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Abstract

We consider network formation, where some locations can be connected. Every net-

work has a cost and every agent has an individual value of every network. A planner

aims at implementing a welfare maximizing network and allocating the resulting cost,

but information is asymmetric: agents are fully informed and the planner is ignorant.

Full implementation in Nash and strong Nash equilibria is studied. We show the corre-

spondence consisting of welfare maximizing networks and individually rational cost

allocations is implementable. We construct a minimal Nash implementable, welfare

maximizing, and individually rational solution in the set of upper hemi-continuous

and Nash implementable solutions. It is not possible to implement solutions such as

the Shapley value unless we settle for partial implementation.

1 Introduction

Overview of the paper: We consider a network model a la Jackson and Wolinsky (1996).

A set of locations can be connected in various network configurations. Every network

has a cost, and every agent has an individual value of every network. The problem

is to implement and allocate costs of a welfare maximizing network. If agents are

left to themselves to establish and allocate the cost of the network, the outcome will

typically not be a welfare maximizing network. Indeed, it is well-known that the core

of the induced cooperative game can be empty (Megiddo 1978; Tamir 1991; Hougaard

and Tvede 2022). Consequently, decentralized organization of networks can result in

inefficient networks or no network at all.
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We therefore take a mechanism design approach, where agents have complete infor-

mation and study classic Nash implementation (see, e.g., the survey in Maskin and

Sjöström (2002)): a benevolent social planner wants all equilibrium outcomes to be

desirable, in that the chosen network is welfare maximizing and payments are individ-

ually rational, for all possible costs of networks and all possible values of networks

for agents. Agents are fully informed, but the planner is ignorant about the true costs

and values.

Specifically, we examine the possibility of full implementation in Nash and strong

Nash equilibria. All Nash implementable solutions can be implemented by the

canonical (unbounded) mechanism described in Maskin (1997, 1999). Modified and

more informationally efficient versions can be found in Saijo (1988), Lombardi and

Yoshihara (2013), and Tatamitani (2001). Alternatively, our solutions can also be

implemented by a bounded mechanism as in Jackson et al. (1994).

We first show that it is impossible to implement (budget-balanced) cost sharing

rules for which there is a unique distribution of the welfare generated by the network

(Theorem 1). These cost sharing rules include the celebrated Shapley value. Therefore,

we focus on the correspondence from states, where states are costs and values, to all

desirable outcomes and show that it is Nash and strong Nash implementable (Theorems

2 and 5). Since the correspondence of desirable outcomes is rather large, it is natural to

examine whether minimally implementable correspondences exist. A simple example

demonstrates that they do not (Theorem 3). Adding continuity would be appealing

in terms of robustness. But welfare maximizing networks vary discontinuously with

costs and individual values of networks and payments vary discontinuously with net-

works. Hence, we consider upper hemi-continuity instead of continuity and construct a

minimal correspondence in the set of upper hemi-continuous and Nash implementable

correspondences from costs and values to desirable outcomes (Theorem 4). Finally,

we discuss how the informational requirements of Maskin’s canonical mechanism can

be reduced in our case, though our modified mechanism remains unbounded.

Summing up, the planner on the one hand can implement welfare maximizing

networks with individually rational payments, and on the other hand has to be flexible in

assigning cost shares and not use a specific cost sharing rule such as the Shapley value.

Welfare gains need not be equally distributed: specifically, there is no way to ensure that

all agents get a positive share. Consequently, centralized organization of networks can

result in welfare maximizing networks but not necessarily fair distributions of welfare.

Related literature: Our paper relates to several strands of literature.

There is a large literature on cost sharing in networks. For the minimum cost span-

ning tree model various forms of implementation have been considered. For instance,

Bergantinos and Lorenzo (2004, 2005) provide an empirical example of a decen-

tralized network formation process, where agents connect sequentially to a source.

Bergantinos and Vidal-Puga (2010) consider implementation of minimum cost span-

ning trees via a decentralized bargaining process inspired by the bidding mechanism

of Perez-Castrillo and Wettstein (2001). Hougaard and Tvede (2012) consider central

implementation and suggest a specific game form, where agents report connection

costs to a planner. The game form fully Nash implements minimum cost spanning
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trees using a broad class of cost allocation rules like, for instance, the Folk-solution

(Bergantinos and Vidal-Puga 2007).

Non-cooperative behavior in the more general connection networks model was

initially studied in Anshelevich et al. (2008) and Chen et al. (2010). Both papers focus

on equilibrium performance measured by the “Price of Anarchy”, respectively “Price

of Stability”, i.e., the ratio between maximum welfare and the minimal, respectively

maximal, welfare obtainable in Nash equilibrium. In a context where the planner is

fully informed but unable to enforce a centralized network solution, Juarez and Kumar

(2013) use a game form inspired by the model in Anshelevich et al. (2008). Loosely

speaking, they show that a cost allocation rule implements an efficient network (in the

sense that an efficient network is a Nash equilibrium outcome, and it Pareto dominates

the outcome of all other equilibria) if and only if the allocation rule is a function of

total network cost only: adding equal treatment of equals, in effect, leaves the equal

split rule as the only possibility.

Generalizing the game form in Hougaard and Tvede (2012) to connection networks,

Hougaard and Tvede (2015) obtain similar results in a centralized setting. Full Nash

implementation of an efficient network is only possible provided the planner knows

the connection demand of every agent, and only under very strong assumptions on

the cost allocation rule, in effect violating individual rationality. In case the planner

does not know connection demands, truthful reporting is a Nash equilibrium that

implements a cost minimizing connection network, but other equilibria can induce

highly inefficient networks. Indeed, the “Price of Anarchy” is unbounded even if the

planner has full knowledge of connection costs. It is therefore somewhat striking that

full Nash implementation of desirable outcomes is possible in the more general version

of the model, where agents have limited willingness to pay for connectivity, albeit not

when using a specific cost sharing rule.

Considering a network model a la Jackson and Wolinsky (1996) as in our case,

Mutuswani and Winter (2002) show that a specific solution, namely the Shapley value,

can be implemented in subgame perfect Nash equilibrium. A difference from our set-

ting is that the planner knows the connection costs. Generally, as shown by Jackson

et al. (1994) and Sjöström (1994), any social choice function is boundedly imple-

mentable provided it satisfies certain separability requirements. We could apply a

mechanism similar to theirs and implement efficient networks where, for instance,

agents pay in proportion to their value, provided that it would be possible to exclude

agents from getting access to the network (making the network an excludable public

good). Another option would be to allow for unbalanced payments. Along those lines,

Young (1998) presents a simple auction mechanism to implement a welfare maximiz-

ing network in strong Nash equilibrium accepting that the mechanism can produce a

surplus to the planner. Recently, Mackenzie and Trudeau (2023) provide an example of

a Groves-like mechanism in a general exclusion model where surpluses are accepted

as well.

Finally, our results have a parallel interpretation concerning the provision of mul-

tiple public goods (Mutuswami and Winter 2004; Hougaard and Moulin 2014).
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2 Themodel

In the present section, we introduce our framework and discuss the model.

Set up

Let L be a finite set of n locations (nodes). Let gn denote the complete graph. The

set of possible undirected networks (graphs) is G = { g | g ⊂ gn }.

Every network has a cost. Costs are a function from the set of networks to non-

negative real numbers C : G → R+. We write Cg for the cost of network g and assume

C∅ = 0, and Cg > 0 for every g �= ∅. As such, the networks are congestion-free. The

set of costs is denoted C . Costs are additive provided for every pair of locations a and

b there is connection cost cab such that Cg =
∑

ab∈g cab for every network g.

Let M = {1, . . . , m} be a set of finitely many agents with m ≥ 3. Every agent has

a value associated with each network. Values are a function from the set of networks

to vectors of individual values, V : G → R
m . We write V

g
i for agent i’s value of, or

willingness to pay for, network g, and assume V ∅
i = 0 for every i ∈ M . The set of

values is denoted V .

The social welfare of costs, values and network, (C, V , g), is
∑

i V
g

i −Cg . For

costs and values (C, V ), a welfare maximizing network (WMN) g is a graph such that

for every other graph h,

∑

i

V
g

i − Cg ≥
∑

i

V h
i − Ch .

The set of welfare maximizing networks is non-empty and finite because the set of

graphs is non-empty and finite.

Costs are strictly monotonic provided for every pair of networks g and h, g ⊂ h and

g �= h implies Cg < Ch . Values are non-cyclic provided for every pair of networks

g and h, there is path from a to b in g if and only if there is a path from a to b in h

imply V g = V h . Recall that a graph is a tree provided there is a unique path between

every pair of locations in the graph and a forest provided it is a union of disjoint trees.

Clearly, if costs are strictly monotonic and values are non-cyclic, then g being a WMN

implies g is a tree or a forest.

An outcome is a network and a list of cost shares, (g, π g), where g ∈ G and π g =

(π
g
i )i∈M with

∑

i π
g
i = 1. Cost shares can be positive or negative corresponding to

agents paying or being paid. The outcome (g, π g) results in the network g and costs

(π
g
i Cg)i for the agents. For costs and values (C, V ) and an outcome (g, π g), the utility

of agent i is u
g
i (C, V , π g) = V

g
i −π

g
i Cg . Let O be the set of outcomes.

A desirable outcome is an outcome (g, π g) for which: g is a WMN; and, nobody

pays more than their willingness to pay, i.e., u
g
i = V

g
i −π

g
i Cg ≥ 0 for each i ∈ M .

A minimal-subsidy (MS) desirable outcome is a desirable outcome (g, π g) for which

subsidies are minimized: for an agent i with V
g

i ≤ 0 the cost share is determined by

π
g
i = V

g
i /Cg for Cg > 0 so u

g
i = V

g
i −π

g
i Cg = 0. For costs and values (C, V ), let

Od(C, V ) ⊂ O be the set of desirable outcomes, and let O
d
0 (C, V ) ⊂ Od(C, V ) the
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set of MS-desirable outcomes. Note that O
d
0 (C, V ) is non-empty since all agents have

non-negative utility of any network and the outcome is welfare maximizing.

A solution Ŵ : C ×V → O is a correspondence from costs and values to outcomes.

We consider two solutions: the desirable solution Ŵd mapping costs and values to sets

of all desirable outcomes Ŵd(C, V ) = Od(C, V ); and, the MS-desirable solution Ŵd
0

mapping costs and values to sets of all MS-desirable outcomesŴd
0 (C, V ) = O

d
0 (C, V ).

Desirable outcomes are appealing because they are efficient and individually ratio-

nal. The networks are WMNs, their costs are exactly covered, and nobody pays more

than their value (willingness to pay). In terms of fairness, individual rationality can be

seen as a minimum requirement, at least nobody gets punished by realizing a desir-

able outcome. Adding MS to desirable outcomes ensures that every agent with positive

value weakly contributes and every agent with V
g

i ≤ 0 is compensated. Yet, this does

not ensure that everybody strictly benefits from desirable outcomes.

Comments

A particular instance of our model, where agents are characterized by connection

demands in the form of two locations they want connected and a willingness to pay for

that connection, relates to the standard cost allocation model in connection networks

(see e.g., Bergantinos and Vidal-Puga 2007; Anshelevich et al. 2008; Bogomolnaia

et al. 2010; Bogomolnaia and Moulin 2010; Trudeau 2012; Moulin 2014; Hougaard

and Tvede 2015). As shown in Panova (2023) adding willingnesses to pay, might

seem like a minor variation, but it fundamentally changes the standard model. In

particular, it introduces the basic design question of which connection demands to

satisfy. In contrast to the standard framework, where all connection demands have

to be satisfied, we can now compare the cost of satisfying an agent’s demand with

their willingness to pay. Thus, we are able to address the optimal size of the network

by aiming at social welfare maximization, in contrast to the cost minimization of the

standard models. Consider the example below.

Example: Three locationsL = {1, 2, 3} with additive connection costs, where c12 = 3

and c13 = c23 = 2 as illustrated below.

� �

�

1

23

c13 = 2 c12 = 3

c23 = 2

Suppose one agent, Titika, has value VT if locations 1 and 2 are connected and

zero otherwise. Another agent, Yi, has value VY if locations 1 and 3 are connected

and zero otherwise. If both agents have to have their pairs of locations connected,

then the cost minimizing network is clearly g = {13, 23} with a total cost of 4. The

remaining problem is to determine how the total cost should be allocated between the
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two agents. However, if the valuations of the agents are taken into account, then the

problem becomes radically different in that both the locations to be connected and the

allocation of total cost have to be determined. Indeed: if VT ≥ 3 and VY ≤ 1, then it

is welfare maximizing to not satisfy Yi and build gT = {12}; if VT ≤ 2 and VY ≥ 2,

then it is welfare maximizing to not satisfy Titika and build gY = {13}; and, if VT ≤ 3,

VY ≤ 2 and VT +VY ≤ 4, then it is welfare maximizing to not satisfy any of the two

agents and build no network.

The model induces a cooperative game (M , v), where the value v(S) of every coalition

S ⊂ M , is naturally defined as the maximum total welfare obtainable by agents in S.

As demonstrated by examples in Tamir (1991) and Hougaard and Tvede (2022) the

core of such games can be empty. Consequently, decentralized mechanisms cannot be

expected to work.

3 Implementation

A planner aims at implementing desirable or MS-desirable outcomes and designs a

game that agents play. The equilibria of the game have to be the desirable or MS-

desirable outcomes that the planner aims to implement. We assume that the planner is

uninformed, but the agents know the costs and values (C, V ). By restricting outcomes

to be desirable, we restrict outcomes to be welfare maximizing and individually rational

in that no agent pays more than her value of the network.

A mechanism F = ((Si )i , f ) consists of a strategy set for every agent, Si , and a

map from lists of individual strategies to outcomes, f : ×i Si → O . A list of individual

strategies (s̄i )i is a Nash equilibrium provided there is no agent j and strategy s j , such

that u j ( f (s j , (s̄i )i �= j )) > u j ( f ((s̄i )i )). A list of individual strategies (s̄i )i is a strong

Nash equilibrium provided there is no group of agents T ⊂ M , and list of individual

strategies for agents in T , (s j ) j∈T , such that u j ( f ((s j ) j∈T , (s̄k)k∈T ∁)) > u j ( f ((s̄i )i ))

for every j ∈ T . A solution Ŵ : C ×V → O is implementable in (strong) Nash

equilibrium provided there exists a mechanism F such that for all costs and values

(C, V ), the set of (strong) Nash equilibria for F is Ŵ(C, V ).

Let L
g
i (C, V , π g) = {(h, πh) ∈ O} | uh

i (C, V , πh) ≤ u
g
i (C, V , π g)} be the set

of outcomes (h, πh) that are weakly worse than (g, π g) for agent i . A solution Ŵ is

monotonic provided that for all outcomes (g, π g) ∈ O and all pairs of costs and values

(C, V ), (C ′, V ′) ∈ C ×V , (g, π g) ∈ Ŵ(C, V ) and L
g

i (C, V , π g) ⊂ L
g

i (C ′, V ′, π g)

for every i imply (g, π g) ∈ Ŵ(C ′, V ′).

Implementation in Nash equilibrium

The desirable and the MS-desirable solutions are appealing in that they maximize wel-

fare and respect individual rationality. Two less appealing features of these solutions

are that they are “big” and that they can be perceived as unfair. Specifically, in case two

agents have identical values it is possible that one agent pays their value and gets utility

zero and the other agent pays zero and gets utility equal to their value. Solutions that
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for all pairs of problems and WMNs have a unique cost allocation are much “smaller”

and can be more fair in the sense that costs are allocated using a specific allocation

rule, which may possess certain desirable fairness properties. However, these solu-

tions are not Nash implementable, even if the planner knows the costs. In particular,

single-valued solutions based on cooperative games, such as the Shapley value, are

not Nash implementable.

Theorem 1 Assume the planner knows the costs C. Suppose a solution Ŵ : V → O

has the following properties:

• For all V and every g, there is either a unique or no π g such that (g, π g) ∈ Ŵ(V ).

• For all V , Ŵ(V ) ⊂ Ŵd(V ).

Then Ŵ is not Nash implementable.

Proof To show there is no solution with the imposed properties a simple counterex-

ample is presented. Suppose there are three locations L = {1, 2, 3} and costs C are

additive with c13 > c12, c23 and c12+c23 = 1. Furthermore, suppose the m agents

can be split into two groups T and T ∁, where agents in T have total value VT > 0 of

every graph in which locations 1 and 2 are connected and value zero otherwise and

agents in T ∁ have total value V
T ∁ > 0 of every graph in which locations 1 and 3 are

connected and zero otherwise.

The network g = (12, 23) is the unique WMN provided

⎧

⎪

⎨

⎪

⎩

VT + V
T ∁ > 1 (g is strictly better than no network)

V
T ∁ > c23 (g is strictly better than g′ = (12))

VT > 1−c13 (g is strictly better than g′′ = (13))

The cost allocation for the two groups is π = (πT , π
T ∁) with πT +π

T ∁ = 1. Further-

more, (g, π) ∈ Ŵd(V ) implies πT ∈ [1−V
T ∁ , VT ] and π

T ∁ ∈ [1−VT , V
T ∁ ].

Let VT = c12+δT and V
T ∁ = c23+δ

T ∁ . Then the inequalities ensuring g is the

unique WMN are satisfied if and only if

⎧

⎪

⎨

⎪

⎩

δT + δ
T ∁ > 0

δ
T ∁ > 0

δT > c23 − c13

so δT can be negative because c23 < c13. Since (g, π g) ∈ Ŵd(V ), the cost allocation

has to satisfy
{

πT ∈ [c12−δ
T ∁ , c12+δT ]

πT ∁
∈ [c23−δT , c23+δ

T ∁].

Suppose (δT , δ
T ∁) and (δ′

T , δ′

T ∁
) satisfy the three inequalities with δT < −δ′

T ∁
. If

(g, π) ∈ Ŵ(δT , δ
T ∁) and (g, π ′) ∈ Ŵ(δ′

T , δ′

T ∁
), then πT < π ′

T and π
T ∁ > π ′

T ∁
.
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Suppose Ŵ is a Nash implementable solution. Then Ŵ is monotonic according

to Theorem 1 in Maskin and Sjöström (2002). Therefore, for all (δ′′
T , δ′′

T ∁
) satisfy-

ing the three inequalities as well as δ′′
T ≥ max{δT , δ′

T } and δ′′

T ∁
≥ max{δ

T ∁ , δ
′

T ∁
},

(g, π), (g, π ′) ∈ Ŵ(δ′′
T , δ′′

T ∁
) contradicting there is either a unique or no π g such that

(g, π g) ∈ Ŵ(δ′′
T , δ′′

T ∁
). ⊓⊔

Fortunately, it turns out both desirable solutions are Nash implementable. According

to Theorem 2 in Maskin (1999), if a solution satisfies monotonicity and no veto power,

then the solution is Nash implementable. A solution satisfies no veto power provided

that if an outcome is top ranked by m−1, then it is in the solution. However, no outcome

is top ranked by any agent. Indeed, since there is h with Ch > 0, for all (g, π g) if

πh
i < (V

g
i −π

g
i Cg−V h

i )/Ch , then V h
i −πh

i Ch > V
g

i −π
g
i Cg . Hence, from Theorems

2 and 3 in Maskin (1999) it follows that solutions in our setting are implementable

if and only if they are monotonic. Consequently, we simply show that both desirable

solutions are monotonic. Moreover, by Proposition 1 in Jackson et al. (1994), solutions

in our setting are implementable by bounded mechanisms.

Theorem 2 The desirable and the MS-desirable solutions are Nash implementable.

Proof Our setting fits the setting in Maskin and Sjöström (2002) with costs and values

being states. Therefore, Theorem 2 in Maskin and Sjöström can be applied to show

that Ŵd and Ŵd
0 are Nash implementable.

To show that Ŵd or Ŵd
0 is monotonic, suppose there are a pair of costs and val-

ues (C, V ) and (C ′, V ′) and an outcome (g, π g) with (g, π g) ∈ Ŵd(C, V ) and

(g, π g) /∈ Ŵd(C ′, V ′) or (g, π g) ∈ Ŵd
0 (C, V ) and (g, π g) /∈ Ŵd

0 (C ′, V ′). Then for

(C ′, V ′) either (g, π g) is maximizing social welfare or (g, π g) is not maximizing

social welfare. If (g, π g) is maximizing social welfare for (C ′, V ′), then there is an

agent i such that u
g

i (C ′, V ′, π g) < 0. Therefore (∅, (0, . . . , 0)) ∈ L
g

i (C, V , π g) and

(∅, (0, . . . , 0)) /∈ L
g
i (C ′, V ′, π g), so L

g
i (C, V , π g) �⊂ L

g
i (C ′, V ′, π g). If (g, π

g
i ) is

not maximizing social welfare for (C ′, V ′), then there is an outcome (h, πh) such

that
∑

i uh
i (C ′, V ′, πh) >

∑

i u
g
i (C ′, V ′, π g). Hence, there is an outcome (h, π ′h)

such that uh
i (C ′, V ′, π ′h) > u

g
i (C ′, V ′, π g) for every i . Since

∑

i uh
i (C, V , π ′h) ≤

∑

i u
g
i (C, V , π g), there is an agent i such that uh

i (C, V , π ′h) ≤ u
g
i (C, V , π g).

Hence (h, π ′h) ∈ L
g
i (C, V , π g) and (h, π ′h) /∈ L

g
i (C ′, V ′, π g), so L

g
i (C, V , π g) �⊂

L
g
i (C ′, V ′, π g). To sum up, Ŵd and Ŵd

0 are monotonic and consequently Nash imple-

mentable. ⊓⊔

Both solutions Ŵd and Ŵd
0 can be implemented by a bounded mechanism designed

as in the proof of Theorem 1 in Jackson et al. (1994) (see also Proposition 1).

Minimal Nash implementable solutions

The desirable and the MS-desirable solutions are correspondences and they are “big”.

Indeed, they map (C, V )’s to sets containing all outcomes where individual cost shares

are bounded from below by zero and from above by the individual values of the

network. Solutions that map all (C, V ) to a single cost allocation for every WMN
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are “small”, but not Nash implementable as shown in Theorem 1. Therefore, obvious

questions are whether there are minimal Nash implementable solutions and if so, what

they look like.

A Nash implementable solution Ŵ is minimal provided there is no other Nash imple-

mentable solution � such that �(C, V ) ⊂ Ŵ(C, V ) for all (C, V ) and �(C, V ) �=

Ŵ(C, V ) for some (C, V ). The following Theorem shows that there is no minimal

solution in the full set of Nash implementable solutions.

Theorem 3 Assume that the planner knows the costs C, but not the values V . Then

there is no minimal Nash implementable solution with Ŵ(V ) ⊂ Ŵd(V ) for all V .

Proof To show there is no minimal Nash implementable solution with Ŵ(V ) ⊂ Ŵd(V )

for all V , a simple counterexample is presented. There are two locations L = {1, 2}

with cost c12 = 1 and m agents that want to have locations 1 and 2 connected.

Then g = ∅ is an WMN provided
∑

i Vi ≤ 1 and g = {12} is an WMN provided
∑

i Vi ≥ 1. Suppose Ŵ : V → O is a Nash implementable solution. Then Ŵ is

monotonic according to Theorem 1 in Maskin and Sjöström (2002).

There is Ṽ with Ṽi < 1 for every i and
∑

i Ṽi > 1. For (g̃, π̃ g) ∈ Ŵ(Ṽ ) let another

correspondence � : V → O be defined by �(Ṽ ) = Ŵ(Ṽ )\{(g̃, π̃ g̃)} for all V so

�(V ) ⊂ Ŵ(V ) for all V and �(Ṽ ) �= Ŵ(Ṽ ). Furthermore, � is monotonic because

Ŵ is monotonic. There is V with Vi < V ′
i for every i ,

∑

i Vi > 1 and Vi < π̃
g̃
i

for some i . Since Vi < V ′
i for every i , and

∑

i V
{12}
i > 1, Ŵ(V ) ⊂ Ŵ(Ṽ ) because

Ŵ is monotonic. Since Vi < π̃
g̃

i for some i , (g̃, π̃ g̃) /∈ Ŵ(V ). Hence, �(V ) �= ∅

for all V with
∑

i Vi > 1. For all V with
∑

i Vi < 1, Ŵ(V ) = (∅, (0, . . . , 0)) so

(∅, (0, . . . , 0)) ∈ Ŵ(V ′) for all V ′ with
∑

i V ′
i ≤ 1 because Ŵ is monotonic. Hence

�(V ) �= ∅ for all V so � is a solution implying Ŵ is not minimal. ⊓⊔

The set of Nash implementable solutions contains less appealing solutions such

as the one constructed in the proof of Theorem 3. Thus, it seems natural to require

additional properties of solutions. In terms of robustness, continuity is an appealing

property of solutions. However, solutions mapping problems to WMNs and cost allo-

cations are not continuous. The set of WMNs varies discontinuously with problems and

cost allocations vary discontinuously with WMNs. The second best in terms of robust-

ness is upper hemi-continuity. Recall that a solution Ŵ is upper hemi-continuous if at

all (C, V ), all (g, π g) ∈ Ŵ(C, V ) and all sequences (Cn, Vn)n converging to (C, V )

there is a sequence (gn, π
g
n )n with (gn, π

g
n ) ∈ Ŵ(Cn, Vn) for every n converging

to (g, π g). Trivially, the desirable and the MS-desirable solutions are upper hemi-

continuous. Moreover, there are minimal solutions in sets of upper hemi-continuous

and Nash implementable solutions with their graphs being contained in the graph of

the MS-desirable solution.

To formalize the notion of sizes of solutions, let � be a set of solutions. A solution

Ŵ ∈ � is �-minimal provided that all solutions � ∈ �, �(C, V ) ⊂ Ŵ(C, V ) for all

(C, V ) implies �(C, V ) = Ŵ(C, V ) for all (C, V ).

Theorem 4 There are minimal upper hemi-continuous solutions Ŵ with Ŵ(C, V ) ⊂

Ŵd
0 (C, V ) for all (C, V ).
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Proof First, an upper hemi-continuous and Nash implementable solution Ŵ is con-

structed. Second, it is shown that Ŵ is minimal in the set of upper hemi-continuous

and Nash implementable solutions.

For every graph g let the set Ag ⊂ C ×V be the set of costs and values for which

g is a WMN. Then the set Ag is convex, closed and non-empty. Trivially, (Ag)g is a

cover of C ×V . Let (Ag)g∈H be a minimal cover of C ×V : (Ag)g∈H is a cover of

C ×V ; and, for every h ∈ H , (Ag)g∈H \{h} is not a cover of C ×V .

Fix a graph g and costs C . For Ag(C) ⊂ V being the set of valuations V such that

(C, V ) ∈ Ag , Ag(C) = { V ∈ V | (C, V ) ∈ Ag }, let Lg(C) ⊂ Ag(C) be the set of

minimal valuations in Ag(C),

Lg(C) = { V ∈ Ag(C) | ∀ V ′ ∈ Ag(C) : max
i

V
g

i −V
′g
i > 0 ⇒ min

k
V

g
k −V

′g
k < 0 }.

First, for V
g+

i = max{V
g

i , 0} and V
g−

i = min{V
g

i , 0} let the function λg(C, ·) :

Lg(C) → R
m be defined by: in case g = ∅ so Cg = 0, λ

g
i (C, V ) = 1/m; and, in

case g �= ∅ so Cg > 0,

λ
g
i (C, V ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

V
g−

i

Cg
for V

g
i ≤ 0

V
g+

i
∑

k V
g+

k

Cg−
∑

k V
g−

k

Cg
for V

g
i ≥ 0.

Then V
g

i ≤ 0 implies u
g

i (C, V , λg(C, V )) = V
g

i −λ
g

i (C, V )Cg = 0 and V
g

i ≥ 0

implies

u
g
i (C, V , λg(C, V )) = V

g
i −λ

g
i (C, V )Cg =

V
g

i
∑

k V
g+

k

(
∑

k V
g

k −Cg) ≥ 0.

Moreover,

∑

i

λ
g
i (C, V ) =

∑

i

V
g−

i

Cg
+

∑

i

V
g+

i
∑

k V
g+

k

Cg−
∑

k V
g−

k

Cg

=

∑

i V
g−

i +Cg−
∑

i V
g−

i

Cg
= 1.

Second, let the function Ŵg(C, ·) : Lg(C) → O be defined by Ŵg(C, V ) =

(g, λg(C, V )). Third, extend the function Ŵ(C, ·) : Lg(C) → O to a correspondence

Ŵg(C, ·) : Ag(C) → O defined by

Ŵg(C, V ) = { (g, π g) | ∃ Ṽ ∈ Lg(C) : Ṽ g−V g ∈ −R
m
+ and π g = λg(C, Ṽ ) }.

Then by construction Ŵg is a non-empty, continuous and monotonic correspondence

on Ag(C). Finally, let the solution Ŵ : C ×V → O be defined by Ŵ(C, V ) =

∪g∈H Ŵg(C, V ). Then Ŵ(C, ·) : V → O is upper hemi-continuous and monotonic.
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To show Ŵ is a minimal upper hemi-continuous solution, consider another upper

hemi-continuous and monotonic correspondence � : C ×V → O with �(C, V ) ⊂

Ŵ(C, V ) for all (C, V ). Assume (g, π) ∈ Ŵ(C, Ṽ ). By construction of Ŵ there is

(C, V ) ∈ Lg(C) such that λ(C, V ) = π g and Ṽ g−V g ∈ −Rm
+ . Consider a sequence

(Cn, Vn)n∈N converging to (C, Ṽ ) with g being the unique WMN for every n. If

(g, π
g
n ) ∈ Ŵ(Cn, Vn) for every n, then limn→∞ π

g
n = π g because Ŵ is upper hemi-

continuous. For all sequences (hn, π
h
n )n∈N with (hn, πh

n ) ∈ �(Cn, Vn) for every n,

hn = g for every n, because g is the unique WMN for every n, and limn→∞ π
g
n = π g ,

because �(Cn, Vn) ⊂ Ŵ(Cn, Vn) for every n. Therefore, (g, π g) ∈ �(C, V ). Since

� is monotonic, (g, π g) ∈ �(C, Ṽ ) so Ŵ(C, Ṽ ) ⊂ �(C, Ṽ ). ⊓⊔

Remark The solution constructed in the proof of Theorem 4 is not necessarily unique.

Indeed, non-uniqueness could be caused by multiplicity of minimal covers of C ×V

and multiplicity of possible cost shares at (C, V ) ∈ Lg .

Example (continued): To illustrate Theorems 3 and 4, we use the Example with three

VT

VY

1

1

∅
AgT

AgY

Ag

✲

✻

locations and two agents. Costs are c12 = 3 and c13 = c23 = 2 and for the two

agents, Titika has valuation VT if and only if locations 1 and 2 are connected and Yi

has valuation VY if and only if locations 1 and 3 are connected. The possible WMNs

depending on the valuations are ∅, gT = {12}, gY = {13} and g = {13, 23}. The graph

g′ = {12, 13} is not an WMN for any valuations because c12 > c23. The combinations

of valuations and WMNs are illustrated in the figure.

In the proof of Theorem 4, valuations on the line between (2, 2) and (3, 1) are used

to construct cost shares for all valuations in Ag . Indeed, for any valuation (VT , VY ) ∈

Ag , valuations smaller than those and on the line are used to construct cost shares.

Thereby, for all valuations in Ag the relevant cost shares are subsets of the line between

(1/2, 1/2) and (3/4, 1/4) so more extreme cost shares are excluded even though they

can be individually rational.

In the proof of Theorem 3, for all valuations in the interior of Ag the graph g is the

unique WMN. The solution correspondence being monotonic implies that for a pair

valuations (VT , VY ) and (V ′
Y , V ′

Y ) in the interior of Ag , if, VT ≥ V ′
T and VY ≥ V ′

Y , then

cost shares for (V ′
T , V ′

Y ) must be cost shares for (VT , VY ) too because of monotonicity.

Therefore, consider a dense set of points on the line between (2, 2) and (3, 1) and use

them to construct cost shares for valuations in the interior of Ag . Next, consider the

dense set of points on the line except one point and use it to construct cost shares in

the interior of Ag . Then the graph of correspondence constructed without the point is

a strict subset of the graph of the correspondence constructed with the point. There is

no smallest dense set of points on the line, so the process can continue.
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Implementation in strong Nash equilibrium

Agents may be able to coordinate their actions. Therefore, implementation of solutions

in strong Nash equilibrium is considered. Using a modified, and informationally more

efficient, version of the mechanism in the proof of Theorem 3 in Maskin (1978) we

show that the desirable solution Ŵd is strong Nash implementable.

Theorem 5 The desirable solution Ŵd is strong Nash implementable.

Proof For the mechanism implementing Ŵd , let the strategy set of every agent be the

set of outcomes Si = O and the map from lists of individual strategies to outcomes

f d : Sm → O be

f d(s) =

{

(g, π g) if s1 = . . . = sm = (g, π g)

(∅, (0, . . . , 0)) otherwise.

Suppose every agent uses the strategy (g, π g). If (g, π g) is a desirable outcome for

the true state, then no coalition of agents has an incentive to change its strategy. If

(g, π g) is not a desirable outcome for the true state, then there is another strategy

(h, πh) ∈ Od(C, V ) such that uh
i (C, V , πh) > u

g
i (C, V , π g) for every i or there is

some i such that u∅
i (C, V , (0, . . . , 0)) > u

g
i (C, V , π g). Therefore, the mechanism

implements Ŵd . ⊓⊔

We note that the MS-desirable solution is only partially strong Nash implementable.

This will be further discussed in the next section.

4 Discussion

We have used that monotonicity of solutions is necessary and sufficient for Nash imple-

mentation by Maskin’s canonical mechanism (Maskin 1997, 1999) or the bounded

mechanism in Jackson et al. (1994). Both these mechanisms have large strategy sets.

For applications, it can be desirable to reduce strategy sets in order to make the mech-

anism more informationally efficient.

Amechanism for Nash implementation

The strategy sets of the canonical mechanism can be reduced as already shown in Saijo

(1988). In both Saijo (1988) and Jackson et al. (1994), fundamentals are outcomes

and preferences instead of states. In Saijo (1988), every agent submits preferences for

themselves and another agent, an outcome and a natural number. Since preferences

in the present setting depend on costs and values, every agent would have to submit

costs, values for themselves and another agent, an outcome, and a natural number. In

Jackson et al. (1994), every agent submits an alternative, two sets of preferences, and

an integer between −(m+3) and m. In the present setting, every agent would have to
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submit costs and values for themselves and another agent, an outcome and an integer

between −(m+3) and m.

We show that in the present setting all Nash implementable solutions can be imple-

mented by use of mechanisms in which every agent submits a part of the costs, values

for themselves and another agent and an outcome. This is less information than in both

Saijo (1988) and Jackson et al. (1994), but compared to Jackson et al. the mechanism

is not bounded.

Before the result can be stated, the part of costs every agent must submit has to be

specified. There are η = 0.5n(n − 1) connections between different pair of locations

so there are |G | = 2η possible graphs. For q ∈ N defined by

2|G |

m
≤ q <

2|G |

m
+ 1,

Let (Qi )i be a cover of the set of graphs G with |Qi | = q as well as Qi ⊂ Qi−1∪Qi+1

and Qi ∩ Qi+1 �= ∅ for every i where i+1 = 1 for i = m.

Theorem 6 All Nash implementable solutions Ŵ can be implemented by a mechanism

((Si )i , F) with Si = R
q
+×(R|G |)2×O for every i .

Proof Consider an outcome (g, π g).

For a Nash implementable solution Ŵ let a mechanism ((Si )i , F) be described by

Si = R
q
+×(R|G |)2×O for every i and F : S → O defined as follows:

• In case there is (C, V , g, π g) ∈ C ×V ×O with (g, π g) ∈ Ŵ(C, V ) such that for

every i , si = ((Cg)g∈Qi
, Vi , Vi+1, g, π g), F(s) = (g, π g).

• In case there are j and (C, V , g, π g) ∈ C ×V ×O with (g, π g) ∈ Ŵ(C, V ) such

that si = ((Cg)g∈Qi
, Ci , Vi , Vi+1, g, π g) for every i �= j ,

F(s) =

{

prO s j for prO s j ∈ L
g

j (C, V , π g)

(g, π g) for prO s j /∈ L
g

j (C, V , π g)

with prO s j being the outcome of agent j’s strategy.

• In all other cases, for C̃ defined by C̃g = maxi {C
g

i } and Ṽ by Ṽi = V i
i−1 for every

i (where V i
i−1 is what i − 1 reports is i’s valuation), let F(s) = (gi , π

gi ) for i

chosen at random from the set

{ i | ∀ j :
∑

k �=i Ṽ
gi

k −C̃gi ≥
∑

ℓ �= j Ṽ
g j

ℓ −C̃g j }

endowed with the uniform distribution.

Let N E : C ×O → S be the Nash equilibrium correspondence.

First, it is shown thatŴ(C, V ) ⊂ F◦ N E(C, V ). Suppose si = ((Cg)g∈Qi
, Vi , Vi+1,

g, π g) for every i and some (g, π g) ∈ Ŵ(C, V ). Then

F(Si , s−i ) = L
g
i (C, V , π g).
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Therefore s ∈ N E(C, V ). Second it is shown that F◦ N E(C, V ) ⊂ Ŵ(C, V ). In the

first case, where there is (C̄, V̄ , g, π g) ∈ C ×V ×O with (g, π g) ∈ Ŵ(C̄, V̄ ) such

that si = ((C̄g)g∈Qi
, V̄i , V̄i+1, g, π g) for every i , a deviating agent j is able to move

into the second case. Therefore

F(Si , s−i ) = L
g

i (C̄, V̄ , π g).

If L
g
i (C̄, V̄ , π g) �⊂ L

g
i (C, V , π g) for some i , then s is not a Nash equilibrium. If

L
g
i (C̄, V̄ , π g) ⊂ L

g
i (C, V , π g) for every i , then s is a Nash equilibrium. Since Ŵ is

Nash implementable, it is monotonic, so (g, π g) ∈ Ŵ(C, V ). In the second and the

third cases, there is a deviating agent i , who is able to move into the third case, so

F(Si , s−i ) = O.

Hence, s is not a Nash equilibrium. ⊓⊔

As can be seen in the proof of Theorem 6, if agents submit different strategies, then

the values submitted by agent i are used to evaluate the outcome submitted by agent i .

Thereby, agent i is able to have any outcome selected. Since every agent can have all

outcomes selected, there will be no Nash equilibrium, where agents submit different

strategies.

Partial implementation

Partial implementation is a weaker notion of implementation where the set of Nash

equilibria includes the solution correspondence. Both the desirable and the MS-

desirable solutions are partially Nash and strong Nash implementable using the

modified mechanism in the proof of Theorem 5. The mechanism has strategy set

Si = O for every agent and payoff function f d : Sm → O defined by

f d((si )i ) =

{

(g, π g) for s1 = . . . = sm = (g, π g)

(∅, (0, . . . , 0)) otherwise.

Indeed, the mechanism fully strong Nash implements the desirable solution as shown

in Theorem 5. It is straightforward to check that it partially implements the three

other combinations of solutions and forms of implementation. Therefore, the best

equilibrium is welfare maximizing making the price of stability equal to one for all

four combinations.

However, since si = (∅, (0, . . . , 0)), for every i , is a Nash equilibrium, the price

of anarchy is unbounded for Nash implementation. If the utility is non-positive for

some agent i , then si = (∅, (0, . . . , 0)), for every i , is a strong Nash equilibrium for

the MS-desirable solution. Indeed, agent i has to increase her utility by changing her

strategy. However, to increase the utility of agent i , her cost share must be negative.

Consequently, the price of anarchy is unbounded. Obviously, the problem with the MS-

desirable solution is that it may not be possible to transfer welfare between agents.
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To sum up, welfare maximization can be obtained in the best case Nash equilibrium

for all four combinations, while the worst case efficiency is unbounded, except for the

combination covered in Theorem 5.
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