouder, 
1998) and faster for responses associated with higher 
reward or subjective value5 (Busemeyer & Townsend, 
1993; Krajbich et al., 2012, 2015). Rates track the strength 
of associative relationships learned via feedback (e.g., 
Fontanesi et al., 2019; Miletić et al., 2021; Pedersen et al., 
2017; Sewell et al., 2019) and the activation strength of 
items retrieved from memory (Ratcliff, 1978; Ratcliff & 
McKoon, 1988). Rates are also the locus of attentional or 
processing biases (sometimes called “stimulus bias”; 
White & Poldrack, 2014), that is, differences in accumula-
tion between stimuli matched in perceptual discriminabil-
ity. Furthermore, these mappings hold in more complex 
naturalistic tasks (for a review, see Boag et al., 2023).

Threshold

Thresholds are a locus of proactive cognitive control 
(Strickland et al., 2018). Thresholds control the amount 
of evidence needed to trigger a response and thus mea-
sure response caution or speed-accuracy settings. As 
noted earlier, EAMs assume thresholds are set in advance 
of stimulus onset (i.e., not adjusted based on features 
of the current stimulus because it would be circular for 
the threshold used to identify a stimulus to depend on 
knowing the identity of that stimulus). In other words, 
thresholds cannot be altered based on information that 
was unknown before the trial began (Donkin, Averell, 
et al., 2009). Consequently, manipulations intended to 
affect threshold settings must be presented before the 
onset of a trial/stimulus. This is typically achieved using 
pretrial cues or blocked instructions (e.g., Forstmann 
et al., 2008; Katsimpokis et al., 2020), the aim of which 
is to allow participants to make strategic adjustments 
(e.g., adopt different threshold settings) before encoun-
tering the upcoming stimulus.

In a typical experiment, thresholds are used to explain 
speed-accuracy trade-off effects whereby individuals set 
lower thresholds when less time is available and higher 
thresholds when more time is available (Bogacz et al., 2010; 
Evans, Hawkins, & Brown, 2020; Forstmann et al., 2008; 
Frazier & Yu, 2007; Heitz & Schall, 2012; Katsimpokis 
et al., 2020; Rae et al., 2014; Ratcliff & McKoon, 2008). 
Behaviorally, higher thresholds predict slower, more accu-
rate decisions, and lower thresholds predict faster, less 
accurate decisions (Ratcliff & Rouder, 1998). Thresholds 
are further implicated in posterror slowing (Damaso, 
Williams, & Heathcote, 2022), a kind of trial-to-trial speed-
accuracy trade-off (Larson & Hawkins, 2023).

Response biases

Racing-accumulator models measure biases for one 
response over another by allowing competing response 
options to have different thresholds. For example, par-
ticipants set lower thresholds for prioritized/more 
rewarding/higher frequency responses and higher 
thresholds for nonprioritized/less rewarding/lower fre-
quency responses (Boag, Strickland, Loft, & Heathcote, 
2019; Mulder et al., 2012; Strickland et al., 2018; True-
blood et al., 2021; for a review, see Cerracchio et al., 
2023). By contrast, relative-evidence models measure 
response biases by assessing how the starting point of 
the evidence-accumulation process deviates from the 
neutral midpoint between the two response boundaries 
(Leite & Ratcliff, 2011; Ratcliff & McKoon, 2008; see also, 
Edwards, 1965). These mechanisms are mathematically 
equivalent in some models (e.g., Brown & Heathcote, 
2008). Like thresholds, the evidence starting point is 
assumed to be under the control of the decision maker, 
and manipulations intended to affect starting point must 
be presented before stimulus onset. Behaviorally, deviat-
ing from the neutral midpoint makes responses for the 
favored (closer) threshold faster and more accurate 
while making responses for the nonfavored (further) 
threshold slower and less accurate (Ratcliff & McKoon, 
2008; for a review, see Cerracchio et al., 2023). In experi-
ments, starting-point biases have been used to measure 
biases in police officers’ decisions to shoot lighter-
skinned versus darker-skinned suspects ( Johnson et al., 
2018, 2021; Pleskac et al., 2018) and to quantify individu-
als’ tendency to identify items as weapons versus non-
weapons (Todd et al., 2021). Starting point has also been 
used to understand how various response biases are 
affected by factors such as heightened time pressure 
(Chen & Krajbich, 2018), changes in stimulus prevalence 
(Trueblood et al., 2021; see also, Leite & Ratcliff, 2011), 
and payoff structure (Leite & Ratcliff, 2011).

Nondecision time

Nondecision time measures the sum of the time taken 
to encode the stimulus (at stimulus onset) and time to 
produce the motor response (at response onset; Bompas 
et al., 2023). Nondecision time is sensitive to the diffi-
culty of both the encoding and motor-responding stages. 
For example, it is sensitive to changes in low-level visual 
features of stimuli and the complexity or force required 
to produce the motor response (Bompas et  al., 2023; 
Gomez et  al., 2015; Ho et  al., 2009; Sandry & Ricker, 
2022; Servant et  al., 2016; Voss et  al., 2004; Weindel, 
Gajdos, et  al., 2021). Although encoding and motor  
RT cannot be separately identified in standard EAMs, 
they may be disentangled experimentally (e.g., by  
holding stimulus properties constant while manipulat-
ing response modality or vice versa). Empirically, 
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nondecision time shifts RT distributions in time without 
affecting accuracy or the shape or scale of the distribu-
tion (Ratcliff & McKoon, 2008).

In experimental settings, nondecision time has been 
used to measure potential differences in encoding or 
motor-response production (Ratcliff, Thapar, Gomez, & 
McKoon, 2004; Van Maanen et al., 2016). For example, 
Ratcliff, Thapar, and McKoon (2004) found that older 
participants produced reliably slower nondecision times 
than did younger participants (see also, Van Maanen 
et al., 2016). Saccadic eye movements have been found 
to elicit reliably shorter nondecision times than manual-
key-press responses (Bompas et  al., 2023; Ho et  al., 
2009). Nondecision time has also been found to be 
shorter under conditions of heightened time pressure 
(e.g., Rae et al., 2014; Ratcliff, 2006), potentially reflect-
ing a tendency to encode stimuli less deeply when under 
time pressure (e.g., Palada et al., 2018, 2019). However, 
we caution that nondecision time is sometimes estimated 
less reliably than other EAM parameters (Lerche & Voss, 
2018) and can be highly variable across individuals, 
conditions, and tasks (Bompas et  al., 2023). Refining 
EAMs’ account of nondecision time is a topic of ongoing 
model-development work (Bompas et  al., 2023; Kelly 
et al., 2021; Servant et al., 2021).

Variability parameters

The across-trials variability parameters (i.e., in accumula-
tion rate, starting point, and nondecision time) are less 
frequently used for measurement or inference. Rather, 
they allow the model to account for a number of com-
monly observed features of behavioral data, such as 
crossovers in the speed of correct and incorrect responses 
(Ratcliff, 2013; Ratcliff & Rouder, 1998; Ratcliff & Smith, 
2004). Variability is a ubiquitous feature of human cogni-
tive systems, which continuously update attention, mem-
ory, and executive-control settings in response to 
incoming information (Braver et al., 2021; Damaso et al., 
2020; Miletić et  al., 2024). Such adaptation occurs at 
multiple timescales, including seconds (e.g., conflict 
resolution and reactive control over individual deci-
sions), minutes (e.g., short-term learning and proactive 
cognitive control), and hours/days (e.g., longer-term 
learning and memory consolidation, fluctuations in 
attentional and affective state), and is the focus of ongo-
ing model-development work (e.g., Aschenbrenner 
et  al., 2018; Miletić et  al., 2024; Steyvers et  al., 2019; 
Wientjes & Holroyd, 2025). In the standard models, some 
of this variability is (nonsystematically) accounted for in 
across-trials variability parameters.

Across-trials variability in accumulation rate can account 
for slow errors (Ratcliff, 1978). This is because trials with 
faster than average accumulation produce fast responses 
with very few errors. By contrast, trials with slower  

than average accumulation produce slow, error-prone 
responses, which together results in disproportionately 
many slow errors (Lerche & Voss, 2016). In experiments, 
across-trials rate variability can be used to account for 
manipulations affecting variability in evidence extracted 
from the stimulus (Starns, 2014; Yap et al., 2012) and to 
identify factors that lead to increased uncertainty (greater 
variability) in decision-making (Palada et  al., 2020; 
Starns, 2014).

Across-trials variability in starting point can account 
for fast errors (Laming, 1968). This is because when the 
accumulation process starts closer to the threshold for 
the incorrect latent response, errors become both faster 
and more frequent. By contrast, when accumulation 
starts closer to the threshold for the correct latent 
response, errors become slower and less frequent, result-
ing in disproportionately many fast errors (Lerche & 
Voss, 2016). Including starting-point variability alongside 
rate variability allows the model to account for interac-
tions (crossovers or reversals) between correct and 
incorrect RTs (e.g., fast errors in some cells and slow 
errors in others; Ratcliff et al., 1999; Ratcliff & Rouder, 
1998; Wagenmakers, Ratcliff, et al., 2008). Starting-point 
variability may be used to account for factors affecting 
uncertainty (variability) in prior beliefs or expectations 
(Mulder et al., 2012).

Across-trials variability in nondecision time can account 
for changes in the leading edge (e.g., the 0.1 quantile) of 
RT distributions (e.g., Ratcliff, Thapar, Gomez, & McKoon, 
2004; Ratcliff & Tuerlinckx, 2002), including those caused 
by contaminant processes, such as fast guesses (Ratcliff 
& Tuerlinckx, 2002). This is because nondecision-time 
variability fattens the tails (i.e., decreases skew) of RT 
distributions (Lerche & Voss, 2016), making the model 
more robust to fast contaminants. Models with nondecision- 
time variability predict a shallower onset of responding 
than models without. Empirically, nondecision-time vari-
ability accounts for variability in encoding and motor-
response production (Bompas et al., 2023).

We reiterate that across-trials variability parameters tend 
to be estimated less reliably than other parameters (Boehm 
et al., 2018; Lerche et al., 2017; Lerche & Voss, 2016; van 
Ravenzwaaij & Oberauer, 2009; Vandekerckhove &  
Tuerlinckx, 2007; Yap et al., 2012). Moreover, at least one 
rate-variability parameter is typically held fixed in at least 
one design cell to satisfy the scaling property of EAMs 
(Donkin, Brown, & Heathcote, 2009). In racing-accumulator 
models, a common choice is to set across-trials rate vari-
ability to 0.1 or 1. Although some work suggests that dif-
ferences in across-trials variability in accumulation rate 
and/or nondecision time can be recovered reasonably 
reliably in some cases (e.g., Boehm et al., 2018; Starns & 
Ratcliff, 2014), there is evidence suggesting variability 
parameters trade off with other model parameters and can 
exhibit nonstationarity over the course of an experiment 
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(e.g., Dutilh, Krypotos, & Wagenmakers, 2011; Evans & 
Hawkins, 2019; Evans, Steyvers, & Brown, 2018). Estima-
tion and reliability issues with variability parameters can 
be improved by fixing parameters (e.g., by constraining 
variability parameters to a single estimated value or remov-
ing them entirely by setting variability to zero; Boehm 
et al., 2018; Lerche & Voss, 2016; van Ravenzwaaij et al., 
2017). Moreover, some EAM software simply does not 
allow for the estimation of across-trials variability (e.g., 
EZ-diffusion; Dutilh et  al., 2013; Grasman et al., 2009; 
Schmiedek et al., 2007; Souza & Frischkorn, 2023; van 
Ravenzwaaij et al., 2012, 2017; Wagenmakers et al., 2007; 
Wagenmakers, van der Maas, et al., 2008) or requires vari-
ability to be fixed across participants (e.g., HDDM; Wiecki 
et al., 2013). Overall, researchers should exercise caution 
if answering the research question relies on inferences 
based on potentially unreliable variability parameters (or 
turn to extended models that explicitly account for sys-
tematic across-trials trends; Miletić et al., 2024; Wientjes & 
Holroyd, 2025).

In the next section, we outline the elements of a 
single trial in a typical EAM experiment and consider-
ations for task design.

Trial Structure and Event Timing

One of the most important design considerations for 
model plausibility is how trials are structured in terms 
of the timing of events within a trial (e.g., cue and stimu-
lus presentation). For an EAM to be a plausible model 

of the true decision process, the sequence and timing 
of events within a trial must match the processing 
assumptions of the model. A typical trial structure/
sequence of a standard EAM is illustrated in Figure 3. In 
the following subsections, we discuss the components 
that make up a typical trial, their purpose, and common 
pitfalls surrounding their implementation. Note that the 
advice presented here allows for judicious deviations, 
such as when developing a model or using an extended 
EAM with different processing assumptions.

Cue

In some studies, trials begin with a cue that indicates 
how participants should perform the upcoming trial (Fig. 
3). The cue interval is an opportunity to present infor-
mation intended to affect the decision maker’s process-
ing and cognitive-control settings (e.g., thresholds and 
response biases) before the decision. For example, pre-
senting the text “Fast!” or “Accurate!” may signal that 
participants should respond either quickly or accurately, 
respectively (e.g., Forstmann et al., 2008; Katsimpokis 
et al., 2020). Other kinds of cues may direct participants’ 
gaze to a particular item or spatial location (allowing 
comparison of attended vs. unattended performance; 
e.g., Liu et al., 2009; Logan et al., 2023; P. L. Smith et al., 
2015) or provide prior information intended to set up 
biases in the decision maker before encountering the 
stimulus (Karayanidis et al., 2009; Mulder et al., 2012; 
Trueblood et al., 2021).

1 s 0.2-5 s 1-5 s 1-5 sStimulus to Response or Trial Deadline

Time

SPEED
TOO

SLOW!
+

Press Any Key

to Continue

Cue Fixation Response Window

Observed RTs

Stimulus Onset

Feedback ITI

Trial DeadlineResponse Onset

Truncated RTs

(nonresponse misses)

Accumulaton

Process

Fig. 3. Structure of a typical decision trial for an EAM-appropriate task. The trial begins with a cue (e.g., instructing the par-
ticipant to emphasize response speed or accuracy), followed by a fixation interval of variable (unpredictable) duration. Next, 
a stimulus is presented (stimulus onset) continuously until either the participant makes a response (response onset) or the 
trial time limit expires (which produces a nonresponse that is truncated from the RT distribution). Feedback indicating that 
the participant responded too slowly is then displayed. Finally, an intertrial interval gives the participant time to prepare for 
the next trial. The theoretical accumulation process is illustrated by the dotted arrow. Observing the outcome of many such 
decision trials produces a distribution of RTs with a characteristic positive skew (the density of which is illustrated in gray at 
the top of the figure). The presentation durations shown are suggestions only and should be calibrated to the specific task. 
EAM = evidence-accumulation model; RT = response time.
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Fixation

Fixation intervals serve the twofold purpose of concen-
trating participants’ eye gaze/attention on the location 
of the upcoming stimulus (usually at the center of the 
display) and allowing time for residual processes (e.g., 
those stemming from the preceding cue or trial) to com-
plete and return to baseline to avoid process overlap 
(Pashler, 1994). In a typical fixation interval, participants 
fixate their gaze on a centrally presented fixation cross 
while awaiting the stimulus. One issue that can arise 
with fixed-duration fixation intervals is that participants 
learn to anticipate the onset of the upcoming stimulus. 
Participants’ expectation of the onset of the next trial 
increases over time according to a hazard function (Luce, 
1991). This can lead some participants to prematurely 
sample evidence in anticipation of the stimulus, resulting 
in disproportionate anticipatory responses for longer 
intervals (Oswal et  al., 2007), which produces biased 
estimates of nondecision time ( Jepma et al., 2012). To 
avoid this problem, we recommend sampling the dura-
tion of fixation intervals from an exponential (or pseu-
doexponential) distribution (e.g., with mean around 0.7 s 
and range of about 0.2–5 s) to avoid implausibly short 
intervals and excessively long waiting times (e.g., Evans 
& Hawkins, 2019).

Stimulus onset

Following the fixation interval, the stimulus is presented. 
EAMs assume that stimulus onset represents the begin-
ning of the evidence-accumulation process (plus the 
time taken to encode the stimulus; Bompas et al., 2023). 
This structural constraint makes certain tasks unsuitable 
for EAMs. For example, interrogation paradigms are 
inappropriate for standard EAMs because the decision 
maker first views (and presumably accumulates evidence 
about) the stimulus but must wait until prompted to give 
a response (Bogacz et al., 2006; Ratcliff, 2006). One reason 
this is problematic is because the evidence-accumulation 
process may terminate before the response prompt is 
presented, making it unclear what cognitive processes 
might have occurred in the intervening time (or what 
the observed RT is measuring). In sum, for the standard 
framework, it is crucial that the evidence-accumulation 
process runs uninterrupted from the onset of the stimu-
lus until the response.

Response window

The onset of the stimulus marks the beginning of the 
response window, which ends either when a response is 
submitted or upon expiry of a predefined deadline. The 
response window should allow enough time for partici-
pants to process and respond to the stimuli and thus 

should be calibrated to the RT (and RT variability) of 
actual participants performing the proposed task. An inap-
propriately calibrated response window can lead partici-
pants to adopt undesirable/contaminant response 
strategies that are not accounted for in standard EAMs. For 
example, an excessively short response window can lead 
to a high proportion of fast guesses, cause slower responses 
to be truncated from the tail of RT distributions (responses 
that fall outside of the response window, as illustrated in 
Fig. 3), or induce collapsing bounds (response thresholds 
that decrease as the deadline approaches). These pro-
cesses can produce RT distributions that lack the charac-
teristic positive skew and thus cannot be fit by standard 
EAMs (Evans, Hawkins, & Brown, 2020). Ignoring these 
issues can compromise parameter estimation (Verdonck 
& Tuerlinckx, 2016). We recommend pilot testing novel 
tasks to find an appropriate response window because the 
optimal window will depend on the task.

Another consideration is whether the average duration 
of decisions in the experimental task is appropriate for 
EAMs. Participants making perceptual decisions about 
simple psychophysical stimuli can usually respond within 
a 1.5-s response window. By contrast, tasks typical of 
cognitive psychology (e.g., lexical decision, preferential 
choice) may require up to 4 s to respond (Glickman & 
Usher, 2019), and more complex naturalistic tasks can 
take even longer (e.g., up to 10 s; Boag et  al., 2023; 
Boehm et al., 2021). It is sometimes advised that standard 
EAMs be applied only to relatively rapid choice tasks 
(e.g., mean RT < 1.5 s; Ratcliff & McKoon, 2008; Ratcliff, 
Thapar, Gomez, & McKoon, 2004). This is intended  
to ensure that the assumption of a single continuous 
evidence-accumulation process is upheld because viola-
tions of the single-stage assumption become increasingly 
plausible for decisions that unfold over longer timescales. 
If longer decisions do in fact involve different underlying 
processes, such as multiple processing stages, then they 
may not be accurately represented by a standard single-
stage EAM, rendering the model difficult to interpret 
(Heathcote, Brown, & Wagenmakers, 2015).

Nevertheless, some work suggests that standard EAMs 
can be a valid measurement model of more complex or 
naturalistic decisions that unfold over longer timescales 
(Aschenbrenner et al., 2016, Experiment 2; Boag et al., 
2023; Boehm et  al., 2021; Glickman & Usher, 2019; 
Lerche & Voss, 2019). This work found that standard 
models provided good fits and that experimental manip-
ulations affected model parameters in the same way as 
in studies with shorter RTs (e.g., task difficulty and stim-
ulus discriminability effects mapped to accumulation 
rates; speed-accuracy trade-off, cognitive control, and 
bias effects mapped to thresholds and starting point).

When designing a novel task, researchers should con-
sider whether the assumption of a single uninterrupted 
accumulation process is appropriate, especially in tasks 
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with longer RTs. If not, the researcher may turn to 
extended EAMs designed to account for phenomena 
associated with longer RTs, such as models that allow 
for slow contaminant processes (e.g., Dolan et al., 2002; 
Ratcliff & Tuerlinckx, 2002), randomly slow or nonter-
minating accumulation processes (Damaso, Castro, et al., 
2022; Howard et al., 2020; Tillman et al., 2017), off-task 
mind wandering (Hawkins et al., 2019; Hawkins, Mittner, 
et al., 2015), and multiple processing stages (Little, 2012; 
Provost & Heathcote, 2015; Shahar et al., 2019). Overall, 
researchers should be guided by what makes sense in 
terms of cognitive theory (scientific judgement) and the 
model’s ability to capture important features of the data 
(model fit and selection; Navarro, 2019).

Postresponse interval

The postresponse interval signals that the trial has ended 
and a response recorded. The postresponse interval pro-
vides an opportunity to display corrective feedback. For 
example, excessively fast or slow responding can be 
discouraged by displaying a warning message (e.g., “Too 
fast/slow!”) following such responses. Warning messages 
can be accompanied by a timeout interval that delays 
the onset of the next trial (e.g., by 1–5 s) to further 
encourage compliance (e.g., Evans & Hawkins, 2019). 
Such feedback can help to keep mean RT within the 
response window.

Providing feedback on performance (e.g., accuracy 
or points/rewards for correct responses) on experimen-
tal trials may introduce nonstationarities (e.g., posterror 
speeding/slowing and learning effects) that are not 
accounted for in the standard EAM framework (Miletić 
et al., 2020, 2021). Aside from during training (see sec-
tion Task Training), we advise against providing perfor-
mance feedback for experimental trials unless explicitly 
modeling learning with an extended EAM (e.g., Fontanesi 
et al., 2019; Miletić et al., 2021; Pedersen et al., 2017). 
However, because providing no feedback at all may 
cause participants to become disengaged from the task, 
it is possible to give summarized performance feedback 
(e.g., mean accuracy or overall points scored) following 
each block of trials. “Gamifying” experiments in this way 
can increase participant engagement (Lumsden et  al., 
2016) while avoiding introducing undesirable nonsta-
tionarities associated with trial-to-trial feedback (e.g., 
systematic learning and adaptation effects). Moreover, 
such performance summaries can double as an intermit-
tent check that participants are paying attention and 
complying with task instructions.

Intertrial interval

“Intertrial interval” refers to the time between trials. The 
intertrial interval gives participants time to “reset” and 

concentrate their attention on the upcoming trial. The 
intertrial interval is designed to prevent process overlap 
(Pashler, 1994) and minimize other potential sources of 
proactive interference, such as sequential or  carryover 
effects stemming from events that occurred on previous 
trials (e.g., Aschenbrenner et  al., 2018; Balota et  al., 
2018; Jones et al., 2013). Avoiding such interference is 
important for preserving stationarity both within and 
across trials (i.e., for treating all trials within a condition 
as independent observations of the same underlying 
process). Intertrial intervals can be open-ended (e.g., 
such that the participant must press a key to initiate the 
next trial), allowing for self-paced breaks, or can auto-
matically progress to the next trial after some delay.

Sample-Size Planning

Trial numbers

Researchers should plan to collect enough observations 
(trials) per participant in each experimental condition 
for reliable modeling. Doing so is important because 
sufficient data are required to obtain precise and unbi-
ased individual measurement of the EAM parameters 
representing each participant’s latent decision processes 
(P. L. Smith & Little, 2018).

Much methodological work has explored how the 
number of trials used in fitting affects the reliability (e.g., 
bias, variability, and recoverability) of EAM parameters 
(Alexandrowicz & Gula, 2020; Lerche et al., 2017; Lerche 
& Voss, 2016; Lüken et al., 2025; Ratcliff & Childers, 2015; 
Ratcliff & Tuerlinckx, 2002; van Ravenzwaaij & Oberauer, 
2009; Vandekerckhove & Tuerlinckx, 2007; Visser & 
Poessé, 2017; Wagenmakers et  al., 2007; Wiecki et  al., 
2013). These studies broadly agree that around 200 trials 
per condition is sufficient to achieve reasonably precise 
and unbiased individual-level measurement. In general, 
more trials afford greater measurement precision and thus 
greater power to detect effects because (Gaussian) mea-
surement variance decreases with the square root of the 
number of measurements (trials; Ratcliff & Tuerlinckx, 
2002). However, they are diminishing returns; simulations 
suggest there is little to gain from collecting more than 
about 500 trials per condition (Lerche et al., 2017).

When determining the number of trials to collect, a 
critical question is whether there will be sufficient obser-
vations of the least frequently occurring trial type in the 
data (Donkin, Brown, & Heathcote, 2011). In most 
designs, the rarest kind of trial is incorrect responses to 
the most easily discriminable stimuli (i.e., incorrect 
responses to decisions typically made with high accu-
racy). However, other infrequent stimulus-response com-
binations are possible, such as those that arise in 
paradigms involving the presentation of a rare stimulus 
or event on a small subset of trials (e.g., Einstein & 
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McDaniel, 1990; Loughnane et al., 2019; Strickland et al., 
2018). Lüken et al. (2025) recommended obtaining error 
rates of at least 5% to ensure reliable parameter estima-
tion with the standard diffusion (Ratcliff, 1978) and linear 
ballistic-accumulator models (Brown & Heathcote, 2008). 
With 200 trials, a 5% error rate corresponds to 10 obser-
vations of incorrect responses. This number should be 
taken as a minimum: 10 error observations provided just 
enough information about the shape of the error RT 
distribution to identify the model. Fitting to data with 
smaller error rates (e.g., data with ceiling effects) is risky 
because the greater estimation uncertainty can make 
some parameters (e.g., rates and thresholds) unidentifi-
able (Lüken et al., 2025).

We caution that although 10 error observations may 
provide the bare minimum constraint needed to identify 
the models (e.g., by locating the mean of the incorrect 
RT distribution), many more observations are needed to 
make reliable inferences about parameters that rely on 
information about the variance and skewness of the 
error RT distribution (e.g., the starting-point and rate-
variability parameters for the incorrect latent response). 
Parameter-recovery simulations can help determine how 
many trials (and participants) are needed to reliably 
measure a given effect (Heathcote, Brown, & Wagenmakers, 
2015; White et al., 2018; R. C. Wilson & Collins, 2019). 
The simulation procedure is as follows: (a) Set model 
parameters to values representative of the effect of inter-
est, (b) simulate many synthetic participants (data sets), 
(c) fit the model to the synthetic data, and (d) assess 
how well the recovered parameters match the known 
data-generating values. Doing this for a range of effect 
sizes and different numbers of trials and participants can 
help determine the most appropriate design for achiev-
ing a desired level of measurement precision (see sec-
tion Parameter Recovery).

Clearly, there is no one-size-fits-all solution to trial-
number planning because it depends on the goals of the 
researcher, the size of the target effect, and properties 
of the model. Several thousand observations may be 
needed to make reliable inferences about across-trials 
variability parameters or parameters associated with rare 
responses (e.g., the accumulation rate of the incorrect 
latent response). By contrast, for simple models (e.g., in 
which only one parameter varies over conditions and 
all others are fixed), reliable estimation can be achieved 
with fewer trials per condition (e.g., 50–100 trials). In 
general, we recommend researchers use parameter-
recovery simulations to guide trial-number planning 
(Heathcote, Brown, & Wagenmakers, 2015).

When thousands of trials are required, the experiment 
may need to be spread across multiple testing sessions. 
Long-duration experiments have several pitfalls that if 
ignored, can compromise an EAM analysis. For example, 
participants tend to become less engaged (e.g., because 

of fatigue or boredom) the longer a task goes on  
(Cunningham et al., 2000; Krimsky et al., 2017). Disen-
gaged or impatient participants may “satisfice” by pro-
cessing stimuli less deeply or lowering their response 
criteria over time to get through an experiment more 
quickly (Boehm et al., 2016; Evans et al., 2019; Hawkins 
et  al., 2012). Disengagement can introduce speeding 
trends and other autocorrelation effects in the data 
(Gong & Huskey, 2023). In addition, longer experiments 
that span multiple days tend to have higher rates of 
participant attrition and may exacerbate already high 
day-to-day variability in individuals’ cognitive and affec-
tive state (Schurr et al., 2024; Stevenson, Innes, et al., 
2024). Such effects are problematic because standard 
EAMs assume data are free of such nonstationarities. 
These issues can be mitigated by giving participants 
frequent breaks and using appropriate counterbalancing 
and trial-randomization schemes to experimentally con-
trol for time-on-task effects, such as learning and fatigue.

Finally, we note that collecting a large number of trials 
is not always feasible. This is true for fMRI research (in 
which scanner time is costly and scarce; Basten et al., 
2010; Forstmann et  al., 2008), when studying certain 
clinical populations (Matzke, Hughes, et al., 2017), or 
when reanalyzing existing data. If the use of sparse data 
is unavoidable, there are several techniques that can 
improve EAM estimation properties. These include using 
hierarchical models (e.g., Stevenson, Donzallaz, et al., 
2024), using more informative priors (i.e., for Bayesian 
analyses, see M. D. Lee & Vanpaemel, 2018; Matzke 
et al., 2020; Tran et al., 2021), constructing simpler mod-
els (e.g., by not estimating across-trials variability param-
eters; Boehm et al., 2018; Lerche & Voss, 2016; Ratcliff 
& Childers, 2015), holding some parameters constant 
over conditions (Donkin, Brown, & Heathcote, 2011), 
and using alternative (simpler) model formulations that 
require only information about error proportions rather 
than error RT (e.g., Ludwig et al., 2009). We recommend 
checking the results obtained from simpler models 
against those obtained from a model in which the con-
straints are not applied (Vandekerckhove & Tuerlinckx, 
2007). If both approaches arrive at the same conclusions, 
this provides evidence it is safe to interpret the simpler 
model. If not, one may need to adjust the experimental 
design and sampling plan until reliable model estimation 
is achieved.

Participant numbers

A further consideration concerning data suitability is 
how many participants to include in the sample. The 
number of participants determines how well findings 
generalize to the wider population and contributes to 
power and measurement precision in certain analyses 
(e.g., individual-differences correlations; Button et al., 
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2013; Rouder & Haaf, 2019). Studies investigating indi-
vidual differences (e.g., examining correlations between 
EAM parameters and individual-level covariates) typi-
cally need many participants (e.g., 80 or more), each 
performing at least a moderate number of trials (e.g., 
around 200), to obtain sufficiently low measurement 
noise to reliably characterize potentially subtle indi-
vidual differences (Rouder et al., 2023; Rouder & Haaf, 
2018). Between-subjects and mixed designs also typi-
cally require many participants for sufficiently pow-
ered between-groups contrasts (e.g., Boag, Strickland, 
Loft, & Heathcote, 2019; Steyvers et al., 2019) and to 
precisely characterize the distribution of population-
level parameters in hierarchical Bayesian analyses  
(M. D. Lee, 2011).

By contrast, studies seeking to reliably measure within-
subjects effects without assessing individual differences 
(e.g., comparing parameters for the same individual 
between different conditions) typically use fewer partici-
pants (e.g., Ratcliff & Rouder, 1998), who each perform 
a large number (typically thousands) of trials to ensure 
high individual-measurement precision (Kolossa & Kopp, 
2018; P. L. Smith & Little, 2018). An advantage of fully 
within-subjects designs is that the unit of replication is 
the individual participant rather than the whole study, 
meaning that each participant serves as an independent 
replication (validation) of the target effects (P. L. Smith 
& Little, 2018). Replication increases confidence that 
obtained effects are real and meaningful.

As with trial-number planning, we recommend con-
ducting parameter-recovery simulations (based on dif-
ferent numbers of synthetic participants) to understand 
how many participants are needed to obtain a desired 
level of power or measurement precision for a proposed 
analysis (White et al., 2018).

Procedural Considerations

In this section, we discuss procedural considerations that 
can help bring participants (and the data they produce) 
in line with EAM assumptions. We consider task instruc-
tions, task training, and the testing environment.

Task instructions

Task instructions should be designed to maximize par-
ticipant compliance with the task and minimize undesir-
able behaviors that may produce data unsuitable for 
EAMs. Undesirable behaviors may include fast guessing, 
mind wandering and inattention, waiting/delayed start-
ups, random responding, and nonresponding (e.g., 
Cassey et al., 2014; Hawkins et al., 2019; Ratcliff & Kang, 
2021). The foremost goal of instructions is to ensure that 
participants understand how to perform the task as 

intended by the researcher. This may involve explaining 
how a typical trial is structured and showing examples of 
different possible decision outcomes. Instructions should 
also explain key features of the task display, experiment-
presentation software, and response apparatus.

It is good practice to confirm that participants under-
stand the task instructions and provide reminders of  
key instructions before each testing block and follow-
ing breaks or interruptions. Participant compliance/ 
understanding can be assessed through verbal confirma-
tion or by having participants demonstrate that they meet 
some performance criterion. As a generic strategy, we 
recommend instructing participants to respond to each 
trial as quickly and accurately as possible. This instruc-
tion is designed to ensure that decisions stem from a 
pure (uninterrupted) evidence-accumulation process, as 
assumed in the models. If using a manual-response 
modality, such as a computer keyboard, we suggest 
instructing participants to keep their fingers positioned 
directly above the response keys. This serves to reduce 
across-trials variability in nondecision time (potentially 
justifying its removal from the model) and ensures motor 
RT is as similar as possible for all participants (potentially 
justifying estimating a common nondecision time across 
participants). We recommend inviting participants to 
clarify any outstanding questions before commencing the 
experiment. Doing so may reduce the amount of data 
lost because of misunderstanding or noncompliance.

Task training

It is good practice to have participants perform practice/
training trials before starting the experiment. Practice 
serves the twofold purpose of helping participants under-
stand the task and stabilizing performance before the 
experimental trials. Reaching a stable level of perfor-
mance is important for preserving within-conditions sta-
tionarity (i.e., that latent decision settings do not show 
systematic trends across trials). Identifying the point of 
stable performance is difficult because learning and 
adaptation may continue indefinitely for some tasks. 
Nevertheless, a common approach is to have participants 
practice until they reach some performance criterion 
(e.g., >80% accuracy). Providing performance feedback 
following training trials (e.g., indicating whether the 
response was correct or incorrect) can help to speed up 
the learning/performance-stabilization process. Nonsta-
tionarities and carryover effects (e.g., across trials and 
conditions) can be further minimized using appropriate 
randomization (e.g., randomizing the presentation of 
trials within a condition) and counterbalancing regimes 
(e.g., balancing the order of conditions within an experi-
ment; Brooks, 2012; Lewis, 1989; Zeelenberg & Pecher, 
2015).
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The testing environment

The testing environment should encourage participants 
to perform the experimental task in the manner intended 
by the researcher. For most purposes, this means that 
participants are seated at a desk with a computer key-
board (or other response apparatus) and a display moni-
tor positioned at a comfortable viewing distance. In 
application studies, which use various high-fidelity simu-
lated and virtual-reality environments (e.g., Castro et al., 
2022; Ratcliff & Strayer, 2014; Tillman et al., 2017; Vanunu 
& Ratcliff, 2023), participants should be positioned 
appropriately for the simulator environment. To facilitate 
engaged and attentive task performance, testing should 
be conducted in a quiet, comfortable space, free from 
distractions and interruptions. This is important for the 
EAM assumptions of model plausibility (i.e., that 
responses are generated by a single continuous evidence- 
accumulation process) and stationarity (i.e., that latent 
cognitive settings are stable over time).

Ideally, all participants would be tested in a single in-
person session under identical conditions. However, if 
testing must be conducted across multiple sessions or in 
different locations, then conditions should be kept as con-
sistent as possible between each session and testing 
location. Consistency of context is important because 
individuals are known to use different decision-making 
strategies in different contexts, such as when performing 
a task inside versus outside of an fMRI scanner (Forstmann 
et al., 2008; Van Maanen et al., 2016). Inside the scanner, 
participants adopted more conservative (higher) response 
thresholds and had longer nondecision times than they 
did in the out-of-scanner testing context (Van Maanen 
et al., 2016; see also, Forstmann et al., 2008; Gunawan 
et al., 2020). Ignoring or aggregating over such context 
effects may introduce undesirable data features (e.g., 
bimodal RT distributions) that may cause failures to fit and 
produce misleading or meaningless parameter estimates.

Online testing platforms (e.g., Mechanical Turk, Pro-
lific, CloudResearch) give researchers the potential to 
collect data more quickly and affordably than is possible 
offline (Barbosa et al., 2023; Birnbaum, 2004). However, 
there are concerns that unsupervised online participants 
may generate poor-quality data (e.g., data that are noisy, 
nonstationary, or generated by contaminant processes; 
Douglas et al., 2023; Peer et al., 2021). These concerns 
arise because lacking supervision, online participants 
may misunderstand task instructions or be inattentive/
careless (Albert & Smilek, 2023; Aruguete et al., 2019) 
and because the remote online context makes it difficult 
for experimenters to identify and correct such problems 
(Reips, 2002). Ratcliff and Hendrickson (2021) conducted 
an online replication of several classic EAM studies and 
found that almost half of the participants in one experi-
ment made a significant number of fast guesses (i.e., 

premature responses with chance accuracy) and/or pro-
duced RTs that were unstable (nonstationary) across the 
testing session. Nevertheless, inferences based on diffusion-
model parameters were largely consistent with the prior 
in-person studies (Ratcliff & Hendrickson, 2021). We rec-
ommend approaching online testing with appropriate 
caution and avoid collecting mixed samples of online and 
in-person participants. For more detailed advice about 
constructing an online testing pipeline for EAM analyses, 
we refer readers to Gong and Huskey (2023).

If context effects are suspected, we recommend 
accounting for these effects in the EAM analyses. This 
can be done in most EAM software by including a “ses-
sion” or “testing context” factor, allowing parameters to 
vary by context; fitting the model to data from each 
context separately; or building the additional contextual 
structure into a hierarchical model (e.g., Schurr et al., 
2024; Stevenson, Innes, et al., 2024; Wall et al., 2021). 
Finding a close agreement across contexts may justify 
pooling data.

Collecting and Recording Data

EAM analysis requires certain information about each 
trial to be recorded. Such information is typically recorded 
by the software used to present the experiment and is 
saved in the form of a data table or comma-separated 
values file, in which each row represents a trial and each 
column represents an experimental or measured variable. 
At minimum, each row of the data should record the 
participant identifier, experimental condition, presented 
stimulus, submitted response, and RT.

Data should include the testing session (if more than 
one) and trial number, and it is good practice to record 
the timing of events, including stimulus and response 
onsets, and events such as cues, feedback/reward 
screens, and intertrial intervals. Although not everything 
will be used in modeling, the raw data should ideally 
allow one to reconstruct the trial composition and timing 
of the original experiment. Most EAM software will 
require as input a data frame of this approximate form 
(e.g., Heathcote et al., 2019; Stevenson, Donzallaz, et al., 
2024). However, specific data- and file-formatting 
requirements will differ depending on the software/fit-
ting routine used.

Screening Data Before EAM Analysis

Before EAM analysis, it is important to screen data for 
potentially undesirable features or distributional properties 
that may violate EAM assumptions. Undesirable data fea-
tures can include outliers (excessively fast or slow RTs), 
nonresponses, truncated or misshapen RT distributions, 
and data from participants who did not comply with 
task instructions. These contaminant processes can 
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compromise the validity of an EAM analysis. Specifically, 
failure to ensure data fidelity can introduce bias and uncer-
tainty into parameter estimates (Ratcliff, 1993; Ratcliff & 
Tuerlinckx, 2002; Vandekerckhove & Tuerlinckx, 2007).

Outliers

Outliers are contaminant RTs that are generated by pro-
cesses other than those that the researcher is interested 
in and that often lie outside the range of normal observa-
tions (Berger & Kiefer, 2021; Miller, 2023). Outliers can 
be the result of fast guesses (e.g., guesses made without 
properly inspecting the stimulus), slow guesses (e.g., 
guesses based on a failure to reach a decision), and 
delayed or failed start-ups (e.g., because of attentional 
lapses or “trigger failures”; Matzke, Love, & Heathcote, 
2017; Vandekerckhove et al., 2008) or from the participant 
executing multiple runs of the process of interest (e.g., 
making multiple assessments before committing to a final 
response; Ratcliff, 1993; Vandekerckhove & Tuerlinckx, 
2007).

The simplest and most common method for removing 
outliers is to define a range of acceptable RTs and 
remove any observations outside of this range. For fast 
outliers, it is common practice to remove RTs faster than 
about 150 to 300 ms (e.g., McVay & Kane, 2012; Rae 
et al., 2014; White et al., 2010). This practice is motivated 
by the argument that because nondecision time (for 
manual key presses) is typically on the order of 150 to 
250 ms (Bompas et al., 2023), responses executed sooner 
than this are psychologically implausible because they 
allow too little time for the accumulation of evidence. 
A more principled method for removing fast guesses is 
motivated by the fact that fast guesses tend to have very 
short RTs and chance-level accuracy (Ratcliff & Kang, 
2021; Ratcliff & Tuerlinckx, 2002; Vandekerckhove & 
Tuerlinckx, 2007). Consequently, one can sort RTs from 
fastest to slowest, find the RT at which accuracy rises 
above chance, and discard all RTs below the chance-
performance point (Vandekerckhove & Tuerlinckx, 
2007). The latter method is preferrable, although differ-
ences between approaches will likely be small unless 
there is a significant proportion (e.g., >5%) of fast con-
taminants distorting the leading edges of the RT distribu-
tions (Ratcliff, 1993, 2013; Ratcliff & Tuerlinckx, 2002).

For slow outliers, it is more common to define an 
upper cutoff based on some measure of observed RT 
variability or to simply not censor slow outliers unless 
there is clear evidence of their presence. For example, 
some researchers censor RTs beyond 3 times the inter-
quartile range/1.349 above the mean (a measure of stan-
dard deviation that is robust to skew; e.g., Strickland 
et  al., 2018). Because RT variability differs between  
individuals, the process of defining and removing slow 

outliers should be conducted separately for each par-
ticipant (Miller, 2023). Furthermore, slow contaminants 
can be more difficult to detect than fast guesses, or even 
impossible, because they may be hidden within the 
range of normal RTs (Ratcliff, 1993; Ulrich & Miller, 1994; 
see also, Berger & Kiefer, 2021). For this reason, we urge 
caution when deciding whether to remove slow 
outliers.

Nonresponses

Nonresponses occur when a participant fails to submit a 
response (e.g., because of missing the response deadline). 
Because nonresponses result in missing values for choice 
and RT, standard EAM likelihood functions cannot be 
evaluated for nonresponses. Nonresponses are thus unin-
formative in fitting standard EAMs and should be excluded 
before fitting the model. Some kinds of nonresponses, 
such as trigger failures (i.e., failures to run the evidence-
accumulation process; Matzke, Love, & Heathcote, 2017), 
can be incorporated into standard EAMs via mixture mod-
eling (Heathcote et al., 2019) or with the aid of specialized 
experimental designs (Verbruggen et al., 2019).

Misshapen or nonstationary RT 

distributions

The geometry of standard EAMs predicts positively 
skewed, stationary RT distributions free of truncation 
(i.e., without censorship of the leading or trailing edge 
of an RT distribution). EAMs struggle to capture the 
shape of truncated distributions because the truncation 
process is not accounted for in the model (for extended 
models that can handle truncated data, see Damaso, 
Castro, et  al., 2022; Evans, Steyvers, & Brown, 2018). 
Likewise, standard EAMs cannot predict normally dis-
tributed or negatively skewed RT distributions (Evans, 
Hawkins, & Brown, 2020) or nonstationary distributions 
that change in shape or scale over time (Miletić et al., 
2021; Walsh et al., 2017). We recommend checking that 
RT distributions are positively skewed, stationary, and 
free of truncation. Nonstationarity can be checked by 
testing the correlation between RT and trial number or 
dividing the RTs into sequential bins and testing for 
changes in mean RT/variance/skewness. Significant cor-
relations or systematic between-bins differences suggest 
nonstationarity.

Noncompliant participants

In addition to excluding individual contaminant trials, it 
is prudent to exclude data from participants who failed 
to comply with task instructions. The reason is that non-
compliant participants are unlikely to have used the 
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same cognitive strategies as compliant participants who 
performed the task as instructed. Consequently, standard 
EAMs may be a poor model of the unknown processes 
underlying noncompliant participants’ data. One indica-
tor of noncompliance is chance-level performance. It is 
common practice to exclude data from participants with 
near-chance performance over all or part of the experi-
ment (e.g., Stevenson, Innes, et al., 2024).

Manipulation check

It is important to check that experimental manipulations 
produced the expected effects on accuracy and mean 
RT because it may not be worth modeling data that lack 
convincing behavioral effects (Palminteri et  al., 2017;  
R. C. Wilson & Collins, 2019). Manipulation checks can 
be conducted by testing for differences in accuracy or 
mean RT using traditional or Bayesian linear models 
(e.g., mixed-effects regression models; Rouder et  al., 
2017). Bayesian approaches further allow for quantifying 
evidence for null effects using Bayes’s factors (Dienes, 
2016; Lakens et al., 2020; Morey & Rouder, 2011). A lack 
of convincing behavioral effects could indicate that the 
experimental manipulations were weak or ineffective. 
Nevertheless, it is possible to find theoretically interest-
ing latent effects that are masked in accuracy or RT 
(Lerche & Voss, 2020). We recommend pilot testing pro-
posed tasks on a small sample of participants to ensure 
novel designs/manipulations are effective.

When it comes to data exclusions, it is our view that 
prevention is better than a cure. Good data are hard-won 
resources, and researchers should seek to minimize the 
amount of it lost to exclusions. We encourage research-
ers to take measures to minimize contaminants, such as 
fast guesses and nonresponses, and ensure participants 
comply with task instructions (e.g., by providing suffi-
cient task training and penalizing undesirable behav-
iors). Encouraging compliance will help maximize the 
data quality and minimize the data lost to exclusions. 
All data exclusions and exclusion criteria should be 
reported transparently. Furthermore, it is good practice 
to check whether results are robust to exclusions (e.g., 
by conducting the same analysis with and without the 
exclusions applied).

Fitting EAMs to Data

Once satisfied the data are appropriate for an EAM, the 
process of model fitting can begin. There are numerous 
freely available software packages that enable fitting 
EAMs to data (e.g., Fengler et al., 2025; Heathcote et al., 
2019; Innes et  al., 2022; Pan et  al., 2025; Stevenson, 
Donzallaz, et al., 2024; Vandekerckhove & Tuerlinckx, 
2008; Voss et al., 2015; Voss & Voss, 2007; Wagenmakers 

et al., 2007; Wagenmakers, van der Maas, et al., 2008; 
Wiecki et al., 2013). Some fitting software takes a Bayes-
ian approach, and some use frequentist methods. Soft-
ware differs on which models are supported and in how 
readily the software can be modified or extended (e.g., 
to support novel models). Furthermore, some software 
performs parameter estimation with limited additionally 
functionality (e.g., Wagenmakers et al., 2007), whereas 
others offer comprehensive suites of functions for plot-
ting model fits and evaluating critical aspects of the 
modeling process (e.g., parameter recovery and sam-
pling diagnostics; Fengler et al., 2025; Heathcote et al., 
2019; Stevenson, Donzallaz, et al., 2024; Wiecki et al., 
2013). It is beyond the scope of this article to weigh the 
merits of various software packages and fitting methods. 
We direct interested readers to several detailed compara-
tive studies (e.g., Alexandrowicz & Gula, 2020; Evans, 
2019; Lerche et al., 2017; Ratcliff & Childers, 2015; van 
Ravenzwaaij & Oberauer, 2009) and existing compre-
hensive resources on evaluating and troubleshooting the 
model-fitting process (e.g., assessing convergence and 
diagnosing problems with sampling/fitting algorithms; 
Baribault & Collins, 2025; Gelman et al., 1995; Kruschke, 
2014; McElreath, 2016).

We recommend fitting EAMs to the data of individuals 
rather than to group-aggregated data (e.g., data that have 
been collapsed or averaged across participants). This is 
because nonlinear models (e.g., EAMs) can produce mis-
leading inferences when fit to aggregated data (Heathcote 
et al., 2015; see also, Averell & Heathcote, 2011; Brown 
& Heathcote, 2003; Heathcote et  al., 2000). In some 
cases, one may want to fit just a single model, such as 
when the researcher has in mind a specific EAM and 
clear expectations for how model parameters should 
change. In this case, the researcher moves on to assess-
ing absolute fit (i.e., how well the chosen model accounts 
for important data features) and then on to interpreting 
parameters. An alternative (and more common) situation 
is to have several plausible models of the data with the 
goal of finding the one that gives the best (e.g., most 
parsimonious) account of the data. Finding a good 
model involves assessing relative fit (i.e., how well a 
model accounts for data relative to other models) and 
absolute fit and evaluating the reliability of parameter 
effects. These are the topics of the next section.

Comparing and Evaluating EAMs

A thorough modeling analysis involves evaluating both 
relative fit (a model’s ability to account for data relative 
to other models) and absolute fit (a model’s absolute 
ability to capture the data). Model comparison enables 
researchers to evaluate competing cognitive theories 
against one another (Pitt et al., 2002), the goal being to 
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find the simplest model that also fits the data well 
(Myung & Pitt, 1997). Model comparison is important 
because more flexible models will have an unfair advan-
tage in fitting data more closely than a simpler model 
but will also tend to predict future data less well than a 
simpler model that captures only robust/reliable effects 
(Busemeyer & Wang, 2000; Cutting et al., 1992; Myung, 
2000; Myung & Pitt, 1997; Roberts & Pashler, 2000;  
Yarkoni & Westfall, 2017).

Model comparison requires the researcher to propose 
a set of candidate models, each of which constitutes a 
different theory of decision-making, as instantiated in 
an EAM. For example, a researcher might be interested 
in whether participants’ slower RTs in one condition are 
due to slower accumulation, higher thresholds, or lon-
ger nondecision time (or some combination thereof). 
The researcher would then build models that explain 
the effect (i.e., slower RTs) using (the appropriate com-
bination of) accumulation rates, thresholds, or nondeci-
sion time while holding the other parameters fixed. The 
proposed models may vary in complexity (e.g., the 
number of free parameters and how model parameters 
are combined in the model equations; Myung & Pitt, 
1997) and which parameters are used to explain the 
target effects (e.g., whether a manipulation is assumed 
to affect accumulation rates or thresholds or both). 
Moreover, researchers may seek converging evidence 
by fitting the same theory instantiated in different EAM 
architectures (e.g., using relative-evidence and racing-
accumulator models). Doing so helps to ensure results 
are not dependent on the specific choice of EAM  
(Singmann et al., 2018).

Relative fit

Relative fit can be assessed using model-comparison 
metrics (e.g., Akaike, 1974; Ando, 2007; Schwarz, 1978; 
Spiegelhalter et al., 2002; Watanabe & Opper, 2010) that 
account for both model fit and model complexity (for a 
review, see Evans, 2019). These metrics can identify the 
model that out of the models considered, provides the 
most parsimonious account of the data (i.e., offers the best 
trade-off between fit and complexity). Methodological 
work indicates that even the relatively simple “parameter 
counting” metrics (e.g., Akaike information criterion, 
Akaike, 1974; Bayesian information criterion, Schwarz, 
1978; deviance information criterion, Spiegelhalter et al., 
2002) give similar results to “gold-standard” methods 
such as Bayes’s factors (Evans, 2019), which can be dif-
ficult to implement for complex cognitive models (Annis 
et al., 2019; Evans & Brown, 2018; Gronau, Heathcote, 
& Matzke, 2020) but are argued to give the optimal trade-
off between flexibility and goodness of fit ( Jeffreys, 
1998; Kass & Raftery, 1995).

When multiple models are under consideration, we 
recommend the “bookending” strategy (M. D. Lee et al., 
2019), in which the set of candidate models includes a 
minimally parameterized base model (in which all target 
effects are removed/held fixed) and a fully flexible top 
model (in which all target effects are included). This 
strategy helps establish upper and lower bounds on 
model complexity and find the model (from the set of 
candidate models) that provides the most parsimonious 
account of the data (Heathcote, Brown, & Wagenmakers, 
2015; M. D. Lee et al., 2019; Shiffrin et al., 2008). Book-
ending helps to navigate the treacherous waters between 
underfitting (i.e., failing to capture important data fea-
tures) and overfitting (i.e., capturing noise or idiosyn-
cratic data features).

When participants have different preferred models, it 
can indicate the use of distinct cognitive strategies. For 
example, in a speed-accuracy trade-off experiment, some 
participants may be better fit by a model in which speed-
accuracy instructions selectively influence thresholds, 
whereas others may prefer a model in which speed-
accuracy instructions affect both rates and thresholds. In 
such cases, we recommend reporting the proportion of 
participants best represented by each model.6 We further 
encourage researchers to seek converging evidence (e.g., 
by comparing multiple complexity metrics) when choos-
ing from among many possible models.

Absolute fit

One limitation of relative fit metrics is that there is no 
guarantee that a model selected in this manner actually 
provides a good account of the data (Box, 1976). The 
winner may be the best of a bad bunch. This limitation 
makes relative fit metrics inappropriate for falsifying 
models because they consider only the relative evidence 
for the winning model against (an incomplete set of) 
rival models while ignoring whether the winner gives 
an adequate account of the data (Palminteri et al., 2017). 
The ability to falsify models is important for scientific 
progress because it allows researchers to discard bad 
theories (models) and propose better ones that become 
the target of future falsification attempts (Popper, 2005). 
Falsification requires assessing the absolute fit of a 
model, that is, its ability to account for all the important 
trends in the data. A further reason assessing absolute 
fit is critical is that parameters derived from models that 
fail to capture important data features may be misleading 
or uninterpretable (Anscombe, 1973; Heathcote, Brown, 
& Wagenmakers, 2015).

Absolute fit is commonly assessed via visual inspection 
(Dutilh et al., 2019). In this method, model predictions are 
overlaid against empirical data (Heathcote, Brown, & 
Wagenmakers, 2015). At minimum, we recommend 
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assessing model fit to both accuracy (response proportion) 
and RT in each cell of the design. Fit to RT should be 
assessed across the entire range of RTs (e.g., by plotting 
fits to the 0.1, 0.5, and 0.9 RT quantiles, which correspond 
to the leading edge, median, and tail of an RT distribution, 
respectively). Some researchers also check whether mod-
els capture higher moments (e.g., variance and skewness) 
of RT distributions (e.g., Evans, Hawkins, & Brown, 2020). 
Specific benchmarks for evaluating model fit include 
assessing whether key experimental or individual- 
differences effects in accuracy and RT are reproduced by 
the model. For example, one might check that a model 
captures differences in accuracy across levels of a difficulty 
manipulation or that it captures an increase in RT distribu-
tion skewness in a clinical group relative to control par-
ticipants. Conducting a thorough evaluation of absolute 
fit can help diagnose potential sources of misfit and iden-
tify where a model might be mis-specified.

We recommend visually inspecting model fits for each 
participant individually. Poor individual-level fits can 
reveal noncompliant participants (e.g., using alternate 
or contaminant strategies) because the EAM failed to 
adequately describe the processes at play. We suggest 
running modeling analyses with and without poorly fit 
participants and comparing the results of the two analy-
ses. Convergent results increase confidence that a find-
ing is robust and not unduly influenced by potentially 
noncompliant participants. By contrast, discrepancies 
should decrease confidence and spur additional model 
development and exploration of individual differences. 
Any divergent findings should be reported and discussed 
transparently. We caution that graphical assessment of 
fit is inherently subjective and thus subject to human 
error and judgement biases (Browne & Cudeck, 1992; 
Korteling & Toet, 2022; Kunda, 1990). Confidence can 
be increased by using multiple independent assessors 
(D’Agostino, 1986). For reporting purposes, it usually 
suffices to show the overall fit averaged over participants 
(although the model was fit individually) because it may 
be infeasible to display comprehensive model fits for 
potentially hundreds of individual participants.

Parameter recovery

Having chosen an adequate model, it is good practice 
to assess parameter recovery (Heathcote, Brown, & 
Wagenmakers, 2015). “Parameter recovery” refers to the 
practice of fitting a model to many synthetic data sets 
(simulated from known parameter values) and assessing 
whether the model consistently returns the known data-
generating parameters. Recovery can be assessed graphi-
cally by plotting the correlation between true and 
recovered values. Parameter-recovery studies have utility 
for establishing the reliability of model inferences and 
identifying potentially unreliable (poorly recovered) 

parameters/effects. Parameter-recovery simulations are 
also useful for assessing a design’s suitability for model-
ing (in terms of trial and participant numbers) and veri-
fying the efficacy of experimental manipulations (in 
terms of expected effect size; Heathcote, Brown, & 
Wagenmakers, 2015; Miletić et al., 2017; R. C. Wilson & 
Collins, 2019). To generate the synthetic data used to 
assess recovery, one can simulate from parameter values 
that have been previously reported for similar tasks 
(Tran et al., 2021), values (e.g., posterior means) derived 
from fitting the target model to prior data, or values 
derived from the beliefs of subject-matter experts  
(Gronau, Ly, & Wagenmakers, 2020; Kadane & Wolfson, 
1998; Stefan et al., 2022). Parameter recovery should be 
assessed across a range of “true” generating values in 
case there are biases in specific generating-parameter 
ranges.

Test and interpret parameter effects

Having established a reliably estimated model that is 
preferred based on relative and absolute fit, focus turns 
to testing and interpreting parameter effects (i.e., differ-
ences across conditions or correlations) contained in the 
preferred model. Tests can be conducted using tradi-
tional statistical approaches (e.g., analysis of variance, 
Ratcliff, Thapar, Gomez, & McKoon, 2004; t tests, Voss 
et al., 2004) or by comparing posterior parameter distri-
butions using Bayesian approaches (e.g., Kruschke, 
2010; Meng, 1994). Establishing that there are strong 
parameter effects can help justify complexity in a model 
(Heathcote, Brown, & Wagenmakers, 2015). To aid inter-
pretation, it is good practice to visualize parameter 
effects (e.g., by plotting parameter means and variances 
or credible intervals across the levels of the relevant 
manipulation).

Interpreting parameters involves mapping parameter 
effects back to cognitive theory. For example, in working- 
memory tasks, accumulation-rate effects might be inter-
preted in terms of differences in item activation in  
memory (e.g., Donkin & Nosofsky, 2012; Ratcliff, 1978; 
Zhou et  al., 2021). By contrast, in preferential-choice 
tasks, rate effects might be interpreted in terms of sub-
jective utility or preference strength (e.g., Busemeyer 
et al., 2019; Konovalov & Krajbich, 2017). Likewise, in 
different tasks, threshold effects might be interpreted in 
terms of speed-accuracy settings (e.g., Evans, 2021) or 
the operation of adaptive cognitive control (e.g., Boag, 
Strickland, Heathcote, et  al., 2019; Strickland et  al., 
2018). Linking parameters to broader cognitive theory 
helps readers understand and interpret the results of an 
EAM analysis.

These evaluation practices constitute a minimal set of 
checks intended to promote robust cognitive modeling 
(M. D. Lee et al., 2019) rather than an exhaustive list of 
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best practices. A complete tutorial on evaluating EAMs 
is beyond the scope of this article. We point interested 
readers to a number of excellent sources on more 
advanced model-evaluation techniques (e.g., Evans, 
2019; Heathcote, Brown, & Wagenmakers, 2015; Shiffrin 
et al., 2008). These techniques include model recovery 
and cross-fitting methods to assess mimicry between 
models (Donkin, Brown, Heathcote, & Wagenmakers, 
2011; Evans, 2020; Hawkins, Forstmann, et al., 2015) and 
generalization tests to assess how well model predictions 
match new data and experimental contexts (Busemeyer 
& Wang, 2000; Vehtari et al., 2017).

Reporting an EAM Analysis

We encourage researchers to carefully report all stimuli, 
materials, procedures, and analysis choices. Table 3 lists 
essential information to include when reporting an EAM 
analysis. The purpose of including this information is to 
help readers interpret and assess the quality of the analy-
sis and facilitate future follow-up studies, such as repli-
cations and meta-analyses of EAM results (Theisen et al., 
2021; Tran et al., 2021). Providing contextual information 
(e.g., justifying research goals and design choices) can 
help readers interpret findings and determine their scope 
of applicability. Thoroughly describing the experimental 
procedure and analysis pipeline can help readers assess 
the trustworthiness of results. To promote transparency 
and openness in science (Hales et al., 2019; Nosek et al., 
2016), we encourage researchers to openly report poten-
tial flaws of models and methods. To further encourage 
open and reproducible research (Crüwell, Van Doorn, 
et al., 2019; Gilmore et al., 2017; Munafò et al., 2017), 
we recommend researchers share anonymized raw data 
(Martone et al., 2018; Wilkinson et al., 2016) and model-
ing and analysis code (McDougal et  al., 2016; M. K. 
Wilson et al., 2019).

Going Beyond the Standard Models

Here, we raise the issue of what to do when a proposed 
task violates the processing assumptions of standard 
EAMs or the standard framework fails to provide an 
adequate account of the data. In these situations, it is 
prudent to first search the EAM literature to find out 
whether there already exists an extended EAM that may 
account for your data. The literature is replete with EAM 
variants that have been adapted to account for tasks and 
phenomena not accounted for in the basic EAM frame-
work. One class of extended EAMs account for violations 
of within-conditions stationarity because of learning 
(Fengler et al., 2022; Fontanesi et al., 2019; Mendonça 
et al., 2020; Miletić et al., 2021; Pedersen et al., 2017; 
Pedersen & Frank, 2020; Sewell et al., 2019). In these 
models, a learning rule allows parameters to be updated 

from trial to trial in response to feedback (for a review, 
see Miletić et al., 2020). Extensions also exist that account 
for various violations of within-trials stationarity. These 
include models that allow for within-trials changes in 
evidence strength (Diederich, 2024; Holmes et al., 2016; 
Holmes & Trueblood, 2018; Krajbich et al., 2010; Maier 
et al., 2020; Sepulveda et al., 2020; Sullivan et al., 2015; 
Weichart et  al., 2022; X. Yang & Krajbich, 2023) or 
thresholds (Busemeyer & Rapoport, 1988; Evans, 
Hawkins, & Brown, 2020; Hawkins, Forstmann, et  al., 
2015; P. L. Smith & Ratcliff, 2022; Voskuilen et al., 2016; 
Voss et al., 2019; Zhang et al., 2014) and the effects of 
multiple, potentially conflicting sources of evidence on 
the accumulation process (P.-S. Lee & Sewell, 2024; Little 
et  al., 2018; Ulrich et  al., 2015; Weichart et  al., 2020; 
White et al., 2011, 2018). Another highly active area of 
model-development research seeks to refine the stan-
dard account of nondecision time by titrating the sensory 
encoding and motor components (Bompas et al., 2023; 
Kelly et al., 2021; Servant et al., 2021; Weindel, Gajdos, 
et al., 2021).

The basic framework has been extended to decisions 
involving more than one discrete response per trial 
(e.g., best-to-worst ranking tasks, Hawkins et al., 2014; 
double-response paradigms, Evans, Dutilh, et al., 2020; 
Taylor et al., 2024; Ulrich & Stapf, 1984), decisions with 
continuous-response spaces (e.g., color-matching and 
continuous-scaling tasks, Kvam, 2019a, 2019b; Kvam 
et al., 2023; Kvam & Turner, 2021; Qarehdaghi & Amani 
Rad, 2022; P. L. Smith, 2016, 2019; P. L. Smith et al., 2020; 
Zhou et al., 2021), and decisions that involve integrating 
information along multiple attributes or feature dimen-
sions (Busemeyer et al., 2019; Busemeyer & Townsend, 
1993; Fific et  al., 2010; Krajbich & Rangel, 2011;  
Nosofsky et al., 2011; Nosofsky & Palmeri, 1997; Roe 
et  al., 2001; Strickland et  al., 2023; Trueblood et  al., 
2014; Tsetsos et al., 2010).

If no appropriate model exists, focus turns to model 
development. The goal of model development is to con-
struct a new model that accounts for phenomena that 
existing models do not (Crüwell, Stefan, & Evans, 2019). 
This is often accomplished by adapting or extending an 
existing model (e.g., Brown & Heathcote, 2005; Evans, 
Brown, et al., 2018; Hawkins & Heathcote, 2021; Miletić 
et al., 2021; Ratcliff & Rouder, 1998) but can also involve 
constructing an entirely new model to explain the target 
paradigm (e.g., Ratcliff, 1978; Usher & McClelland, 2001). 
Model development is an iterative and exploratory pro-
cess (Crüwell, Stefan, & Evans, 2019), and one may 
require specialized knowledge of mathematics and com-
puter programming to successfully build and implement 
a new model. We refer interested readers to several 
excellent resources on cognitive-model development 
(Busemeyer & Diederich, 2010; Farrell & Lewandowsky, 
2018; M. D. Lee & Wagenmakers, 2014).



24 Boag et al.

Table 3. Essential Components to Include When Reporting an Evidence-Accumulation-Model Analysis

Analyses component Recommended reporting practice

Research context Provide background/context to the research question and justify all design choices. 
Interpret findings in relation to the broader research context.

Stimuli and materials Describe key properties of the stimuli and how they map to the possible response 
options. Describe any equipment used for testing.

Task and procedure Describe the task and any training procedures, instructions, or feedback given to 
participants. Report any trial-randomization or counterbalancing schemes. Report 
the timing (onset and duration) of all events (e.g., cue, fixation cross, stimulus, trial 
deadline, feedback, and intertrial interval). Report the number of participants, trials, 
and testing blocks and the trial composition of each block.

Data exclusions Report all exclusions (e.g., outliers, nonresponses, and noncompliant participants) and 
exclusion criteria.

Response times Report response-time mean and variance (averaged over participants) for correct and 
incorrect responses in each condition.

Choices Report accuracy mean and variance (over participants) in each condition.
Measurement scale/units Report the measurement scale/units (e.g., seconds vs. milliseconds) of behavioral 

measures and relevant model parameters (e.g., nondecision time).
Model parameters Report which parameters were included in the model and over which conditions 

they varied. Report which parameters were not estimated (e.g., fixed as scaling 
constants).

Parameter coding Report whether the model was cell coded (e.g., when different parameters are 
estimated for each design cell) or whether an alternative parameterization was used.

Parameter estimates Report descriptive statistics (e.g., means and standard deviationss over participants) 
for all model parameters.

Model-fitting method Report the fitting method (e.g., the optimization or posterior sampling method and 
criteria used to assess convergence) and software used.

Model fit Show whether the model captures the target data (e.g., by plotting model predictions 
against observed effects).

Model comparison Report model-comparison metrics (e.g., Akaike information criterion, deviance 
information criterion, or Bayes’s factors) and explain their interpretation.

Model evaluation Report the results of any model-evaluation procedures (e.g., parameter recovery, 
model mimicry, and generalization tests).

Priors For Bayesian analyses, describe the priors (i.e., distribution type and parameter 
settings) for individual- or group-level parameters.

Inferential statistics Describe all statistical tests and inferential procedures.

One focus of model development concerns how to 
incorporate choice confidence ratings into the standard 
account of decision-making (D. G. Lee et  al., 2023;  
M. D. Lee & Dry, 2006; Moran et al., 2015; Pleskac & 
Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; Van Zandt 
& Maldonado-Molina, 2004). Confidence ratings offer a 
third data source (i.e., choice, RT, and confidence) with 
which to constrain models of decision-making (Vickers, 
2014). Current models make different assumptions about 
how confidence-rating decision trials should be struc-
tured. For example, Ratcliff and Starns (2009) measured 
confidence during the initial decision, whereas Pleskac 
and Busemeyer (2010) measured confidence during a 
subsequent additional decision stage (see also, Moran 
et al., 2015). This difference is critical if confidence rat-
ings are based on different evidence before, during, and 
after a decision (D. G. Lee & Pezzulo, 2022, 2023). Such 
structural differences make it difficult to compare models 

(with both other confidence models and standard EAMs), 
especially if eliciting the confidence rating changes how 
individuals perform the task. The task of refining and 
unifying models of choice confidence is an active ongo-
ing area of model-development work.

Concluding Remarks

Our aim in this article was to provide practical guidance 
on planning experimental tasks for EAMs. To this end, 
we gave advice on how to design tasks that meet EAM 
assumptions, how to relate experimental manipulations 
to EAM parameters, and how to collect and prepare task 
data for EAM analysis. We discussed techniques for eval-
uating EAMs and warned of common pitfalls that can 
arise in EAM analyses. Some issues, such as sample-size 
planning, depend on the goals of the researcher and 
may require careful judgment. This article is intended as 
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a resource to aid in planning experiments for reliable 
EAM analysis. By encouraging good task-design prac-
tices, we hope to improve the quality and trustworthi-
ness of future EAM studies and help users obtain valid 
and interpretable results from EAMs.
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Notes

1. In most EAMs, the time taken for stimulus encoding and motor 
responding are not separately identifiable. Instead, only their 
sum (referred to as “nondecision time”) is estimated (i.e., total 
RT = decision time + nondecision time).
2. Some models, most prominently, the leaky competing-accu-
mulator model (Usher & McClelland, 2001), relax this assump-
tion in that the dominant response accumulator may provide 
increasingly strong inhibitory input to its competitors over time, 
which would reduce the mean accumulation rate for competing 
responses throughout a trial.
3. However, when there are a sufficient number of trials in an 
experiment, blocks or sessions of trials may be treated as another 
condition, thus allowing for estimation of block-to-block changes 
in model parameters (e.g., Dutilh et al., 2009).
4. Floor effects are less problematic for racing-accumulator mod-
els, which can account for chance accuracy by assuming similar 
accumulation rates for each accumulator.
5. In some tasks, such as value-based decision-making, rates rep-
resent a composite measure of preference strength and an indi-
vidual’s ability to extract evidence from stimuli or discriminate 
between choice options. Researchers should be guided by both 
cognitive theory and model fit when deciding whether a stan-
dard EAM is an appropriate model.
6. For hierarchical analyses, which assume a common model 
across participants, one may instead investigate individual dif-
ferences in the pattern (e.g., size and direction) of parameter 
effects.
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