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ABSTRACT

Intensity Modulated Radiotherapy (IMRT) employs radiation beams with varying angles and intensities to precisely target can-

cerous tissues while sparing healthy organs. Planningmethods based on the generalized Equivalent UniformDose (gEUD)metric

achieve excellent Planning Target Volume coverage. However, computing these plans requires extensive parameter adjustments

and multiple model evaluations, making the process resource-intensive and time-consuming. This study aims to enhance the

computational efficiency of radiotherapy plans by automating the adjustment of gEUD parameters, reducing solution times, and

facilitating clinical integration. We introduced a novel approach that combines Gradient Descent algorithms with evolutionary

optimization to explore the gEUD parameter space. This hybrid methodology generates radiation plans that meet clinical con-

straints. To address the high computational costs, we implemented parallelization and batching strategies, leveraging multicore

servers to accelerate the optimization process and enable real-time clinical applications. Benchmarking was conducted on three

multicore platforms with distinct micro-architectures, testing various batch sizes and thread configurations. Using a dataset of

three Head and Neck IMRT patients treated with nine beams, our approach demonstrated substantial computational speed-ups.

Results confirmed the ability of the method to consistently produce high-quality radiation therapy plans that meet clinical con-

straints. By effectively exploiting multicore servers, this approach overcomes the computational challenges of gEUD parameter

tuning, enabling its integration into clinical practice. This advancement reduces planning times, supports medical physicists, and

ultimately enhances patient care in radiotherapy.

1 | Introduction

External radiation therapy treatments are extremely important
for addressing cancer treatments. In particular, Intensity Modu-
lated Radiation Therapy (IMRT) is a highly effective cancer treat-
ment technique that accurately delivers radiation to cancerous
tissues while preserving the surrounding healthy organs. IMRT
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linear accelerators deliver radiation beams to patients from dif-
ferent angles with different intensities within a beam. Tomanage
radiation dose deposition, each beam is decomposed into a regu-
lar grid of beamlets whose radiation intensity can be individually
controlled. Therefore, every plan is defined by the specific inten-
sities of all beamlets on all beams, called the fluence map. When
preparing an RT (Radiation Therapy) plan, the goal is twofold.
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On the one hand, plans are sought that ensure the minimal pre-
scribed doses in tumorous cells (the target regions, commonly
referred to as PTV (Planning Target Volume) and, on the other
hand, reduce the radiation on highly sensitive organs (Organ(s)
At Risk, OAR(s)). These two goals are contradictory and, as such,
must be traded off, which means that effective and safe patient
plans require significant effort from planners.

The design of effective plans is very complex because of the high
dimensions of the fluence maps that define such plans and the
difficulties of expressing different types of clinical prescriptions
in optimization models.

Numerous optimizationmodels with different statistical and bio-
logical criteria have been proposed in the literature to express dif-
ferent medical prescriptions [1, 2]. However, each model focuses
on limited criteria, and the plans computed by the software
require manual adjustment with all clinical criteria to get feasi-
ble clinical plans. Beyond the precision of the plans, the design
time is crucial in radiotherapy planning, and high-performance
computing (HPC) techniques have been used to develop planning
software. Therefore, there are many works focused on exploita-
tion of the parallelism involved in planning on several platforms,
for example, multicore and vector units on the CPU [3], on GPUs
[4, 5], on reconfigurable hardware architectures (FPGAs) [6], or
on distributed clusters [7].

Planning techniques based on the generalized Equivalent Uni-
formDose (gEUD) biological metric provide radiation plans with
excellent PTV coverage. The gEUD concept enforces the pre-
scribed radiation doses in PTVs and OARs by a penalty func-
tion that uses a linear-quadratic cell survival model. For the
gEUD-based optimization model, optimal solutions can be effi-
ciently computed by gradient methods. However, for every PTV
region and every OAR, the planner should set several gEUD
parameters. To account for the additional statistical constraints
needed for viable plans, imposed by oncology doctors, manual
tuning of gEUD parameters is required from medical physicists.
This is a time-consuming and complex task that consumes a rel-
evant time in the clinical workflow daily. In [8], we proposed an
evolutionary optimization strategy that eliminatesmanual gEUD
parameter tuning and replaces it with automatic parameter selec-
tion, using an evolutionary optimization method to guide the
search for the optimal plan when a gradient algorithm evaluates
candidate solutions. Our proposal, called PersEUD, can signifi-
cantly reduce the effort required for manual parameter selection
and provide a more effective way to obtain optimal plans.

In the PersEUD approach, on the one hand, the optimal solution
of the gEUD model with a given set of parameters is solved by a
gradient algorithm. On the other hand, the evolutionary model
is harnessed to explore the gEUD parameter space in the quest
for promising parameter sets. Therefore, collections of optimal
solutions of the gEUD model are independently computed with
a gradient method at each evolutionary iteration.

However, the huge computational cost of this proposal prevents
its application in clinical practice. In this work, we aim to over-
come this challenge and applyHPC techniques to efficiently com-
pute viable plans on the most common computing platforms in
the clinical context. Considering the large computational power

of modernmulticore servers, our goal is to obtain optimal utiliza-
tion ofmulticore platforms to get a fast PersEUD implementation
that allows us to use it in the clinical context.

In the course of the optimization computations, the most
time-consuming operation is to calculate the values of the objec-
tive functions, that is, the optimal solution of the gEUD model
achieved with the Gradient Descent (GD) method. The gEUD
model is a function of the radiation doses deposited in the vox-
els (3D mesh of the irradiated part of the patient’s body). Such
doses are computed as the products of deposition matrices and
beamlet intensity vectors. The deposition matrices are large and
sparse; therefore, the dose computations consume the most com-
putational resources in the IMRT planner. The result is a pro-
cess dominated by products of the deposition matrix and flu-
ence maps as dense vectors. The acceleration of our proposal
is focused on the efficient management of these operations on
modernmulticore systems. Our proposal harnesses the newplan-
ning tool that allows batching the products of the deposition
matrix and several fluence maps into one matrix product. With
this scheme, the multicore architecture can efficiently acceler-
ate the computation of objective functions. High-performance
servers are commonly used to accelerate the computing involved
in planning. To name a few representative examples, Karbalaee
et al. [4] and Liu et al. [5] describe approaches to accelerate
the simulation dose on GPUs and [7] on distributed clusters.
Despite the strong potential of GPUs to accelerate this type
of model, our initial approach to improving the performance
of the gEUD model focuses on the efficient use of multicore
servers, as these are widely available in hospital computational
environments.

The rest of the article is organized as follows. Section 2 intro-
duces the gEUD model, explains the evolutionary method used
to fine-tune its parameters, and provides an in-depth overview
of our approach to speed up the automated generation of plans.
Section 3 provides a computational evaluation of our implemen-
tation to exploit multicore systems. The evaluation is based on
the data of three patients on three servers with several mul-
ticore processors. We present and discuss the results obtained
from our experiments and analyses. Finally, the Section 4 sum-
marizes the findings and conclusions drawn from this study, as
well as suggesting potential avenues for future research in this
domain.

2 | Methods

In this section, we introduce the basic foundations of our work:
The gEUD model and the evolutionary method to adjust its
parameters are introduced in Section 2.1, and the details of our
proposal to accelerate the automatic generation of plans are
described in Section 2.2.

2.1 | Problem Definition

In this section, we will delve into the parameters that are crucial
in the gEUDmodel and explore the evolutionary method utilized
for their adjustment. To help the reader, Table 1 summarizes the
notation used in the paper.

2 of 11 Concurrency and Computation: Practice and Experience, 2025

 1
5

3
2

0
6

3
4

, 2
0

2
5

, 1
2

-1
4

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

0
2

/cp
e.7

0
1

3
3

 b
y

 U
N

IV
E

R
S

IT
Y

 O
F

 S
H

E
F

F
IE

L
D

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [0
3

/0
6

/2
0

2
5

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



TABLE 1 | Notation and naming conventions.

Notation Meaning

𝑥 Fluence map

𝐷 Deposition matrix (translates 𝑥 to doses in voxels)

𝐷𝑗 𝑗th row of𝐷

𝑑(𝑥) = 𝐷𝑥 Vector of doses deposited in voxels

𝑑𝑗(𝑥) = 𝐷𝑗𝑥 Dose deposited in voxel 𝑗

𝑇 = {𝑡} Set of indices of PTVs

𝑀𝑡 Set of voxels in 𝑡th PTV

𝐸𝑈𝐷0
𝑡

Prescribed uniform dose for 𝑡th PTV

𝑅 = {𝑟} Set of indices of OARs

𝑀𝑟 Set of voxels in 𝑟-th OAR

𝐸𝑈𝐷0
𝑟

Maximal uniform dose for 𝑟th OAR

2.1.1 | Parameters to Adjust in the gEUDModel

The process of planning radiotherapy for a patient can be
seen as an optimization procedure, where the search space is
determined by feasible fluence maps of the linear accelerator.
They are represented by vectors of non-negative numbers x,
which define the radiation intensities of individual beamlets. The
deposition matrixD translates fluencies x into doses deposited in
voxels so that the doses in voxels are computed as a product Dx.
The goal of the planning is to calculate the fluence map x that
deposits prescribed doses in PTVs and admissible doses in OARs
with acceptable 3D dose distributions.

gEUD is a biology-motivated criterion to estimate radiation
effects, based on the concept of a uniform radiation dose delivered
to a patient organ, which causes the same effect as a non-uniform
dose [9, 10]. In themodel, PTVs andOARs are referred to as struc-
tures or Region Of Interest (ROI) with index 𝑠. In this way, the
gEUD model evaluates the radiation effects in an ROI by the fol-
lowing function that aggregates these effects on all voxels belong-
ing to the structure 𝑠:

𝑔𝐸𝑈𝐷𝑠(x, 𝑎𝑠) =

(
1

|𝑆𝑠|
∑
𝑗∈𝑆𝑠

𝑑𝑗(x)
𝑎𝑠

) 1

𝑎𝑠

(1)

where𝑆𝑠 is the set of voxels of structure 𝑠; 𝑑𝑗(x) = 𝐷𝑗x is the radi-
ation dose deposited in the voxel 𝑗 of structure 𝑠 by the fluence
map x, with 𝐷𝑗 the 𝑗-th row of D; the parameter 𝑎𝑠 represents
the radiation effect on the structure. The model for PTVs gen-
erally uses large negative values of this parameter. In contrast,
OARs such as the spinal cord and rectum typically use large pos-
itive values, while other OARs that exhibit a large-volume effect
(e.g., lungs and parotids) are assigned small positive values [10].
We denote by the indices 𝑡 and 𝑟 the structures PTV and OAR,
respectively.

According to [10], clinicallymeaningful RT plans can be obtained
by computing the maximum built over the gEUD criterion:

x⋆ = argmax
x

𝐹 (x, 𝜑) (2)

with

𝐹 (x, 𝜑) =
∏
𝑡∈𝑇

1

1 +

(
𝐸𝑈𝐷0

𝑡

𝑔𝐸𝑈𝐷𝑡 (x,𝑎𝑡 )

)𝑛𝑡

⋅

∏
𝑟∈𝑅

1

1 +

(
𝑔𝐸𝑈𝐷𝑟 (x,𝑎𝑟 )

𝐸𝑈𝐷0𝑟

)𝑛𝑟
≡
∏
𝑡∈𝑇

𝑓𝑡(x, 𝑝𝑡) ⋅
∏
𝑟∈𝑅

𝑓𝑟(x, 𝑝𝑟) (3)

where 𝐸𝑈𝐷0
𝑡
is the prescribed dose for 𝑡-th PTV, 𝐸𝑈𝐷0

𝑟
is the

maximum uniform dose at 𝑟th OAR; 𝑛𝑟 and 𝑛𝑡 express the impor-
tance of the prescriptions for the corresponding structure; 𝜑 rep-
resents the set of parameters involved in the 𝐹 definition. In the
model, every OAR with index 𝑟 (resp. PTV with index 𝑡) involves
the set of parameters 𝑝𝑟 ≡ {𝑎𝑟, 𝑛𝑟, 𝐸𝑈𝐷0

𝑟
} (resp. 𝑝𝑡 ≡ {𝑎𝑡, 𝑛𝑡}).

Hence, all the parameters used in the gEUD model can be con-
catenated into the array 𝜑 = (𝑝0, . . . , 𝑝𝑠, . . . , 𝑝𝑛), where 𝑛 denotes
the total number of ROIs. However, the dimension of 𝜑 ranges
between 2𝑛 and 3𝑛, since the concatenated subarrays 𝑝𝑠 have a
size of 2 or 3, depending on whether they correspond to OARs or
PTVs, respectively. Moreover, Equation (3) denotes the factors of
𝐹 (x, 𝜑) as 𝑓𝑡(x, 𝑝𝑡) and 𝑓𝑟(x, 𝑝𝑟) to emphasize that each factor is
associated with a specific ROI and involves its corresponding set
of parameters, 𝑝𝑠.

With these parameters fixed, the GD method computes 𝑥⋆(𝜑)
defined in Equation (2) [11]. In practice, the values of these
parameters are initially fixed from the literature and then
adjusted by trial and error, where the GD method is involved to
obtain a clinically feasible plan. In the following, a brief explana-
tion of theGDalgorithm to optimize the gEUDmodel is included.

2.1.2 | Gradient Descent Algorithm to Optimize
gEUDModel

The objective function 𝐹 (x, 𝜑) is non-linear and differentiable, so
a GDmethod can be used to explore possible plans thatmaximize
𝐹 (x, 𝜑). To facilitate the computation of the derivatives, we can
transform the optimization model in terms of ln𝐹 (x, 𝜑).

The gradient function to look for the arguments x that maximize
𝐹 (x, 𝜑) can be decomposed by the gradients of ln 𝑓𝑟(x, 𝑝𝑟) and
ln𝑓𝑡(x, 𝑝𝑡) with respect to the vector x. They are computed as:

∇𝑥 ln 𝑓𝑠(x, 𝑝𝑠) = D𝑇

⎛⎜⎜⎜⎝

𝑣𝑟1(x, 𝑝𝑠)

· · ·

𝑣𝑟
𝑚
(x, 𝑝𝑠)

⎞⎟⎟⎟⎠
(4)

where the 𝑖th components of the vectors vs(𝑥, 𝑝𝑠), of dimension
𝑚 (the number of voxels) are defined as follows, for the OARwith
index 𝑟,

𝑣𝑟
𝑖
(x, 𝑝𝑟) =

−𝑛𝑟𝑓𝑟(x, 𝑝𝑟)∑
𝑗∈𝑆𝑟

𝑑𝑗(x)
𝑎𝑟

(
𝑔𝐸𝑈𝐷𝑟(x, 𝑎𝑟)

𝐸𝑈𝐷0
𝑟

)𝑛𝑟

𝐴𝑟
𝑖
(x, 𝑎𝑟) (5)

and for the PTV with index 𝑡

𝑣𝑡
𝑖
(x, 𝑝𝑡) =

𝑛𝑡𝑓𝑡(x, 𝑝𝑡)∑
𝑗∈𝑆𝑡

𝑑𝑗(x)
𝑎𝑡

(
𝐸𝑈𝐷0

𝑡

𝑔𝐸𝑈𝐷𝑡(x, 𝑎𝑡)

)𝑛𝑡

𝐴𝑡
𝑖
(x, 𝑎𝑡) (6)
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with𝐴𝑠
𝑖
(x, 𝑎𝑠) = 𝑑𝑗(x)

𝑎𝑠−1 if 𝑖 ∈ 𝑆𝑠 and𝐴
𝑠
𝑖
(x, 𝑎𝑠) = 0 in other case,

where 𝑆𝑠 represents the set of voxels of the structure 𝑠. Thus,
Equations (5) and (6) are the keys to compute the gradient vector
in x.

The GD algorithm for determining the optimal fluence map x,
with fixed parameters 𝜑, consists of a stepping process. At each
step, the gradient is evaluated at each point x to guide its move-
ment in the direction of the gradient. The size of thesemovements
is called the step size. Subsequently, a new step is initiated, and
this process is repeated until the movements of x become negli-
gible or the maximum number of steps is reached.

A key aspect to consider is the computational complexity of every
iteration of the GD algorithm due to the large dimension of the x
fluencemaps, the depositionmatrixD, and its transposeD𝑇 . This
imposes a high computational burden, as the operations required
to manipulate and process these large data sets are very demand-
ing. This fact is especially evident here, given the presence of
these operations throughout the whole GD algorithm.

2.1.3 | PersEUD: Evolutionary Method to Adjust
the gEUD Parameters

To automatically tune the parameters of the gEUD, we consider
the combination of amulti-objective optimization algorithmwith
a gradient search-basedmethod [12]. In particular, for the current
implementation, the MOEA/D algorithm has been selected [13].

In the optimization, every array 𝜑𝑖 defines one individual, and
collections of individuals denoted by Φ = {𝜑0, . . . , 𝜑𝑔} are asso-
ciated with the generations of populations computed at each evo-
lutionary iteration. In our proposal, we define feasibility ranges
for each parameter type to reduce the search space and gen-
erate clinically acceptable plans. The feasibility ranges start at
a small number higher than zero to prevent division by zero
errors in Equation (2) during the optimization process. All
of these collections represent potential solutions and are col-
lectively referred to as the population within the automation
scheme.

The first step is an initialization stage of the population, Φ =

{𝜑0, . . . , 𝜑𝑔}. Subsequently, an iterative process is carried out
using both GD and evolutionary optimization methods in a
two-level approach. The number of generations is specified as
an input parameter and determines when the evolutionary pro-
cess ends.

The first level of the iterative process is managed by the evolu-
tionary optimization algorithm, which controls the population
of candidate solutions by applying variation operators such as
mutation, crossover, and selection [13]. At the second level, the
new generation of solutions is evaluated using the custom-coded
GD [14]. This evaluation takes patient data, deposition matrix,
beamlet geometry, segmentation of the Region of Interest (ROI),
and parameters 𝜑 as inputs. Next, for each parameter vector
or individual, 𝜑, the corresponding optimal fluence 𝑥⋆ is com-
puted, and the objective function 𝐹 (𝑥⋆) is evaluated accordingly.
Where 𝐹 (𝑥⋆) expresses the physical prescriptions that physicists
consider in their manual adjustments. Physical prescriptions or

TABLE 2 | Prescribed physical constraints.

Definitions PTV constraints OAR constraints

𝐷min
𝑠

(x) = min𝑗∈𝑆𝑠
𝑑𝑗 (x)

𝐷𝑠(x) =
1

|𝑚𝑠|
∑

𝑗∈𝑆𝑠
𝑑𝑗 (x)

𝐷max
𝑠

(x) = max𝑗∈𝑆𝑠
𝑑𝑗 (x)

𝐷𝑚𝑖𝑛
𝑡

(x) ≥ 𝐿𝐵𝑡

𝐷𝑡(x) ≥ 𝐿𝐵𝑡

𝐷𝑡(x) ≤ 𝑈𝐵𝑡

𝐷max
𝑡

(x) ≤ 𝑈𝐵𝑡

Parallel OARs ∶

𝐷𝑟(x) ≤ 𝑈𝐵𝑟

Serial OARs ∶

𝐷𝑚𝑎𝑥
𝑟

(x) ≤ 𝑈𝐵𝑟

constraints on PTV and OAR are expressed in Table 2 with
the corresponding definitions with 𝐿𝐵𝑠 and 𝑈𝐵𝑠 the lower and
upper bounds for the dose in any voxel of the structure 𝑠 and
𝐿𝐵𝑠, 𝑈𝐵𝑠 the lower and upper bounds for the average dose in the
structure 𝑠.

According to the notation introduced, the constraint violations
in structures, PTVs, and OARs are captured by the following
functions:

𝐶𝑚𝑖𝑛
𝑠

(x) =

{
𝐿𝐵𝑠 −𝐷min

𝑠
(x) if 𝐿𝐵𝑠 is defined & 𝐿𝐵𝑠 > 𝐷min

𝑠
(x)

0 otherwise

𝐶𝑚𝑖𝑛
𝑠

(x) =

{
𝐿𝐵𝑠 −𝐷𝑠(x) if 𝐿𝐵𝑠 is defined & 𝐿𝐵𝑠 > 𝐷𝑠(x)

0 otherwise

𝐶𝑚𝑎𝑥
𝑠

(x) =

{
𝐷𝑠(x) − 𝑈𝐵𝑠 if 𝑈𝐵𝑠 is defined & 𝑈𝐵𝑠 < 𝐷𝑠(x)

0 otherwise

𝐶𝑚𝑎𝑥
𝑠

(x) =

{
𝐷max
𝑠

(x) − 𝑈𝐵𝑠 if 𝑈𝐵𝑠 is defined & 𝑈𝐵𝑠 < 𝐷max
𝑠

(x)

0 otherwise

(7)

Therefore, the following function  (x) aggregates constraint vio-
lations in all structures and can address the search for admissible
clinical plans.

 (x) =
∑
𝑠∈𝑆

𝐶min
𝑠

(x) + 𝐶min
𝑠

(x) + 𝐶max
𝑠

(x) + 𝐶max
𝑠

(x) (8)

Although the proposed methodology is effective and provides
good plans, it comes at a significant computational cost. This is
because it typically requires multiple iterations to converge to an
optimal solution,with a large number of candidate solutions eval-
uated at each iteration. However, the evaluation process itself can
be a bottleneck, as the custom-coded GD method is computa-
tionally intensive and can require significant time and memory
resources. The next section is focused on the implementation
approaches to efficiently compute a set of plans on multicore
servers.

2.2 | Batched PersEUD: Automated gEUD
Tuning onMulticore

Figure 1 provides a visual representation of the batched PersEUD
structure, which is primarily made up of three key elements: A
genetic algorithm (GA), a ZeroMQ router, and the batched gEUD
method based on the GD, named gEUD-GD.

The GA plays a crucial role in the efficient exploration of the
parameter space. It works with a population of individuals (each
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FIGURE 1 | Scheme for the batched version of PersEUD.

representing a set of parameters Φ), and aims to generate new
candidate individuals through processes such as mutation or
crossover (step 1). The ZeroMQ router enables communication
and coordination between the GA and gEUD-GD. It converts the
individuals into input for gEUD-GD (step 2). In step 3, all candi-
dates are evaluated in a two-phase process: First, for every array of
parameters gEUD-GD, the optimal fluence maps are computed,
and then the objective function  (x) is evaluated. Once evalu-
ated, the fluence maps are sent to the ZeroMQ router in step
4, which collects and sorts all the evaluations, associating each
solution with the respective candidate individual that generated
it. Finally, in step 5, the GA updates its records and continues
the optimization process by generating a new set of candidate
individuals.

As discussed in Section 2.1.2, step 3 consumes most of the huge
computational cost of PersEUD. Algorithm 1 describes these
steps. Each one is computationally demanding, as it includes
products of the large depositionmatrix and its transpose with the
fluence maps and the matrix operations to compute the vectors
involved in the gradients. Therefore, our main focus has been to
accelerate gEUD-GD.

On the one hand, we store the sparse matricesD andD𝑇 in com-
pressed form to take advantage of the typically larger memory
pools available onmulticore servers. This maintains spatial local-
ity in memory access and improves the runtime of both products
with the deposition matrix and its transpose.

On the other hand, in the context of matrix computations, it is
well known that operations involvingmatrices and vectors (Level
2 BLAS) generally suffer from limited memory management effi-
ciency, which leads to memory-bound computations. In contrast,
matrix–matrix operations (Level 3 BLAS) benefit from improved
memory access locality and more effective use of cache hierar-
chies. As a result, these operations are significantlymore efficient

and can even become compute-bound in dense cases [15]. This

point strongly impacts our application’s performance due to the

large dimensions of the matrices.

The structure of PersEUD allows us to translate the gEUD-GD

iterations in terms of high-level matrix operations (2, 3 of BLAS).

But, the development of a new batched version of the custom

GD has been necessary. It is described in Algorithm 1 where

several fluence maps are optimized in the same iteration or

step. This scheme allows us to express the computation of the

gradients of a batch of fluence maps in terms of higher-level

matrix operations to improve the performance on multicore. We

have defined the computation of optimal solutions of the gEUD

model using batches of 𝑞 fluence maps, denoted as x0, . . . , x𝑞−1,

which can be columns of dense matrices X. This allows us to

express their optimization in terms of matrix-matrix products,

DX, rather than a set of several matrix-vector products Dx𝑖. The

matrix of a batch of 𝑞 fluence maps, X, has 𝑞 columns and

𝑏 rows, where 𝑏 is the total number of beamlets in the IMRT

device.

The Algorithm 1 describes the implemented gEUD-GD in

such a way that, at each step of the GD, it moves 𝑞 fluence

maps X = (x0, . . . ,xq−1) for 𝑞 arrays of gEUD parameters, Φ =

(𝜑0, . . . , 𝜑𝑞−1). The goal of every step is to compute the gradi-

ent vectors of every fluence map x𝑖 Equation (4) by means of the

vectors vs(x, 𝑝𝑠) Equations (5) and (6). In this way, it starts with

the calculation of volume doses,DX and also twomagnitudes are

computed for every ROI, 𝑠, the gEUD functions (Equation 1) and

the vectors 𝜎𝑖
𝑠
=
∑

𝑗∈𝑆𝑠
(𝑑𝑖

𝑗
)𝑎

𝑖
𝑠 with 𝑖 = 0, . . . , 𝑞 − 1. Next, for every

ROI, the objective functions 𝑓 𝑖
𝑠
and their derivatives are com-

puted. Then, we can compute the vectors vs(𝑖) as functions of the

quantities already computed. They are the columns of the matrix

V, and we can compute the batch of 𝑞 gradients as the product of

matrices ∇X = D𝑇V.
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The most computational load of Algorithm 1 is related to
the products DX and D𝑇V (lines 4 and 35 in blue color in
Algorithm 1). Both have a complexity of𝑚 𝑏 𝑞, that is, it increases
linearly with the number of voxels, beamlets, and batch size.
Therefore, both operations consume relevant runtime due to the
large dimensions of the problem. The rest of the computation to
determine the matrix V (lines from 6 to 33 in Algorithm 1) has a
lower complexity; however, it also consumes an appreciable run
time. But the batched scheme defined in Algorithm 1 to execute
gEUD-GD exhibits high parallelism levels that can be exploited
by multicore architectures.

We have developed a parallel version of gEUD-GD to take advan-
tage of the computational power of modern multicore. Every
multicore processor includes libraries of optimized implemen-
tations to efficiently compute matrix operations, by enhancing
memorymanagement and utilizing computational resources like
vector units and multiple cores to carry out matrix computations
efficiently by the exploitation of several parallelism levels. For
example, Intel supplies Math Kernel Libraries (MKL) for sparse
and dense matrix operations1. Our scheme of batched gEUD-GD
allows us to use these libraries to accelerate the computation
of DX and D𝑇V. Furthermore, the computation of the matrix
V involves a significant number of vector operations with high
parallelism. They have been parallelized using OpenMP direc-
tives to compute the gradient for each structure in the body (PTV
and OARs). Therefore, our batched implementation of PersEUD
can take advantage of efficient memory management with the
batched structure and the parallel computation provided onmul-
ticore servers.

3 | Results

In this section, we present the computational experiments car-
ried out to test the behavior and performance of the proposed
scheme. First, in Section 3.1 we define the context of the com-
putational experimentation, focusing on the real cases we are
dealing with, as well as the hardware platforms where we are
going to test our proposal. Next, in Section 3.2, we analyze how
the batched scheme affects the execution time and speedup of
Batched PersEUD. To do so, we consider different batch sizes but
only one thread. Finally, in Section 3.3, we perform a series of
experiments increasing the number of threads and taking advan-
tage of multicore platforms.

3.1 | Study Cases and Hardware Platforms

For the experimental phase of this study, we have solved three
real Head and Neck (H&N) IMRT cases. Consequently, the
number of OARs remains consistent in all three cases, specif-
ically, nine OARs for each case. Table 3 shows this particu-
lar detail. All the cases aim to fulfill physician dose prescrip-
tions on the PTV while keeping the dose in the OAR below
the physician-prescribed maximum (for serial organs) or aver-
age maximum (for parallel organs). Furthermore, to be able to
generate the dose deposition, our optimizer uses a dose deposi-
tion model developed by researchers at the Warsaw University of
Technology [16].

ALGORITHM 1 | Batched implementation of the gEUD-based

Gradient Descent to optimize a batch of 𝑞 fluencemapsX =
[
x0, . . . ,xq−1

]
for 𝑞 arrays of gEUD parameters, Φ = (𝜑0, . . . , 𝜑𝑞−1).

1: Initialize variables: The batch of fluences 𝐗 and

𝑞 arrays of gEUD parameters in Φ

2: while the algorithm is running do

3: Compute doses from fluences

4: 𝐝𝟎 · · ·𝐝𝐪−𝟏 ← 𝐃
[
𝐱𝟎 · · · 𝐱𝐪−𝟏

]
≡ 𝐃𝐗

5: for each ROI 𝑠 do

6: Compute parameters involved in the gradient

of all ROIs

7: 𝜎0
𝑠
· · · 𝜎

𝑞−1
𝑠 ←

∑
𝑗∈𝑆𝑠

(𝑑0
𝑗
)
𝑎0
𝑠 · · ·

∑
𝑗∈𝑆𝑠

(𝑑
𝑞−1

𝑗
)
𝑎
𝑞−1
𝑠

8: 𝑔𝐸𝑈𝐷0
𝑠
· · · 𝑔𝐸𝑈𝐷

𝑞−1
𝑠 ≡ 𝑔𝐸𝑈𝐷𝑠(𝐝

𝟎) · · · 𝑔𝐸𝑈𝐷𝑠(𝐝
𝐪−𝟏)

9: end for

10: for each OAR 𝑟 do

11: Calculate function 𝑓𝑟 and its partial

derivative
𝜕𝑙𝑛𝐹

𝜕𝑔𝐸𝑈𝐷 𝑟

12: 𝑓 0
𝑟
· · · 𝑓

𝑞−1
𝑟 ≡ 𝑓𝑟(𝑔𝐸𝑈𝐷0

𝑟
) · · · 𝑓𝑟(𝑔𝐸𝑈𝐷

𝑞−1
𝑟 )

13: 𝛿0
𝑟
· · · 𝛿

𝑞−1
𝑟 ≡

𝜕𝑙𝑛𝐹

𝜕𝑔𝐸𝑈𝐷 𝑟

|||(𝑔𝐸𝑈𝐷0
𝑟
)
..

𝜕𝑙𝑛𝐹

𝜕𝑔𝐸𝑈𝐷 𝑟

|||(𝑔𝐸𝑈𝐷
𝑞−1
𝑟 )

14: end for

15: for each PTV 𝑡 do

16: Calculate function 𝑓𝑡 and its partial

derivative
𝜕𝑙𝑛𝐹

𝜕𝑔𝐸𝑈𝐷 𝑡

17: 𝑓 0
𝑡
· · · 𝑓

𝑞−1

𝑡
≡ 𝑓𝑡(𝑔𝐸𝑈𝐷0

𝑟
)..𝑓𝑡(𝑔𝐸𝑈𝐷

𝑞−1

𝑡
)

18: 𝛿0
𝑡
· · · 𝛿

𝑞−1

𝑡
≡

𝜕𝑙𝑛𝐹

𝜕𝑔𝐸𝑈𝐷 𝑡

|||(𝑔𝐸𝑈𝐷0
𝑡
)
· · ·

𝜕𝑙𝑛𝐹

𝜕𝑔𝐸𝑈𝐷 𝑡

|||(𝑔𝐸𝑈𝐷
𝑞−1

𝑡
)

19: end for

20: for each ROI 𝑠 and voxel 𝑖 do

21: if the voxel 𝑖 belongs to the ROI then

22: Calculate the voxel-specific component of

vector 𝐕 Equations (5) and (6):

23: 𝑣𝑠
𝑖
(0) ≡ 𝑣𝑠

𝑖
(𝑔𝐸𝑈𝐷0

𝑠
, 𝜎0

𝑠
, 𝑓 0

𝑠
, 𝛿0

𝑠
)

24: · · ·

25: 𝑣𝑠
𝑖
(𝑞 − 1) ≡ 𝑣𝑠

𝑖
(𝑔𝐸𝑈𝐷

𝑞−1
𝑠 , 𝜎

𝑞−1
𝑠 , 𝑓

𝑞−1
𝑠 , 𝛿

𝑞−1
𝑠 )

26: else

27: 𝑣𝑠
𝑖
(0) · · · 𝑣𝑠

𝑖
(𝑞 − 1) ← 0 · · · 0

28: end if

29: end for

30: for each voxel 𝑖 and ROI 𝑠 do

31: Reduce partial gradients in the vectors:

32: 𝑣0
𝑖
· · · 𝑣

𝑞−1

𝑖
←

∑
𝑠∈𝑆 𝑣

𝑠
𝑖
(0) · · ·

∑
𝑠∈𝑆 𝑣

𝑠
𝑖
(𝑞 − 1)

33: end for

34: 𝐯𝐤 vector of elements 𝑣𝑘
𝑖
a column of matrix 𝐕,

find the gradient of the fluences:

35: 𝛁𝐱𝟎 · · ·𝛁𝐱𝐪−𝟏 ← 𝐃𝐓(𝐯𝟎 · · · 𝐯𝐪−𝟏) ≡ 𝛁𝐗 = 𝐃𝐓𝐕

36: Move the fluences in the direction of the

gradients:

37: 𝐗 ← 𝐗 + 𝐬𝐭𝐞𝐩 ⋅ 𝛁𝐗

38: Smooth the fluence using a convolution kernel:

39: 𝐱𝟎 · · · 𝐱𝐪−𝟏 ← 𝐬𝐦𝐨𝐨𝐭𝐡(𝐱𝟎) · · · 𝐬𝐦𝐨𝐨𝐭𝐡(𝐱𝐪−𝟏)

40: end while

Table 3 shows the main parameters of the three cases. It is impor-

tant to note that the computational needs of a patient can wildly
vary, even in patients with tumors in the same region of the body,
due to the geometries of the PTVs and the patient’s organs. The

number of nonzeros of the matrix D (which stores the interac-
tion between beamlets and voxels) can be used to estimate the
computational needs of each patient.

As described in Section 2.2, this work proposes two strate-
gies to improve planning speed. In the first strategy, multiple
plans are calculated at the same time by batching together their
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TABLE 3 | Plan specifications for each test case.

Parameter Patient A Patient B Patient C

Beam angles 9 9 9

Beamlets (𝑏) 25,298 33,911 30,265

Voxels (𝑚) 145,965 160,786 94,647

D nonzeros 67,544,881 106,792,251 64,991,188

Organs At Risk (OARs) 9 9 9

Planning Target

Volumes (PTVs)

3 2 3

PTV0 pr. dose (Gy) 54.0 59.4 54.0

PTV1 pr. dose (Gy) 60.0 66.0 60.0

PTV2 pr. dose (Gy) 67.5 — 66.0

TABLE 4 | Specifications of the testing platforms.

Platform CPU Cores RAM

Sandy Intel Xeon E5-2650 16 (2 sockets) 64 GB DDR3

EPYC AMD EPYC 7642 96 (2 sockets) 512 GB DDR4

Ryzen AMD Ryzen 9 5950X 16 (1 socket) 32 GB DDR4

fluence vectors, transforming the usual sparsematrix–dense vec-
tor multiplication used for one plan into a sparse matrix–dense
matrix multiplication. In the second strategy, we employ
multi-threading programming techniques to improve the perfor-
mance of the whole program by an efficient exploitation of cur-
rent multicore architectures.

In an effort to make a generalizable analysis, two result-
processing decisions have been made. Firstly, the reported times
are related to a single step of Algorithm 1 to move only one flu-
ence map xi. They can be obtained from the total running time of
Algorithm 1 as follows:

𝑡𝑠𝑡𝑒𝑝 =
TotalRuntime

𝑛steps ⋅ 𝑞
(9)

where 𝑛steps represents the number of GD steps, each of which
takes the same amount of time. Meanwhile, dividing by 𝑞 allows
us to easily discern the performance effect of the batch size, with-
out having to take into account the number of plans that are being
processed during the same step. Secondly, to abstract the per-
formance results from a specific test patient, we have calculated
the average of all the times and accelerations across the three
patients. Additionally, to demonstrate the influence of the ROI
geometries on performance, we included standard deviations in
all the subsequent figures.

On the hardware front, as this work is focused on the multi-
threaded performance of PersEUD, we have selected three widely
used multicore computational platforms. Table 4 lists the most
relevant specifications of each one of them.

The three testing platforms comprise widely used server
and desktop architectures. Platforms Sandy and EPYC con-
tain server-segment processors based on the Sandy Bridge
and Zen 2 micro-architectures, respectively. They are part of
the High-Performance Computing cluster maintained by the

Supercomputing–Algorithms research group at the University
of Almería, running CentOS 8.2 (OpenHPC 2) and Intel oneAPI
MKL 2023.0.0. PlatformRyzen contains amid-range desktop pro-
cessor based on the Zen 3 micro-architecture, running Ubuntu
23.04 and Intel oneAPI MKL 2023.0.0.

In the software front, the MOEA/D [13] implementation avail-
able in the JMetal 5.10 framework in Java was used [17]. Maven
3.6.3 and OpenJDK 17.0.5_8 were used to compile the project.
The Router is implemented in Python 3.8.5 using the ZeroMQ
(pyzmq) 24.0.1 library [18].

3.2 | Impact of the Batch Size on Performance

Our objective in this first analysis is to elucidate the performance
improvement obtained by our fluence batching strategy.With this
objective, we tested the program with different batch sizes 𝑞 and
only one thread (𝑡ℎ = 1). Table 5 depicts the time per GD step
of the three patients across the three test platforms, considering
batch sizes (𝑞) between 1 and 64.

By examining the column 𝑞 = 1 of Table 5, it can be seen that
the execution time can vary between patients. This variability is
attributed to the different number of nonzeros in the D matrix,
which stores the interaction between beamlets and voxels (see
Table 3). This discrepancy in runtimes provides insight into the
different computational requirements of each patient. However,
our aim is to evaluate performance independently of the spe-
cific patient under consideration, so we chose to calculate and
include the mean values in the last row of the table. The rea-
son for this choice is to provide a more generalized perspective of
performance, ensuring that the analysis is not influenced by the
individual characteristics of each patient. Therefore, from now
on, we will rely on these mean values for the three patients, as we
believe that this approach is more suitable for a comprehensive
analysis of performance.

A closer examination of Table 5 reveals the same pattern regard-
less of the patient considered, that is, performance improves as
batch size increases, up to a threshold of 𝑞 = 4, on all platforms.
However, beyond this point, increasing the batch size does not
result in further improvement. This behavior is independent of
the particular platform under study.

Conducting a more in-depth analysis of the performance across
different platforms, we can see that platform Sandy, being the
oldest, is, as expected, the slowest. Conversely, Platform Ryzen
demonstrates the best single-threaded performance, surpassing
even the pricier EPYC platform. This can be attributed to Ryzen’s
high-end desktop processor, emphasizing single-threaded perfor-
mance, while EPYC server-line processors prioritizemultitasking
capabilities2.

3.3 | Performance Analysis of the Parallel
Versions on the Test Platforms

Evaluating 𝑞 fluence maps with only 1 thread does not fully
exploit the parallelism level of PersEUD. Consequently, we will
now analyze the effect of parallelizing the entire workload using
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TABLE 5 | 𝑡𝑠𝑡𝑒𝑝 (ms) defined in Equation (9) for different batch sizes using one thread (𝑡ℎ = 1) on the three test platforms.

𝒒 = 1 𝒒 = 2 𝒒 = 4 𝒒 = 16 𝒒 = 32 𝒒 = 64

Patient A Sandy 252.59 189.63 185.4 186.27 186.48 186.63

Zen2 105.47 74.29 70.07 69.93 69.77 69.83

Ryzen5 75.63 49.01 42.42 42.16 41.9 41.78

Patient B Sandy 375.08 277.32 271.51 271.51 271.34 271.79

Zen2 154.86 106.83 99.09 99.29 99.25 99.18

Ryzen5 116.44 72.71 63.3 63.98 62.99 63.73

Patient C Sandy 234.83 166.86 164.76 163.85 163.92 163.41

Zen2 96.16 65.9 60.07 59.92 59.94 60.01

Ryzen5 70.96 44.82 36.81 37.96 38.21 37.59

Average Sandy 287.5 211.3 207.2 207.2 207.2 207.3

Zen2 118.8 82.3 76.4 76.4 76.3 76.3

Ryzen5 87.7 55.5 47.5 48.0 47.7 47.7

FIGURE 2 | Evaluation on the platform Sandy.

multi-threading, that is, with 𝑡ℎ > 1. To carry out the analysis

of this section, the mean values of the three patients have been

considered, since they provide a more complete and representa-

tive picture, smooth out individual patient variations, and allow

a more generalized understanding of the parallel version perfor-

mance. However, for completeness, we have included the statis-

tical confidence interval in the graphs to show the variability of

the different patients.

Figures 2–4 display the average run times on the left and the

corresponding speed-up factors on the right for the three test

platforms, evaluated across different batch sizes and thread

counts. To obtain the acceleration factors, we have considered

the sequential execution time for 𝑞 = 1 as a baseline, allow-

ing us to measure how much the parallel versions accelerate

the sequential process on each platform with different batch

sizes. As a consequence, we obtain acceleration 1 for (𝑡ℎ =

1, 𝑞 = 1) and higher than 1 for (𝑡ℎ = 1; 𝑞 > 1), as discussed

in Section 3.2.

Figure 2 shows the results on the Sandy platform. We have tested

the run-times and acceleration for a number of threads ranging

from 𝑡ℎ = 1 to 𝑡ℎ = 16 (the number of cores on Sandy) with sev-

eral values of batch sizes 𝑞 = 1, . . . , 64. To simplify the bar plot on

the left, we have shown the results for only representative values

of 𝑞, that is, 𝑞 = 1, 4, 64.As can be seen, the run timedecreases sig-

nificantly as the number of threads increases. For a fixed thread

count, the impact of batch size resembles that observed in the

sequential version: As 𝑞 increases, the run time decreases until

it stabilizes at a certain value. This stable run time is achieved

at higher values of 𝑞 as the thread count increases. An analo-

gous trend is observed for the acceleration factor. For example,

with 𝑡ℎ = 2, themax acceleration is obtained for 𝑞 = 4,whilewith

𝑡ℎ = 16, it is reached with 𝑞 = 16. Analyzing the impact of batch

size on parallel scalability reveals that, as 𝑡ℎ increases, acceler-

ation factors approach the ideal value (equal to the number of

threads, 𝑡ℎ) only for larger values of 𝑞. Thus, batching substan-

tially improves the parallel scalability of gEUD on the multicore

Sandy platform.
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FIGURE 3 | Evaluation on the platform EPYC.

FIGURE 4 | Evaluation on the platform Ryzen.

Figure 3 shows the results on the EPYC platform, which has 96

cores across two sockets. We tested thread counts from 𝑡ℎ = 1

to 𝑡ℎ = 96, but observed minimal improvements in acceleration

for 𝑡ℎ > 48. Therefore, to clarify the analysis, we plot only the

results ranging from 𝑡ℎ = 1 to 𝑡ℎ = 48 in the figure. The trends

in run-times and acceleration with respect to 𝑡ℎ and 𝑞 are similar

to the Sandy platform. Only notice that the experimental acceler-

ation is far from the ideal for 𝑡ℎ > 16, even for the highest values

of 𝑞. However, the highest acceleration is also obtained for the

highest values of 𝑞, indicating that batching enhances parallel

scalability on the EPYC platform as well.

The test results for the Ryzen platform are shown in Figure 4.

We have 16 cores and hence, we have evaluated the performance

for 𝑡ℎ ranging from 1 to 16, similar to the analysis on the Sandy

platform. However, the results differ significantly. In the case

of Ryzen, the runtime is reduced as 𝑡ℎ increases. Regarding the

acceleration, it achieves a stable value when 𝑡ℎ > 4, although

it is higher as 𝑞 increases. This behavior is due to the Ryzen’s

desktop-based architecture, which prioritizes single-threaded

performance. As a result, the sequential time on Ryzen is the

lowest among the three platforms, but its parallel scalability is

limited. Even so, the batching impact is also notable in the accel-

eration achieved on Ryzen.

In general terms, it can be observed that on all platforms,

the evaluation time is reduced considerably as the number of

threads increases. This behavior is particularly pronounced on

theEPYCandSandyplatforms,which are bothhigh-performance

server-based architectures. Focusing on themulti-threaded accel-

eration achieved by each platform, up to 𝑡ℎ = 16, the acceleration

is linear for both the EPYC and Sandy platforms, especially with

a higher number of plans per batch. Regarding the influence of

the batch size, it is reassuring to note that, across the tested con-

figurations with several numbers of threads on the test platforms,

higher batch sizes consistently result in better performance and
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TABLE 6 | Mean speed-ups and standard deviations of the three

patients. The baseline corresponds to the runtime with a single thread

(𝑡ℎ = 1) and a batch size of 𝑞 = 64.

Threads Sandy EPYC Ryzen

1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

2 1.95 ± 0.03 1.90 ± 0.02 1.87 ± 0.01

4 3.56 ± 0.10 3.60 ± 0.08 2.34 ± 0.01

8 6.59 ± 0.23 6.63 ± 0.28 2.61 ± 0.03

16 11.32 ± 0.50 11.62 ± 0.48 2.73 ± 0.05

32 — 18.54 ± 0.92 —

48 — 20.99 ± 0.54 —

parallel scalability. As the batch size increases, the matrix prod-
ucts involved in the gEUD method can be computed more effi-
ciently, potentially resulting in acceleration factors exceeding
the number of threads, particularly in configurations with lower
thread counts, as shown in Figures 2b, 3b, and 4b. It is important

to highlight that the reported accelerations demonstrate the bene-
fits of combiningmultithreaded and batched implementations, as
the non-batched configuration (𝑡ℎ = 1, 𝑞 = 1) is used as the base-

line in this analysis. This super-linear behavior further confirms
the efficiency gains achieved through batching, especially when

combined with multithreading.

To better understand the individual contribution of multithread-
ing, we conducted additional experiments using a fixed batch

size of 𝑞 = 64, which already benefits from optimized memory
access patterns. Hence, the parallel scalability of the batched ver-

sion is evaluated using the runtimes with 𝑡ℎ = 1 as the baseline
(Table 5), and we obtain the results of Table 6. It reports themean
speed-ups and standard deviations observed across three hard-

ware architectures: Sandy, EPYC, and Ryzen. These results con-
firm that, even when the batch size remains constant, increasing

the number of threads alone leads to substantial gains. In par-
ticular, we observe near-linear scaling on the Sandy and EPYC
platforms up to four threads, indicating efficient multithreaded

performance. In contrast, the Ryzen architecture exhibits more
limited scalability beyond two threads, likely due to its lower
core count and architectural constraints. This table helps isolate
the impact of multithreading from batching, demonstrating that
while batching contributes most significantly to performance,

multithreading also plays an important role, especially on plat-
forms with higher core counts.

Translating these findings into a practical radiotherapy scenario
highlights the importance of these time reductions. It’s essen-
tial to note that the times analyzed here are for a single gradi-

ent iteration, but the overall computation time is considerably
higher. Ourmethodology involves an evolutionary algorithm that
requires multiple evaluations to achieve an optimal solution,
which greatly increases the total time. To reach solutions of clin-
ically acceptable quality, we required a population of 128 indi-
viduals evaluated over 50 generations and 2,000 gradient descent
steps (see our companion paper [8]). For an idea of the speedup
achieved, consider the EPYC platform, the most efficient of the
three we tested. The sequential version required 422.51 h, but by

evaluating batches of 64 individuals using 96 threads, this time

has been reduced to just 12.55 h.

The key here is that we can now provide high-quality solu-

tions in reasonable timeframes. This is a crucial advancement

in radiotherapy, where treatment plans often need to be updated

and tailored promptly to patient needs. This acceleration allows

clinicians to optimize radiotherapy planning without prolonged

waiting times, enhancing both treatment efficacy and patient

outcomes.

4 | Discussion

This paper presents a method designed to take advantage of the

capabilities of multicore servers to address IMRT radiation plan-

ning problems. The underlying sequential method, PersEUD,

works as a two-level optimization scheme. At the top level, the

method scans the parameter space for promising parameter com-

binations, guided by the values of objective functions derived

from a multiobjective optimization model. At the lower level,

a GD algorithm is employed to optimize the parameters. While

PersEUD has been effective in generating high-quality solu-

tions for medical physicists, its computational demands made it

impractical for routine clinical use due to the high processing

times. In this work, we have focused on significantly reducing the

runtime of this method, enabling faster access to optimal solu-

tions without sacrificing quality.

To achieve this, we introduced several optimizations. First, we

exploited the PersEUD framework, which allows batch process-

ing of multiple fluencemaps simultaneously, combinedwith par-

allelization techniques. At each step of the GD method, sets of

fluence maps have been adjusted. Then, each step involves prod-

ucts of the large and sparse deposition matrix and its transpose

with dense matrices. In this way, the optimization of fluence

maps can be expressed in terms of high-level matrix operations

that allow us to achieve better performance on multicore proces-

sors. This strategic choice enabled us to define batches of indi-

viduals generated by the GA, leading to improved computational

efficiency.

We further enhanced performance by developing a batched

implementation tailored for multicore CPUs. This version inte-

grates Intel Math Kernel Libraries (MKL) for sparse matrix oper-

ations and uses custom OpenMP-accelerated code to calculate

gradients for each anatomical structure, including the Planning

Target Volume (PTV) and Organs at Risk (OARs).

Our results indicate that this batched evaluation approach

yields substantial speedups. Evaluating the full population

across 50 generations and 2,000 GD steps, the runtime dropped

from 422.51 h in the non-batched sequential configuration

(𝑞 = 1, 𝑡ℎ = 1) to just 12.55 h when processing batches of 64

individuals with 96 threads (𝑞 = 64, 𝑡ℎ = 96). This acceleration

not only meets the demanding computational requirements of

IMRT planning but also brings high-quality, adaptive solutions

within reach of routine clinical workflows, ultimately benefit-

ing patient care through more responsive and flexible treatment

planning.
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As future work, we plan to extend PersEUD to heterogeneous

computing environments. In particular, we aim to develop a

GPU-batched version of the gEUDmethod, leveraging the strong

potential of these platforms.Moreover, to bettermanage the com-

putational burden of PersEUD, we will explore additional opti-

mization techniques to further improve both the efficiency and

precision of our approach.
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