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Abstract

We introduce a new model of a preferential attachment based random graph
which extends the family of models in which condensation phenomena can occur.
Each vertex in our model has an associated uniform random variable which we refer
to as its location. Our model evolves in discrete time by selecting r vertices from the
graph with replacement, with sampling probabilities proportional to their degrees
plus a constant α. A new vertex joins the network and attaches to one of these r
vertices according to a given probability associated to the ranking of their locations.
Using stochastic approximation techniques we give conditions for the occurrence of
condensation in this model, showing the existence of phase transitions in α below
which condensation occurs. The condensation in our model differs from that in
preferential attachment models with fitness in that the condensation can occur at a
random location, that it can (but not necessarily) be due to a persistent hub, and
that there can be more than one point of condensation.

Keywords: Preferential Attachment, Fitness, Location, Random Graphs, Phase
Transition

1 Introduction

Preferential attachment graphs were developed as an extension of Erdős and Rényi’s
random graph model in order to model evolving networks that exhibited a power law in
their degree distributions. The standard preferential attachment method discussed by
Barabási and Albert [2] evolves from an initial graph G0 with n0 vertices v1−n0 , . . . , v0.
For each n ≥ 0 the graph Gn+1 is formed by a new vertex vn+1 joining Gn and attaching
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to an existing vertex V ∈ {v1−n0 , . . . , vn} according to

P (V = vi) =
degGn

(vi) + α
∑n

j=−n0

(

degGn
(vj) + α

) , (1)

for some α > −1. Equation (1) gives the form of preferential attachment developed by
Dorogovtsev, Mendes and Samukhin in [6] as a generalisation of the Barabási and Albert
model found in [2], and we shall use this more general form. However, several of the
papers referred to in this section, including [2], only consider the case α = 0.

It is clear to see from (1) that vertices with a higher degree have a higher probability
of attracting new edges. Some commonly mentioned applications of preferential attach-
ment graphs include the number of links to a website and the growth of the number of
connections on social networks.

It is observable in real world networks that the growth in influence of an individual vertex
is affected by more factors than just its degree. How attractive the vertex is by itself or in
comparison to the others also plays a large part. A model incorporating this notion was
introduced by Bianconi and Barabási in [3], where they gave each vertex a multiplicative
fitness value in their version of (1). They did this in order to add an extra dimension to
the competition between vertices that joined the vertex using a generalised preferential
attachment mechanism. As a consequence, new, fitter, vertices can still compete against
vertices which are well-established in the existing network. A particularly interesting
feature of preferential attachment with fitness is the so-called condensation phenomena,
where at time n a single vertex or a set of vertices of size o(n) (which vertices can depend
on time) can have a total degree of order n. Condensation for preferential attachment
with fitness is studied in detail by Borgs et al. [4], Dereich and Ortgiese [14] and Dereich,
Mailler and Mörters [5].

Another variant of preferential attachment is the choice model introduced by Malyshkin
and Paquette in [10, 11] and Krapivsky and Redner in [9]. Here when a new vertex
joins the network it first selects several candidate existing vertices at random using
(1), then attaches to one of the candidates according to a deterministic rule, such as
always attaching to the candidate of highest degree. In these papers, depending on the
parameters, as the number of vertices increases linear or approximately linear growth can
be observed in the degree of the largest vertex. Preferential attachment with degree-based
choice was further studied by Haslegrave and Jordan [8], who showed that condensation
can also occur when choosing a lower-ranked vertex.

The choice model is combined with fitness in the model studied by Freeman and Jordan [7]
in which each vertex has its own fitness value; the new vertex joins the graph Gn by
using preferential attachment to select r vertices from Gn. The new vertex forms an
edge between itself and the vertex with the highest fitness of the r selections. It is shown
in [7] that again condensation can occur in this model.

In this paper we generalise the model of [7] to allow for choices other than the largest
or smallest, for example selecting the middle vertex of a selection of three. Informally,
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an example of when the middle of three model might be appropriate is when voting for
a political candidate; one might prefer to avoid voting for a candidate is too far left or
right, and so decide to cast their vote in the middle. We will also allow for randomised
choice rules based on the ranking. Because we are no longer selecting the largest value,
we will use the term location rather than fitness. In this paper the locations will be
uniform random variables on [0, 1]; note that as we are only using the order of locations,
this is equivalent to any measure without atoms.

Using stochastic approximation techniques, we will show that the normalised empirical
measure on the location space given by weighting the location of each vertex of the graph
by its degree plus α converges almost surely to a limit. In some cases, this limit is random
and has an atom, the emergence of the atom corresponding to condensation occurring
in the system. We will show that the atom appears at a random location, as opposed
to the results of [4,7] where condensation can only occur at the supremum of the fitness
distribution. In addition we will show that condensation in our model can be due to a
single vertex which acts as a persistent hub, which is not possible in fitness models. In
fact, for some choices of our parameters, condensation has probability 1, but persistent
hub behaviour has probability strictly between 0 and 1, so condensation can occur in at
least two different ways, each with positive probability.

The remainder of this article will start with a discussion of our model and a summary of
the main results in Section 2. Our proofs are in Section 3, and finally Section 4 includes
some specific examples that highlight some of the important aspects of our main results.

2 Our model and results

2.1 The model

Fix a parameter r ∈ N with r ≥ 2, a vector Ξ ∈ R
r such that Ξi ∈ [0, 1] and

∑r
i=1 Ξi = 1,

and a real number α > −1.

We start with a tree G0 containing n0 ≥ 2 vertices which we will denote by V (G0) =
{v0, v−1, . . . , v−(n0−1)}. Every vertex vi in G0 has its own location xi in (0, 1); we will
assume that these locations are distinct. Given Gn, at time n+1 we form Gn+1 by adding
a new vertex vn+1 to the network with a single edge. This vertex has its own uniform
random variable xn+1 ∼ Uni[0, 1], which is independent of the other xi, and chooses where
to attach to at time n + 1 by selecting a sample of r pre-existing vertices in Gn with
replacement with probabilities proportional to their degrees plus α as given by equation
(1). While the requirement that G0 is a tree is not necessary, and does not change the
results, trees are the most natural starting graphs since the attachment process preserves
the tree structure. Provided G0 is a tree we also have

∑n
j=−n0

(

degGn
(vj) + α

)

= 2(n+
n0 − 1) + α(n+ n0) = (n+ n0 − 1)(2 + α) + α.

Let the r selected vertices at time n+1 be denoted by {V (n+1)
1 , . . . , V

(n+1)
r } with locations
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x
(n+1)
1 , . . . , x

(n+1)
r respectively, and renumber if necessary so that the locations satisfy

x
(n+1)
1 ≤ x

(n+1)
2 ≤ · · · ≤ x

(n+1)
r . For definiteness we specify that if two or more vertices

in the selection have the same location, we rank them in the order they were selected;
note, however, that with probability 1 the only way for this to occur is if the same vertex

is selected more than once. The probability that vn+1 attaches to vertex V
(n+1)
i is then

given by Ξi.

For example if r = 3 and Ξ = (0, 1, 0) then the new vertex selects a sample of size 3,
and connects to the selected vertex of median rank. The model can be thought of as
generalising the case of the model of [7] with fixed sample size; that model is obtained
by taking our model with Ξr = 1 (or equivalently with Ξ1 = 1).

2.2 Results

We define Ψn(x) to be the probability that a vertex selected randomly from Gn according
to the law (1) has location less than or equal to x, that is

Ψn(x) =
1

(n+ n0 − 1)(2 + α) + α

∑

vi∈V (Gn):xi≤x

(degGn
(vi) + α).

Clearly Ψn(0) = 0 and Ψn(1) = 1. We can think of Ψn as being the distribution function
of the normalised empirical measure on the location space given by weighting the location
of each vertex of the graph by its degree plus α; we will label this measure νn.

Our first result is on the convergence of the measures νn. For a fixed x and choice of Ξ,
define

F1(y;x,Ξ) = x(α+ 1)− (2 + α)y +
r
∑

l=1

Ξl

r
∑

i=l

(

r

i

)

yi(1− y)r−i,

to be considered as a function of y for y ∈ [0, 1].

We will say that p ∈ (0, 1) is a stable zero of F1(y;x,Ξ) if F1(p;x,Ξ) = 0 where there
exists an ǫ such that for y ∈ (p − ǫ, p) we have F (y;x,Ξ) > 0 and for y ∈ (p, p + ǫ) we
have F (y;x,Ξ) < 0. Similarly p ∈ (0, 1) is an unstable zero if F1(p;x,Ξ) = 0 and there
exists ǫ such that for y ∈ (p− ǫ, p) we have F (y;x,Ξ) < 0 and for y ∈ (p, p+ ǫ) we have
F (y;x,Ξ) > 0, and p ∈ (0, 1) is a touchpoint if F1(p;x,Ξ) = 0 and there exists ǫ such
that we have either F (y;x,Ξ) < 0 for all y ∈ (p− ǫ, p+ ǫ) \ {p} or F (y;x,Ξ) > 0 for all
y ∈ (p− ǫ, p+ ǫ) \ {p}.
Remark 2.1. Since F1(y;x,Ξ) is a polynomial, every root in (0, 1) is either a stable
zero, an unstable zero or a touchpoint. Also, for x ∈ (0, 1) we have F1(0;x,Ξ) > 0 >
F1(1;x,Ξ), so 0 and 1 are not roots.
Theorem 2.2. As n→ ∞, the sequence of measures converges weakly, almost surely, to
a (possibly random) probability measure on [0, 1], whose distribution function we will call
Ψ. Furthermore, for any given x ∈ (0, 1),
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1. Almost surely, Ψ(x) is a zero of the function F1(y;x,Ξ).

2. For any stable zero or touchpoint y of F1(y;x,Ξ), there is positive probability that
Ψ(x) = y.

3. Any unstable zero y of F1(y;x,Ξ) has probability zero that Ψ(x) = y.

Depending on the parameters of the model, the limit Ψ may be continuous or discon-
tinuous; for example in Section 4.1 we will show that the model mentioned above where
r = 3 and Ξ = (0, 1, 0) exhibits a phase transition where Ψ is almost surely continuous
for α ≥ −1

2 and almost surely has a discontinuity for α < −1
2 .

Discontinuity of Ψ implies that Ψn increases by Θ(1) on an interval of length o(1) as
n → ∞; this corresponds to a condensation phenomenon whereby a small number of
vertices with locations in a range of size o(1) have a Θ(1) probability of being selected.
A consequence of Theorem 2.2 is that where there is an interval of x values for which
F1(y;x,Ξ) has more than one stable root, the discontinuity occurs at a random location,
as any stable root has positive probability of being the limit for each x in the interval.

It does not immediately follow from discontinuity of Ψ that a single vertex has linear
degree; however, the next result shows that this occurs with positive probability. Without
loss of generality, we will focus on the vertex v0, present in the graph from the start, and
label its location as z. We define

Dn =
α+ degGn

(v0)

(n+ n0 − 1)(2 + α) + α
,

which would be the probability of selecting v0 for attachment under the preferential
attachment rule.
Theorem 2.3. Let z be the the location of vertex v0. If yi ≥ yj are two stable fixed
points of F1(y; z,Ξ), then there is positive probability that (Ψn(z), Dn) → (yi, yi − yj) as
n→ ∞.

Theorem 2.3 shows that if there are two distinct stable fixed points of F1(y; z,Ξ) then
condensation can occur at a persistent hub in the sense that a vertex of the initial graph
with location z has its degree growing linearly with n with positive probability. The
condensation phenomenon that occurs in this case is thus different from that found for
preferential attachment with multiplicative fitness, where Dereich, Mailler and Mörters [4]
show that the maximum degree divided by n converges to zero in probability; it is also
distinct from that found by Freeman and Jordan [7] where, although the maximum degree
is usually of linear order in n, any individual vertex only dominates for a finite time before
being displaced by fitter vertices.

However, the next result shows that for some choices of our parameters there is also
positive probability that the condensation phenomenon is not due to a persistent hub,
as it implies there is positive probability of the condensation occurring at a specific
location, where the probability of there being a vertex is zero. This suggests that in this
case the condensation phenomenon is more like one of those found in [4] or [7], in that
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vertices whose location is close to the condensation location are replaced over time in the
condensate by those which are even closer.
Theorem 2.4. Let x ∈ (0, 1) and Ξ be such that there exists p ∈ (0, 1) which is a
touchpoint of F1(y;x,Ξ). Then there is positive probability that condensation occurs at p
in the sense that Ψ has a discontinuity at p.

One natural question is whether it is possible to have more than one discontinuity in Ψ,
implying more than one point of condensation. The following result shows that this is

not possible in the case where the same rank is always chosen; note that we write e
(r)
k to

indicate (0, 0, . . . , 1, . . . , 0, 0) where the 1 is in the kth position.

Theorem 2.5. Whenever Ξ = e
(r)
k for some k ∈ {1, 2, . . . , r}, it is impossible to have

more than one point of condensation.

An example of a choice of Ξ for which more than one point of condensation is possible
appears in section 4.2.

3 Proofs

For the majority of this section we will restrict the model to the case where the choice
between the r selected vertices is deterministic, i.e. vn+1 always attaches to the selected
vertex with the kth highest location for some fixed k. In the formal notation given above
this model can be written as Ξ = (0, 0, . . . , 1, . . . , 0, 0) where the 1 is in the kth position;

we will write e
(r)
k instead of Ξ in this case. We will deal with the case with general Ξ at

the end of the section.

A key technique we use in our proofs is that of of stochastic approximation algorithms,
originally developed by Robbins and Monro [15]. Stochastic approximation methods
appear naturally in preferential attachment models, and have been used, for example, by
Malyshkin and Paquette [10] and Dereich and Ortgiese [14]. Stochastic approximation
processes operate in discrete time with standard notation, based on Pemantle [13],

Xn+1 −Xn = γn(F (Xn) + ξn+1 +Rn),

where {Xn, n ≥ n} is a sequence of random variables on R
n, γn are step sizes satisfying

∑∞
n=1 γn = ∞ and

∑∞
n=1 γ

2
n < ∞ F is a function from R

n to itself, Rn are remainder
terms which must tend to zero and satisfy

∑∞
n=1 n

−1|Rn| <∞, and ξn+1 are noise terms
satisfying E(ξn+1|Fn) = 0 [13].

We will mainly use results found in Section 2 of [13], which show that under certain
conditions the process will converge almost surely to an equilibrium of F , that stable
equilibria have positive probability of being the limit and that unstable equilibria usually
do not.
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3.1 Proofs of Theorems 2.2 to 2.4 when Ξ = e
(r)
k

Let Fn be the σ-algebra generated by the graphs Gn and the locations of their vertices
up until time n, i.e. Fn = σ(Gi, xi; i ≤ n). For x ∈ [0, 1], the probability of attaching a
vertex with location less than or equal to x at time n+1, conditional on Fn, is given by

g(Ψn(x); e
(r)
k ) =

r
∑

i=k

(

r

i

)

Ψn(x)
i(1−Ψn(x))

r−i. (2)

We can now formulate the first stochastic approximation equation associated to our
model, which will allow us to show that as the network grows the total weight of vertices
with location less than or equal to x grows linearly.
Lemma 3.1. For a fixed x ∈ [0, 1], we have the stochastic approximation equation

Ψn+1(x)−Ψn(x) =
F1(Ψn(x);x, e

(r)
k ) + ξn+1

(n+ n0)(2 + α) + α
, (3)

where F1(y;x, e
(r)
k ) = g(y; e

(r)
k )− (2+α)y+x(1+α). Here g(y; e

(r)
k ) is given in equation

(2) and ξn+1 is the noise generated by the process, satisfying E(ξn+1|Fn) = 0.

Proof. The vertex vn+1 has fitness at most x with probability g(Ψn(x); e
(r)
k ) from equa-

tion (2) as the probability of attaching to the vertex with rank k of r selections. We have
that the expected addition to the system arising from the location of the new vertex is
x(1+α). For a graph G0 on n0 vertices with e0 edges we can deduce that Gn has n0+n
vertices and e0+n edges, this leads to the normalising constant 2(e0+n)+α(n0+n). Here,
as Gn is a tree hence e0 = n0−1 leads to the normalising constant (n+n0−1)(2+α)+α.
Therefore

Ψn+1(x) =
Ψn(x) ((n+ n0)(2 + α)− 2) + x(1 + α) + g(Ψn(x); e

(r)
k ) + ξn+1

(n+ n0 + 1)(2 + α)− 2

= Ψn(x) +
x(1 + α)− (α+ 2)Ψn(x) + g(Ψn(x); e

(r)
k ) + ξn+1

(n+ n0)(2 + α) + α
,

and so

Ψn+1(x)−Ψn(x) =
g(Ψn(x); e

(r)
k )− (α+ 2)Ψn(x) + x(1 + α) + ξn+1

(n+ n0)(2 + α) + α

=
F1(Ψn(x);x, e

(r)
k ) + ξn+1

(n+ n0)(2 + α) + α
.

We define ξn+1 as
Ψn+1(x)− E(Ψn+1(x)|Fn)

γn+1

where γn+1 = (n + n0)(2 + α) + α. It is clear that ξn+1 has conditional expectation
zero.
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Theorem 3.2. Let x ∈ (0, 1). The sequence of random variables Ψn(x) converges almost

surely to a zero p of F1(y;x, e
(r)
k ). Any stable zero in [0, 1] or touchpoint in (0, 1) has

positive probability of being the limit, while any unstable zero has probability zero of being
the limit.

Proof. First we note that F1(0;x, e
(r)
k ) > 0 and F1(1;x, e

(r)
k ) < 0. Therefore there must

be at least one zero of F1(y;x, e
(r)
k ) in the interval [0, 1].

The results for stable and unstable zeros follow from Corollary 2.7, Theorem 2.8 and

Theorem 2.9 of Pemantle [13]. As we have that F1(y;x, e
(r)
k ) is continuous and γn linear

in n, to apply Corollary 2.7 and Theorem 2.8 we just need to check that there exists
a value C ∈ R

+ such that E(ξ2n+1|Fn) ≤ C. For Theorem 2.9 we also need that the
noise components E(ξ

+
n+1|Fn) and E(ξ

−
n+1|Fn) are bounded above and below by positive

numbers.

We first bound the variance of the noise. We have

|ξn+1| ∈ [0, 2],

and we can therefore see that Var(ξn+1|Fn) ≤ 4 which also implies that E(ξ2n+1|Fn) ≤ 4.

We have shown that there exists a root p in the interval [0, 1], we assume we have a root

that satisfies F1(y;x, e
(r)
k ) > 0 on (p − ǫ, p) and F1(y;x, e

(r)
k ) < 0 on (p, p + ǫ) for some

ǫ > 0. Therefore Theorem 2.8 from [13] holds true, we can conclude there is a positive
probability of convergence to this root.

We now verify the conditions on ξ+n+1 and ξ−n+1. For some member of the zero set

p ∈ (0, 1) we have that the sign of F1(Ψn(x);x, e
(r)
k ) is the same as the sign of Ψn(x)−p.

We know that |ξn| = ξ+n + ξ−n ≤ ξ2n which implies both ξ+n ≤ ξ2n and ξ−n ≤ ξ2n. Because
of this we can use the variance bound above to conclude that both E(ξ+n |Fn) ≤ C and

E(ξ−n |Fn) ≤ C hold true for the same C ∈ R
+. Let Φn+1 be the number of edges added

to the graph adjacent to a vertex with location at most x. The random variable Φn+1

takes the values {0, 1, 2} where P (Φn+1 = 0) = 0 > c1 and P (Φn+1 = 2) = c2 > 0.

2(1− c1) = 2(1− P (Φn+1 = 0|Fn)) ≥ E(Φn+1|Fn) ≥ 2P (Φn+1 = 2|Fn) = c2 (4)

Using equation (4) we can see that P (ξ+n+1 ≥ 2−2(1−c1)|Fn) ≥ c2 implies E(ξ
+
n+1|Fn) =

2c1c2. We can also see from P (ξ+n+1 ≤ 2 − 2c2|Fn) ≤ 1 − c1 ↔ c1 ≤ P (ξ−n+1 ≥ 2 −
2c2|Fn) that E(ξ

−
n+1|Fn) = 2c1(1 − c2). From these two results we can see that both

E(ξ
+
n+1|Fn) and E(ξ

−
n+1|Fn) are bounded away from zero therefore we can conclude that

both E(ξ
+
n+1|Fn) and E(ξ

−
n+1|Fn) are bounded above and below by positive values. Hence

we can apply Theorem 2.9 of [13] to show non-convergence to an unstable root.

In the case where p is a touchpoint, we can apply the result stated as Theorem 2.5 in An-
tunović, Mossel and Rácz [1] based on work by Pemantle in [12]; the bounds given above
on our noise immediately imply that the conditions needed are met, and so convergence
to the touchpoint happens with positive probability.
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The following result completes the proof of Theorem 2.2 in the case Ξ = e
(r)
k .

Corollary 3.3. The sequence of measures defined by Ψn converges weakly, almost surely,
to a limit defined by a (possibly random) distribution function Ψ : [0, 1] → [0, 1].

Proof. By definition, we have that for each n Ψn is a non-decreasing cadlag function with
Ψn(1) = 1 and, almost surely, Ψn(0) = 0. We apply Theorem 3.2 to a countable dense
set of x ∈ (0, 1) and for x in this set we define Ψ(x) = limn→∞Ψn(x). We complete the
definition of Ψ by defining Ψ(0) = 0 and Ψ(1) = 1 and defining Ψ elsewhere to ensure
that it is cadlag.

We now move towards proving Theorem 2.3 in the case Ξ = e
(r)
k . To do this, we consider

a two dimensional stochastic approximation for (Ψn(z), Dn). Let χ be the location of
a selected vertex under preferential attachment from Gn. Assuming that v0 is the only
vertex at location z, which occurs almost surely, we have

P (χn = z|Fn) =Dn,

P (χn < z|Fn) =Ψn(z)−Dn,

P (χn > z|Fn) =1−Ψn(z).

The probability of the kth ranked location being z, and hence of selecting vertex v0 for
vn+1 to attach to is given by

h(Ψn(z), Dn; e
(r)
k ) =

k−1
∑

j=0

r
∑

i=k

(

r

i

)(

i

j

)

(Ψn(z)−Dn)
jDi−j

n (1−Ψn(z))
r−i. (5)

We can now form our two dimensional stochastic approximation.
Lemma 3.4. We have

Dn+1 −Dn =
F2(Ψn(z), Dn; e

(r)
k ) + ζn+1

(n+ n0)(2 + α) + α
,

where F2(y, d; e
(r)
k ) = h(y, d; e

(r)
k )− (2+α)d and ζn+1 is the noise incurred with Dn such

that E(ζn+1|Fn) = 0.

Proof. Similarly to how we found equation (3) we use (5) to obtain

E(Dn+1|Fn) =
Dn ((n+ n0)(2 + α)− 2) + h(Ψn(z), Dn; e

(r)
k )

(n+ n0 + 1)(2 + α)− 2

+
Dn(2 + α)−Dn(2 + α)

(n+ n0 + 1)(2 + α)− 2

E(Dn+1|Fn) = Dn +
−Dn(2 + α) + h(Ψn(z), Dn; e

(r)
k )

(n+ n0)(2 + α) + α

E(Dn+1|Fn)−Dn =
F2(Ψn(z), Dn; e

(r)
k )

(n+ n0)(2 + α) + α

9



We therefore have the stochastic approximation equation for Dn in the form

Dn+1 −Dn =
F2(Ψn(z), Dn; e

(r)
k ) + ζn+1

(n+ n0)(2 + α) + α
,

where we define ζn+1 as

ζn+1 =
Dn+1 − E(Dn+1|Fn)

(n+ n0)(2 + α) + α

which has expectation zero.

We have now formed a two dimensional system of stochastic approximation equations
represented by

(

Ψn+1(z)
Dn+1

)

=
1

γn+1

(

F1(Ψn(z); z, e
(r)
k )

F2(Ψn(z), Dn; e
(r)
k )

)

+
1

γn+1

(

ξn+1

ζn+1

)

.

The following relationship between F1 and F2 will be useful for identifying stationary
points of the vector field associated to our two dimensional stochastic approximation.
Theorem 3.5. We have that

F1(y − d;x, e
(r)
k ) = F1(y; z, e

(r)
k )− F2(y, d; e

(r)
k ). (6)

Proof. We use induction on k. For k = 1,

F1(y − d;x, e
(r)
1 ) = 1− (1− y + d)r − (2 + α)(y − d) + x(α+ 1)

−
(

−(2 + α)d+
r
∑

i=1

(

r

i

)

di(1− y)r−i

)

= − (2 + α)(y) + x(α+ 1) +
r
∑

i=1

(

r

i

)

yi(1− y)r−i

= F1(y;x, e
(r)
1 )− F2(y, d; e

(r)
1 )

Assuming (6) holds for k,

F1(y − d;x, e
(r)
k+1)

=
r
∑

i=k+1

(

r

i

)

(y − d)i(1− y + d)r−i − (2 + α)(y − d) + x(α+ 1)

= F1(y − d;x, e
(r)
k )−

(

r

k

)

(y − d)k(1− y + d)r−k

= F1(y; z, e
(r)
k )− F2(y, d; e

(r)
k )−

(

r

k

)

(y − d)k(1− y + d)r−k, by the induction

hypothesis,

10



= F1(y;x, e
(r)
k+1)− F2(y, d; e

(r)
k )−

(

r

k

)

(y − d)k(1− y + d)r−k +

(

r

k

)

yk(1− y)r−k

= F1(y;x, e
(r)
k+1)−

k−1
∑

j=0

r
∑

i=k

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i

−
r
∑

i=k

(

r

i

)(

i

k

)

(y − d)kdi−k(1− y)r−i

+

k
∑

j=0

(

r

k

)(

k

j

)

(y − d)jdk−j(1− y)r−k − (2 + α)d

= F1(y;x, e
(r)
k+1)−

k−1
∑

j=0

r
∑

i=k

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i

−
k
∑

j=k

r
∑

i=k

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i

+
k
∑

j=0

k
∑

i=k

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i − (2 + α)d

= F1(y;x, e
(r)
k+1)−





k
∑

j=0

r
∑

i=k+1

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i + (2 + α)d





= F1(y;x, e
(r)
k+1)− F2(y, d; e

(r)
k+1),

completing the proof.

It follows from Theorem 3.5 that if F1(yi;x, e
(r)
k ) = F1(yj ;x, e

(r)
k ) = 0 then F2(yi, yi −

yj ;x, e
(r)
k ) = 0 and that the solutions to F1(y; z, e

(r)
k ) = F2(y, d; e

(r)
k ) = 0 all take the

form (y, d) = (yi, yi − yj) where i, j ∈ {1, 2, . . . , r}.
To investigate the stability of the stationary points, we will now calculate the Jacobian
M of the two dimensional system. We can observe that M is an upper triangular matrix

because F1(y; z, e
(r)
k ) does not depend on Dn so ∂F1

∂d
= 0. Therefore we have that the

eigenvalues of our system are

λ1(y; e
(r)
k ) =

r
∑

i=k

(

r

i

)

yi−1(1− y)r−i−1(i− ry)− (2 + α),

λ2(y, d; e
(r)
k ) =

k−1
∑

j=0

r
∑

i=k

(

r

i

)(

i

j

)

Q(r, i, j, y, d)(y − d)j−1di−j−1(1− y)r−i−1 − (2 + α),

where Q(r, i, j, y, d) = (y − d)(i− iy + rd− id) + j(1− y)(2d− y).
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Theorem 3.6. For any y ∈ {yi, yj} such that F1(y; z, e
(r)
k ) = 0, yi − yj ≥ 0 and when

∂

∂y
F1(y; z, e

(r)
k ) = λ1(y; e

(r)
k ) < 0

is satisfied for both yi, yj ∈ {y1, y2, . . . yr} we have that (yi, yi−yj) is a stable equilibrium

of the vector field (F1(y; z, e
(r)
k ), F2(y, d; e

(r)
k )).

Proof. By rearranging equation (6) we can see that

F2(y, d; e
(r)
k ) = F1(y; z, e

(r)
k )− F1(y − d;x, e

(r)
k )

and can deduce that

λ2(y, d; e
(r)
k ) =

∂

∂d

(

F1(y; z, e
(r)
k )− F1(y − d;x, e

(r)
k )
)

.

Here F1(y; z, e
(r)
k ) does not depend on d therefore F ′

1(y; z, e
(r)
k ) = 0. It is observable

that λ2(y, d; e
(r)
k ) = − ∂

∂d
F1(y − d;x, e

(r)
k ) = λ1(y − d; e

(r)
k ). All roots of F1(y; z, e

(r)
k ) =

F2(y, d; e
(r)
k ) = 0 are of the form (yi, yi − yj). If we evaluate our eigenvalue at this

point we get λ1(yi; e
(r)
k ) and λ2(yi, di;x, e

(r)
k ) = λ1(yj ; e

(r)
k ), which, referring to our initial

conditions, are both negative. Therefore the pair yi and yj form the possible limit
(yi, yi − yj).

Corollary 3.7. If yi ≥ yj are two stable fixed points of F1(y; z, e
(r)
k ), then there is positive

probability of (Ψn(z), Dn) → (yi, yi − yj) as n→ ∞.

Proof. Theorem 3.6 shows that (yi, yi − yj) is a stable stationary point of the vector

field (F1(y; z, e
(r)
k ), F2(y, d; e

(r)
k )). The conclusion then follows from Theorem 2.16 of

Pemantle [13].

This completes the proof of Theorem 2.3 in the case Ξ = e
(r)
k .

To prove Theorem 2.4, we first note that where p is a touchpoint of F1(y;x, e
(r)
k ) with

F1(y;x, e
(r)
k ) non-positive in a neighbourhood of p there will be a neighbourhood of p

which contains no zeros of F1(y;x−u,Ξ) for positive u. Hence the probability of Ψ(x−u)
being in this neighbourhood of p is zero, but we know from Theorem 3.2 that there is
positive probability that limn→∞Ψn(x) = p. Hence there is positive probability of a

discontinuity at x. The same applies if F1(y;x, e
(r)
k ) is non-negative in a neighbourhood

of p with x− u replaced by x+ u.
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3.2 Proofs of Theorems 2.2 to 2.4 in the general case

We now extend the proofs of Theorems 2.2 to 2.4 in the case where Ξ is not necessarily

equal to e
(r)
k . We can derive

F1(y;x,Ξ) =
r
∑

l=1

ΞlF1(y;x, e
(r)
l )

= z(α+ 1)− (2 + α)y +

r
∑

l=1

Ξl

r
∑

i=l

(

r

i

)

yi(1− y)r−i

and extend the definition of F2 from Lemma 3.4 as

F2(y, d; Ξ) =
r
∑

l=1

ΞlF2(y, d; e
(r)
l )

=





r
∑

l=1

Ξl

l−1
∑

j=0

r
∑

i=l

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i



− (2 + α)d.

We can see that Lemmas 3.1 and 3.4 still hold, and the arguments for Theorem 3.2 and

Corollary 3.3 work in the same way as for the case Ξ = e
(r)
k , completing the proof of

Theorem 2.2.

By considering the sums we can see that Theorem 3.5 still holds, so if we let y ∈
{y1, y2, . . . , yr} be the set of zeros of F1(y;x,Ξ), the stationary points are still of the
form (yi, yi − yj). It is easy to see that the eigenvalues of the Jacobian are now

λ1(y; Ξ) = −(2 + α) +
r
∑

l=1

Ξl

∂

∂y
F1(y;x, e

(r)
l )

= −(2 + α) +
r
∑

l=1

Ξlλ1(y; e
(r)
l );

λ2(y, d; Ξ) = −(2 + α) +

r
∑

l=1

Ξl

∂

∂d
F2(y, d; e

(r)
l )

= −(2 + α) +

r
∑

l=1

Ξlλ1(y − d; e
(r)
l ).

As a result we can see that Theorem 3.6 can be extended to this case: if we have two
roots of F1(y;x,Ξ), namely yi, yj , that satisfy λ1(yi; Ξ) < 0 and λ1(yj ; Ξ) < 0 then
(yi, yi− yj) is a stable equilibrium of the vector field given by F1(y; z,Ξ) and F2(y, d; Ξ).
This completes the proof of Theorem 2.3.

Finally, the proof of Theorem 2.4 is the same as for the case Ξ = e
(r)
k .
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3.3 Proof of Theorem 2.5

Proof. By differentiating F1(y;x, e
(r)
k ) we show that for every x there are at most two

values of Ψ(x) which occur with positive probability, and where there are two such
values that they occur in two disjoint intervals which do not depend on x. Thus a point
of condensation must almost surely involve a jump between these regions. Since Ψ(x) is
increasing by definition, this can happen at most once.

We have

∂g(y; e
(r)
k )

∂y
=

∂

∂y

r
∑

i=k

(

r

i

)

yi(1− y)r−i

=
r
∑

i=k

i

(

r

i

)

yi−1(1− y)r−i −
r−1
∑

i=k

(r − i)

(

r

i

)

yi(1− y)r−i−1

=
r
∑

i=k

r

(

r − 1

i− 1

)

yi−1(1− y)r−i −
r−1
∑

i=k

r

(

r − 1

i

)

yi(1− y)r−i−1

= r

(

r − 1

k − 1

)

yk−1(1− y)r−k,

because all other terms cancel. So

∂F1(y;x, e
(r)
k )

∂y
= r

(

r − 1

k − 1

)

yk−1(1− y)r−k − (2 + α) ;

note that this does not depend on x.

If k = r then
∂2F1(y;x,e

(r)
k

)

∂y2
is positive on (0, 1), and if k = 1 then it is negative on (0, 1).

Otherwise,

∂2F1(y;x, e
(r)
k )

∂y2
= r

(

r − 1

k − 1

)

(

(k − 1)(1− y)− (r − k)y
)

yk−2(1− y)r−k−1

= r

(

r − 1

k − 1

)

yk−2(1− y)r−k−1
(

(k − 1)− (r − 1)y
)

,

which is positive for y ∈ (0, k−1
r−1 ) and negative for y ∈ (k−1

r−1 , 1). It follows that, for any
choice of k, the equation

r

(

r − 1

k − 1

)

yk−1(1− y)r−k − (2 + α) = 0 (7)

has at most two roots in (0, 1), and that if it has exactly two such roots z1 < z2 then the
left-hand side is positive for y ∈ (z1, z2).
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Suppose (7) has two roots z1 < z2. Then for any x we have that F1(y;x, e
(r)
k ) is strictly

decreasing on the intervals [0, z1) and (z2, 1], but strictly increasing on (z1, z2). Con-

sequently, F1(y;x, e
(r)
k ) = 0 has at most one root y1(x) ∈ [0, z1], at most one root

y2(x) ∈ (z1, z2) (which, if it exists, is an unstable zero), and at most one root y3(x) ∈
[z2, 1]. Further, for each i, yi(x) is continuous on the range of x for which it exists. Note

that F1(0; 0, e
(r)
k ) = F1(1; 1, e

(r)
k ) = 0 and so y1(0) = 0 = Ψ(0) and y3(1) = 1 = Ψ(1).

By Theorem 2.2, almost surely for almost all x we have Ψ(x) ∈ {y1(x), y3(x)}. Let
x∗ = sup{x ∈ [0, 1] : Ψ(x) = y1(x)}; since Ψ is increasing and y1(x) and y3(x) are
continuous we have Ψ(x) = y1(x) for all x ∈ [0, x∗) and Ψ(x) = y3(x) for all x ∈ (x∗, 1].
It follows that Ψ is continuous everywhere except possibly at x∗, as required.

If (7) has exactly one root, z, in (0, 1), then the equation F1(y;x, e
(r)
k ) = 0 has at most

one root y1(x) ∈ [0, z] and at most one root y2(x) ∈ (z, 1] for every x ∈ [0, 1]; again
we must have y1(0) = 0 = Ψ(0) and y2(1) = 1 = Ψ(1). Defining x∗ as above, almost
surely Ψ(x) = y1(x) for all x ∈ [0, x∗) and Ψ(x) = y2(x) for all x ∈ (x∗, 1], so again Ψ is
continuous except possibly at x∗. Finally, if (7) has no roots in [0, 1], then the equation

F1(y;x, e
(r)
k ) = 0 has exactly one root y1(x) ∈ [0, 1] for every x ∈ [0, 1] and we must have

y1(0) = 0 = Ψ(0) and y1(1) = 1 = Ψ(1). Thus we almost surely have Ψ(x) ≡ y1(x), and
there are no points of condensation.

4 Examples

In this section we consider some examples of choices of Ξ which illustrate how the results
of Theorems 2.2 and 2.3 can apply to different cases.

4.1 Middle of three

As r = 1 gives standard preferential attachment, and the cases with r = 2 and either
Ξ = (0, 1) or Ξ = (1, 0) are equivalent to cases of the choice-fitness model of [7], which has
rather different behaviour, the simplest case which illustrates our results is the “middle
of three” model given by r = 3 and Ξ = (0, 1, 0).

We can express our functions F1(y;x, e
(r)
k ) and F2(y, d; e

(r)
k ) as

F1(y;x, e
(3)
2 ) = −2y3 + 3y2 − (2 + α)y + x(α+ 1)

and
F2(y, d; e

(3)
2 ) = −2d3 + 6d2y − 3d2 − 6dy2 + 6dy − d(2 + α).

For x ∈ (0, 1), define {ψ1(x), ψ2(x), ψ3(x)} such that ψ1(x) ≤ ψ2(x) ≤ ψ3(x) as the

three real roots of F1(y; z, e
(3)
2 ) = 0 when three exist and ψ(x) as the single root when

only one exists. We have F ′
1(y;x, e

(3)
2 ) = −6y3 + 6y2 − (2 + α), and so F1(y;x, e

(3)
2 ) is
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decreasing in y whenever α ≥ −1
2 , but has turning points at y = 1

2 ±
√

−(1 + 2α)/12 for

α ∈ (−1,−1
2). At x = 1

2 we have F1(y;x, e
(3)
2 ) = (12 − y)(F ′

1(y;x, e
(3)
2 ) + 1+ 2α)/3. Con-

sequently the values of F1(y;
1
2 , e

(3)
2 ) at the turning points are ∓

√

−(1 + 2α)3/108, and

the corresponding values of F1(y;
1
2 , e

(3)
2 ) are given by (1+α)(x− 1

2)∓
√

−(1 + 2α)3/108.

It follows that there are multiple roots if and only if |x− 1
2 | ≤

√

−(1+2α)3

108(1+α) ; write s = s(α)

for this quantity. Note that s < 1
2 if and only if α > −7

8 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0

0.1

0.2

y

F
1
(y
;x
,e

(3
)

2
)

x = 9+
√
6

18

x = 9−
√
6

18

Figure 1: F1(y;x, e
(3)
2 ) for α = −0.75 and x = 1

2 ± s.

Figure 1 plots F1(y;x, e
(3)
2 ) against y ∈ [0, 1] for the value α = −3

4 and x = 1
2 ± s, and

Figure 2 plots the roots of F1(y;x, e
(3)
2 ) against x ∈ [0, 1]. There is exactly one real root

when x ∈ {[0, 9+
√
6

18 ) ∪ (9−
√
6

18 , 1]} and three real roots when x ∈ [9−
√
6

18 , 9+
√
6

18 ].
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0.0

0.2

0.4

0.6

0.8

1.0

R
o
o
ts

o
f
F
1

(

y
;x
,e

(3
)

2

)

Figure 2: The roots of F1(y;x, e
(3)
2 ) for x ∈ [0, 1] and α = −0.75.
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In this setting, Theorem 2.2 becomes the following.
Theorem 4.1. For a fixed location x ∈ (0, 1), the random variable Ψn(x) converges
pointwise as n→ ∞ almost surely to the following limits.

lim
n→∞

Ψn(x) =























ψ(x), if α ≥ −1
2

ψ(x), if α ∈ (−7
8 ,−1

2) and x 6∈
[

1
2 − s, 12 + s

]

ψ1(x) or ψ3(x), if α ∈ (−7
8 ,−1

2) and x ∈
[

1
2 − s, 12 + s

]

ψ1(x) or ψ3(x), if α ≤ −7
8 .

We can see there is a phase transition at α = −1
2 : when α ≥ −1

2 , Ψ is almost surely
continuous, whereas when α < −1

2 , Ψ follows the lower root ψ1(x) until a random point
in [12 −s, 12 +s] at which it jumps to the upper root ψ3(x), giving a point of condensation.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0 Ψ102(x)

Ψ104(x)

Stable roots

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Ψ102(x)

Ψ104(x)

Ψ106(x)

Ψ108(x)

Stable roots

Figure 3: Results from simulations for α = −0.75

If −7
8 < α < 1

2 , Theorem 2.3 implies that this point of condensation is with positive
probability caused by a persistent hub occurring at a random location which has full
support on (12 − s, 12 + s). However, Theorem 2.4 implies that the point of condensation
also has positive probability of occurring at each of the endpoints 1

2 − s and 1
2 + s; since

almost surely these values are not fitnesses of any vertex, it follows that there is also a
positive probability that there is no persistent hub. Figure 3 shows the results of two
simulations for α = −0.75 with different behaviour: in the first simulation there is rapid
convergence of Ψn to a limit with condensation occurring via a persistent hub, whereas
in the second Ψn shows much slower convergence, apparently towards condensation at
1
2 + s. If α ≤ −7

8 , Theorem 2.3 implies that the location of the jump has full support on
(0, 1).

As we can now implement conditions on F1(y, x; e
(r)
k ) using x and α to control whether

we have one or three real roots we can solve

F1(y, x; e
(r)
k ) = F2(y, d, x; e

(r)
k ) = 0
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by assuming F1(y, x; e
(r)
k ) = 0 has three real roots {ψ1(x), ψ2(x), ψ3(x)}. We therefore

can solve F2(y, d, x; e
(r)
k ) = 0 to get δ1 = 0 and δ2 and δ3 given by 3

4(2ψi(x) − 1) ±
1
4

√

−12ψi(x)2 + 12ψi(x)− 7− 8α.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.6

−0.4

−0.2

0

0.2

0.4

y

Figure 4: Plot of eigenvalues of the Jacobian when α = −0.75

Figure 4 illustrates Theorem 3.6 in this case, showing the eigenvalues of the Jacobian at

the stationary points. The solid curves show F1(y;x, e
(3)
2 ) for y ∈ [0, 1] at x = 1

2 ± s, the
upper and lower limits of the region of x where there are three real roots. In this same

region are plotted λ1(y; e
(3)
2 ) (the parabola), λ2(y, δ2; e

(3)
2 ) and λ2(y, δ3; e

(3)
2 ) (dashed

and dotted lines respectively). The two regions where the eigenvalues are both negative

overlap with where the roots of F1(y;x, e
(r)
k ) would be as x increases from the lower limit

to the upper limit.

4.2 Second or sixth of seven

The second example we will discuss makes use of the vector notation introduced in Section
2. The “middle of three” model of Section 4.1 is an example of selecting the kth highest
location from r selections, and demonstrates a phase transition below which condensation
must occur at a single point. By Theorem 2.5, no such model can have condensation
occurring simultaneously at more than one point. We now consider whether models in
which more than one rank has positive probability of being selected can demonstrate
multiple points of condensation. If there are three (or more) stable roots of F1(y;x,Ξ)
for some range of x then by Theorem 2.3 there is a positive probability of a jump from
the first to the second in that range, and in this case since there are still higher stable
roots, another jump must occur. If there are two disjoint ranges with two or more stable
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roots, separated by a range in which there is only one, then at least one jump must occur
in each of these ranges. In this section we give an example which (for different values
of α) demonstrates that both of these can occur, even for models where only two ranks
have positive probability. A real-life example of when two points of condensation might
be expected is that of a bipartisan election, where two candidates from different regions
of the location parameter (which might represent political position) may both attract a
given proportion of the votes.

The distribution we shall use is Ξ = (0, 12 , 0, 0, 0,
1
2 , 0), that is, each new vertex is equally

likely to connect to the second or sixth rank of seven candidates; this was the simplest
example we could find which allowed for two points of condensation. In this setting, (2)
gives the following expression for F1(y;x,Ξ):

F1(y;x,Ξ) =
1

2
F1(y;x, e

(7)
2 ) +

1

2
F1(y;x, e

(7)
6 )

=
1

2

(

7
∑

i=2

(

7

i

)

yi (1− y)7−i

)

+
1

2

(

7
∑

i=6

(

7

i

)

yi (1− y)7−i

)

− (2 + α)y + x(α+ 1)

= −6y7 + 21y6 − 42y5 +
105

2
y4 − 35y3 +

21

2
y2 − (2 + α)y + x(α+ 1).

The middle of three model features two phase transitions, at α = −1
2 and α = −7

8 . To
discuss phase transitions in this model, we note that the derivative (with respect to y)
F ′
1(y;x,Ξ) does not depend on x and is decreasing in α for fixed y; we also note that the

symmetry in the system means that F ′
1(y;x,Ξ) = F ′

1(1− y;x,Ξ). We can thus define

α1 = inf{α : F ′
1(y;x,Ξ) ≤ 0 ∀ α ∈ (0, 1)};

for α ≥ α1, F1(y;x,Ξ) is a decreasing function of y and so for all x ∈ (0, 1) there is a
unique root of F1(y;x,Ξ) = 0 in (0, 1), whereas for α < α1 there is at least one interval of
values of x which have at least three roots of F1(y;x,Ξ) = 0 in (0, 1). Hence our results
show that condensation occurs almost surely if and only if α < α1. We can calculate α1

explicitly, since

F ′′
1 (y;x,Ξ) = −7

2(2x− 1)(6x2 − 6x+ 4−
√
10)(6x2 − 6x+ 4 +

√
10)

does not depend on α. It is easy to verify that F ′
1(y;x,Ξ) is maximised at y = 1

2 ±
1
6

√

6
√
10− 15, and the maximum value is positive if and only if α < 35

√
10−116
9 .

For α ∈ (−1, α1) F1(y;x,Ξ) has, in (0, 1), two local minima at η1(α) and η3(α) and two
local maxima at η2(α) and η4(α), where η1(α) < η2(α) < η3(α) < η4(α); these values
depend on α but not on x. Set α2 = sup{α : F1(η2(α);x,Ξ) ≥ F1(0;x,Ξ)}; then the set
of values of x which have at least three roots includes 0 and 1 if and only if α ≤ α2. Next,
set α3 = sup{α : F1(η4(α);x,Ξ) ≥ F1(η1(α);x,Ξ)}; then for α < α3 there is a range of
values of x such that there are five roots of F1(y;x,Ξ) = 0 in (0, 1), whereas for α > α3
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there are always at most three, and there are two disjoint intervals of x where there are
three. Hence for α ∈ (α3, α1) there will almost surely be two points of condensation,
whereas for α < α3 there will be positive probability of there being a single point of
condensation.

Finally, set α4 = sup{α : F1(η4(α);x,Ξ) ≥ F1(0;x,Ξ)}; then there are five roots of
F1(y;x,Ξ) = 0 in (0, 1) for all x ∈ (0, 1) if and only if α ≤ α4, and hence for this range
of α a single point of condensation can occur at a location which is fully supported on
(0, 1).
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Figure 5: F1(y;x,Ξ) evaluated at four different values of α corresponding to the phase
transitions that appear for this choice of Ξ, and at three different values of x: from top
to bottom, x = 1, x = 1

2 and x = 0.

The four transition points satisfy α1 = 35
√
10−116
9 ≈ −0.59114, α2 ≈ −0.87562, α3 ≈

−0.93144 and α4 ≈ −0.96842. Plots of F1(y;x,Ξ) for each of the transition points α1,
α2, α3 and α4 are shown in Figure 5, and plots showing the roots of F1(y;x,Ξ) = 0 for
two specific values of α (α = −0.85 ∈ (α2, α1) and α = −0.95 ∈ (α4, α3)) appear in
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Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

R
oo
ts

of
F
1
(y
;x
,Ξ

)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

R
oo
ts

of
F
1
(y
;x
,Ξ

)
Figure 6: The roots of F1(y;x,Ξ) for α = −0.85 (left) and α = −0.95 (right).

For α = −0.85 the stable roots and touchpoints are given by three continuous partial
functions of x: ψ1 defined on (0, β2], ψ3 defined on [β1, 1 − β1], and ψ5 defined on
[1 − β2, 1), where 0 < β1 < β2 < 1/2. (In fact we have β1 ≈ 0.0492 and β2 ≈ 0.2721.)
Each function gives a stable root on the interior of its domain and a touchpoint on the
boundary. Consequently, by Theorem 2.2, almost surely Ψ(x) takes the value ψ1(x) on
some interval containing (0, β1), the value ψ3(x) on some interval containing (β2, 1−β2),
and the value ψ5(x) on some interval containing (1 − β1, 1). Thus there are almost
surely two points of condensation. By Theorem 2.3, each of these points of condensation
is caused by a persistent hub with positive probability. However, Theorem 2.4 implies
there is also a positive probability of condensation occurring without a persistent hub
at β1, β2, 1 − β2 or 1 − β1. Figure 7 shows the results of two simulations: in the first
simulation, both points of condensation arise from persistent local hubs, but in the second
the upper part of Ψn shows much slower convergence, apparently towards condensation
at 1− β2. Our results do not give any bounds on the relative likelihoods of these types
of behaviour; however, simulations suggest that it is relatively uncommon to have early
hubs forming in both the feasible regions (β1, β2) and (1− β2, 1− β1).

For α = −0.95 the corresponding partial functions of x are ψ1 defined on (0, 1 − β], ψ3

defined on (0, 1), and ψ5 defined on [1−β, 1), where β ≈ 0.3420. In this case Theorem 2.2
implies that there are nontrivial regions on which Ψ(x) takes the values ψ1(x) and ψ5(x),
but there need not be any x for which Ψ(x) = ψ3(x), since that is never the only stable
root. Consequently there may be two points of condensation if such an x exists, and
one point of condensation corresponding to a jump from ψ1 to ψ5 otherwise. Theorem
2.3 implies that each of these types of behaviour has positive probability, and Figure 8
shows the results of two simulations exhibiting the two types of behaviour. As before,
Theorem 2.4 implies that there is a positive probability of non-persistent condensation
occuring at β or 1− β.
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Figure 7: Results from simulations for α = −0.85
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Figure 8: Results from simulations for α = −0.95
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