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Abstract—Variational Gaussian filter (VGF) approximates the
intractable posterior of the state of a non-linear non-Gaussian
system using a single Gaussian density normally found through
Kullback-Leibler divergence minimization. This paper focuses on
the VGFs whose measurement update is realized by employing
the natural gradient descent (NGD). Under the assumption that
the state predictive distribution is also Gaussian, we re-examine
the iterative NGD-based measurement update under two different
parameterizations of the Gaussian posterior. The first one consists
of the mean and covariance, while the other comprises the mean
and precision matrix (i.e., the inverse of the covariance). Their
NGD-based update rules are derived in an alternative but unified
way using matrix calculus. They are compared against each other
and with the one developed using the natural parameterization
of the Gaussian density. Important new insights are obtained.
Modifications to the established update rules, which guarantee
the positive definiteness of the covariance/precision matrix of the
Gaussian posterior, are re-visited as well. Simulations are used to
corroborate the theoretical results and evaluate the performance
of the developed algorithms in range-bearing tracking.

I. INTRODUCTION

State estimation for a dynamic system based on the noisy
measurements collected up to the current time, commonly
known as filtering, has a variety of applications in navigation,
tracking, signal processing and finance. Mathematically, the
state filtering requires finding the posterior p(x|z1.;), where
x; represents the system state at time ¢, and z;.; denotes the
measurements received so far. For a first-order Markov system,
p(x¢|z1.¢) can be evaluated recursively using [1]

P(Xe|Z1:0-1) :/p(Xt|Xt—1)P(Xt—1|Z1:t—1)dXt—1, (1a)

p(Zf, |Xt)p(Xt|Zl:t—1)
P(2¢|Z1:4—1)

P(x¢|21:4) = (1b)
(la) computes the predictive distribution p(x|z1.;—1) using
the state transition density p(x;|x;—1) and state posterior from
the previous time step. (1b) refines p(x:|z1..—1) to generate
the current state posterior p(x|z;:) via incoporating the
information from the measurement z, given in the likelihood
p(z+|x+), a process known as the measurement update.

The recursion (1) generally does not admit a closed-form
solution. One exception is when linear Gaussian systems
are considered. In this case, evaluating (1) results in the

celebrated Kalman filter (KF) [2]. In practice, however, system
non-linearity and/or non-Gaussianity may arise, which makes
solving (1) analytically intractable. The non-linearity could
come from that the measurements, such as the range and
bearing in tracking applications, depend in a non-linear manner
on the state to be estimated [3]. The non-Gaussianity may be
due to the presence of measurement outliers, which renders
it necessary to adopt heavy-tailed distributions such as the
Student’s t-distribution in the likelihood (see e.g., [4]).

For non-linear non-Gaussian state estimation, particle filters
[5], which represent the posterior using a large number of
weighted particles, may be used. An alternative approach is
the assumed density filtering with Gaussian assumption, or
simply referred to as the Gaussian filter (GF). It approximates
the state predictive distribution p(x¢|z1.;—1) in (la) and state
posterior p(x¢|z1.;) in (1b) using two Gaussian densities
N (x¢; my, Py) and N (x5 py, ). Here, N (x; p, ) denotes
the Gaussian distribution in x with mean p and covariance
3. The parameters of the two approximate Gaussian densities
can be found through the use of linearization, leading to the
extended KF (EKF) [6], [7] and posterior linearization filters
[8]-[10]. Numerical integration-based methods can also be
applied, resulting in the unscented KF (UKF) [11], Gaussian-
Hermite KF (GHKF) [12]-[14], cubature KF (CKF) [15], [16]
and Gaussian-Hermite quadrature filter (GHQF) [17]. Unlike
the above GFs, the variational GF (VGF) achieves Gaussian
filtering with improved performance from an optimization
perspective. It employs the variational inference [18]-[20],
and finds the approximate state posterior normally through
minimizing the forward Kullback-Leibler divergence (KLD)
between it and the true posterior (1b). The use of the backward
KLD minimization has also been considered in [21], [22].

Existing VGFs adopt various iterative algorithms to real-
ize KLD minimization. Gradient descent was used in [21],
[23]-[28] to compute the posterior mean g, and covariance
3;. These work assumed Gaussian measurement noise and
required extra pre-conditioning [21], [23], [24], [28], dimen-
sionality expansion [25] or approximate Hessian [27] for
enhancing numerical stability. [29] presented a linearized al-
ternating direction method of multipliers (LADMM) algorithm
for estimating p, and 3. It still needs careful selection of



penalty parameters though.

Methods that utilizes natural gradient descent (NGD) [30]—
[33] are popular as well, probably because the NGD introduces
pre-conditioning in a principled way. Specifically, [34] derived
an approximate NGD rule that iteratively refines the estimates
of p, and ;. [35] gave the NGD-based rule for identifying
the posterior mean g, and precision matrix S;, which is the
inverse of the posterior covariance ¥; (i.e., S; = X, 1). The
development of these methods again assumed a measurement
model with Gaussian noise. Noting that the Gaussian distri-
bution belongs to the exponential family [36], we established
the NGD update rule in the natural parameter space [37]. The
obtained algorithm is equivalent to the conjugate-computation
variational inference (CVI) proposed in [38]. Besides, it is a
generalized version of the Bayesian online natural gradient
(BONG) method [39] that executes one NGD iteration only.

The purpose of this paper is twofold. We first re-examine
deriving using matrix calculus the exact NGD update rules
under two parameterizations of the Gaussian posterior required
for realizing VGFs. One parameterization contains the pos-
terior mean g, and covariance 3, and the other consists
of p, and the posterior precision matrix S;. Different from
[34], [35], the derivation here is general enough so that the
results are applicable to non-Gaussian measurement models.
We compare the developed algorithms with those scattered
in literature such as [35], [37], [39]-[42]. Important new
insights into their subtle but inadequately explored difference
are gained. Besides, this paper presents an alternative way for
finding the modifications needed by the obtained NGD rules to
guarantee that the posterior covariance 3; and precision matrix
S; remain positive definite during the iterative update [40].
Finally, we integrate the established NGD rules into the VGF
proposed in [37] and apply them to a range-bearing tracking
task for simulation-based performance evaluation.

The rest of this paper is organized as follows. Section II
formulates the KLD minimization problem under the consid-
ered parameterizations of the Gaussian posterior, and presents
useful matrix calculus results. Section III derives the desired
NGD update rules and compares them with existing methods.
Section IV gives the modified rules with positive definiteness
guarantee for the covariance/precision matrix. Simulation re-
sults are given in Section V. Section VI concludes the paper.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Problem Formulation

The theoretical development starts with assuming that the
state predictive distribution at time ¢, which is p(x¢|2z1..—1)
given in (la), has been approximated as a Gaussian density
N (x¢; my, Py). The parameters m; and Py can be obtained via
e.g., moment matching [35], [43] (see Appendix I). Under this
assumption, VGFs aim at finding another Gaussian ¢(x;) with
the smallest forward KLD between itself and the ‘true’ state
posterior p(x|z1.;) to achieve variational Gaussian filtering.

We are interested in establishing the iterative NGD-based
update rules for computing the desired approximate Gaussian

posterior under two parameterizations q(x¢) = N (x¢; o, )
and q(x;) = N(x¢; y, S;7t). The loss function is [44]

q(xt)

KLD(q () |p(x¢|Z1:¢)) :/q(xt)Ing(Xt|let)dXt

q(x)
] d
. / a(x1) OgP(Zt|Xt)P(Xt|zlit—1) "
~ —Eyx,) logp(ze|x:)] + KLD(g(x1) |V (xs:my, Py)),
@)

where we have substituted (1b), neglected the normalization
factor p(z¢|z1.+—1) and replaced the state predictive distribu-
tion with its Gaussian approximation. Note that minimizing
(2) to find the approximate posterior ¢(x;) can be considered
an instance of the generalized variational inference [45].

B. Mathematical Preliminaries

We present some useful matrix calculus results to facilitate
the algorithm development in the following sections. Let A be
a N x N matrix with the partitioned form A = [aj, as, ..., ay],
where a;, j = 1,2, ..., N, is the j-th column of A. A;; denotes
the element in the é-th row and j-th column of A. vec(A) is
the column-vectorised version of A, which is

T
vec(A) = [a{,ag,...,a%] . 3)

It can be seen that vec(A) is a N2 x 1 column vector with its
(i4 (j — 1)N)-th element being equal to A;;. Suppose B is
a N x N matrix as well. We can show that

tr(AB), if AT = A
vec(A)vec(B) = t . ) i , )
tr(A* B), otherwise
where tr(-) denotes the trace of a matrix.
—1
We next evaluate the partial derivative % under the

assumption that A is symmetric and invertible. We note from

A—1
(3) that it can be expressed in the partitioned form % =
dvec(A~ 1) Ovec(A' dvec(A™! . .
[ Veg(alT ), ve;(ag ) . Ve;;%} )], where the j-th block is

M— vec oA~ vec 0A~ 5)
oal 0Ay; )" OAN; /)]

Applying (59) in Chapter 2 of [46], we have that for i =
1,2,...,N,

aA_l _ A—l . TA—l _ A—l . A—l .

vec oAy )~ —vec (A" 'eje] ) =—-A""e;0A e,
(6)

where e; is an one-shot vector with the i-th element being 1
and other being 0s, ® denotes the Kronecker product, and A

being symmetric has been used to obtain the second equality.
Putting (6) into (5) yields

Ovec(A™1)

T
aaj

= [—A_lej @A tey, ..., —A_lej ® A_leN]

= —A_lej ® AL
@)



Applying (7) and following a similar argument, we obtain that
Ovec(A™1)

=—-AloA L 8
Dvec(A)T © ®
We next show that if A is symmetric and invertible,
dvec(A™1) —1p Al
WVCC(B) = —VCC(A BA ) (9)

The proof begins with noting that the (i+(j—1)N)-th element
of the column vector on the left hand side is equal to

oAt \" 9eTA e\ "
ij _ i J
<avec( )> vec(B) = vec ( 3 > vec(B)

= —Vec(A_leZ-e]TA_l)Tvec(B)
= —tr(A"'eje] A™'B)
= —e] A"'BAle;,
where (61) in Chapter 2 of [46], (4) and A being symmetric
have been used to arrive at the second and third equalities.
(10) reveals that the (i + (j — 1) N)-th element is the same as
the element in the i-th row and j-th column of A"'BA ™!
This proves (9).
Given that A is symmetric, we are going to show that
Ovec(A)T(B ® B)vec(A)
Ovec(B)
In particular, the (i + (j — 1)N)-th element of the column
vector on the left hand side of (11) is

(10)

= 2vec(ABA). (11)

Ovec(A)T(B ® B)vec(A)
OB;; (12)
=vec(A)" (eie] ® B+ B ®eje; ) vec(A).
Utilizing (3), we have that
Vec(A)T(ej,e]T ® B)vec(A) = el ABAe;, (13)

where the symmetry of A has been exploited to arrive at the
second equality. Moreover, the remaining quadratic term on
the right hand side of (12) can be written as

N N
vec(A)" (B ® eje] )vec(A) = Z Z BomAinAjm (14)

n=1m=1
=e] ABAe;,

where A being symmetric such that A ;,, = A,,; has been ap-
plied when deriving the second equality. Combining (12)-(14)
gives that the (i+(j—1)N)-th element of 8VGC(A);V(£%)3)VCC(A)
is equal to the element in the i-th row and j-th column of the
matrix product 2ABA. This completes the proof of (11).

III. NGD-BASED MEASUREMENT UPDATE

This section utilizes the results in Section IL.LB and es-
tablishes the measurement update rule relying on NGD to
find the Gaussian posterior ¢(x;) that minimizes the forward
KLD given in (2). Two parameterizations of ¢(x:), ¢(x;) =
N (x¢; 4, B¢) and q(x;) = N(x4; p,,S; "), are considered.
Their difference is that with the second parameterization,

the posterior precision matrix S, rather than the posterior
covariance 3, is to be estimated. The obtained update rules
are compared with each other and with the one developed
using the natural parameterization of ¢(x;) [37].

We introduce two unknown vectors 8; = ], vec(%;)
and 65 = [T, vec(S;)T]T to represent the two parameteriza-
tions. Putting the analytical expression for the last term in (2),
which is the KLD between two Gaussian densities, yields the
loss functions with respect to 87 and @5. They are given by

1
L(61) x — Eyx,)[logp(z|x¢)] — 510g|2t|

T]T

) (152)
ot (P S0+ (= mo)(py —m)"))

1
L(02) xx —Ey(x,[logp(z:|x:)] + 510g|St|
(15b)

+ %tr (Pt_l(St_l + (py — my)(py — mt)T)) .

With NGD, the Fisher information matrix (FIM) of the
unknowns are incorporated when we update their estimates to
produce principled pre-conditioning and improve convergence
speed [30]-[33]. Mathematically, the desired iterative NGD-
based update for minimizing (15), which is an instance of the
Bayesian learning rule (BLR) [47], can be expressed as

1 0L(6;
041 =0;r— a -FIM(0; ;)" %,
ik
where 6, , is the estimate of 6;, ¢ = 1, 2, in the k-th iteration,
and oy, is the step size. The desired update rule in (16) requires
evaluating the FIM and the gradient 0L(0; 1)/00; .

A. NGD-based Update Rule for q(x¢) = N (xy; pty, 3t)

In this case, the unknown vector is 8; = [u], vec(2;)T]7.
Its FIM can be written in the following generic form [48]

(16)

9logq(x+) 9logq(x¢)
_ op.opt Op,Ovec(EZy)T
FIM(GI) - E‘Z(xt) 0210gq(xtt) %1ogq(x4)
Ovec(Z,)Opul  Ovec(Z¢)dvec(Xr)T

17)
Here, logg(x;) o< —1log|S;| — 2 (x¢ — ) TS (% — py). It
is straightforward to show that

8210%@ (x¢)

=
opdpi '

(18)

Besides, we have
8210?:’(1 (x¢)

_ %t (xe — ) _
N = R b T

Ovec(Xy)T

19)
The second equality comes from that the term 3, *(x; — ;)
is affine in (x; — p,) and as such, the expectation with respect
to q(x¢) = N(x¢; g, X¢) is zero. Lastly, the lower-right block
of FIM(0,) in (17) is, after being multiplied by 2,

Dlog| |+ (xr—p) "8 (xi—ps,
. 8vec( O8] Be |+ (x ;22 = ”')) ~ Ovee(Z;)
q(x¢) aVCC(Et)T o GVCC(Et)T
B ovee(Z; ! (3 — py) (e — ) TE)
a(xt) Ovec(Z;)T ’

(20)



where (57) and (61) in Chapter 2 of [46] have been utilized.

To evaluate the last term in (20), we assume without the
loss of generality that the posterior covariance 3 isa N x N
matrix. The (i + (j — 1)N)-th column of the last term in
(20) can then be shown to be —vec(Et_leiefEfEtE;l +
2% leel B = —2vec(E; el 71, where (6)
and Eyx,)[(x¢ — py)(x¢ — p,)T] = 3, have been used. Ap-
plying (6) again reveals that this is exactly the (i+(j—1)N)-th
column of —2%&;}. Putting the above result into (20) and
dividing both sides by 2 yield

5 0*logq(x;) 1 dvec(E;1)

150 | Gyec(By)ovec(B)T |~ 2 dvec(B,)T
Substituting (18)-(21) into (17) and using (8), we obtain
s (o) 1

O _LloeE)
2 Ovec(Xy )T

B 2;,1 (o)
Lo iZhexn]

21

FIM(0, ) =

(22)

Under 64, the gradient in (16) becomes

T
OLB1x) _ (aael,k))T ( OL(0:14) )T o3
001 i, Oty "\ Ovec(Xy 1) '

By utilizing (15a) as well as the Bonnet’s theorem and Price’s
theorem [49], [50], we have

0L(01)) _ Ologp(z¢|x:)
Ttk =P, 1(Nt,k —-my) — EQ(xt) 0%, 0 ’
s 1.k
(24a)
OLO1R) 1,1 Dlogp(z|x:)
— = _(P;"-X%, . —F _— .
02t7k 2( t t.k q(xt) axtéxz 91,k)
(24b)

Here, p, j, and X ;. are the estimates of the posterior mean p,
and covariance X; in the k-th iteration. Note that the second
block on the right hand side of (23) can in fact be found using
(24b) and OL(61,1)/0vec(Zy k) = vec (0L(01,%)/0%¢ k).
Substituting (24) into (23), and putting the result together
with (22) back into (16) yield the NGD-based update rule for
the approximate Gaussian posterior N (xy; pt;, X¢), which is

HPip+1 = Mg

- dlo Z| X
— By (P (e — M) — By [M]

8xt

):

01,1
(25)

ovec(Er ) OL(O1 k)
dvec(B; )T Ovec(By k)

vee(Xy ky1) = vee(By k) + 20

OL(0
= vec(X, ;) — 2ayvec (Etﬁa(x—;]“)xt?k) )
(26)

where (9) has been used to arrive at the second equality of
(26). Noting that the column-vectorisation operator on both

sides of (26) can be safely removed and using (24b) leads to
the simplifed rule for updating the posterior covariance:

Ykl = 2k

)tk

61,k

8210gp(zt xt)
ﬁxt(?xf

27)

B. NGD-based Update Rule for q(x;) = N(x¢; pts, ;")
Under this parameterization, the unknowns are collected in
02 =[], vec(S;)T]T. The FIM of 65 has the same functional
form as FIM(61) given in (17), except that vec(3;) needs to
be replaced with vec(S;) and now, logg(x¢) o log|Sy| —
5(x¢ — 1) 7S¢ (x4 — p,). We can show that (18) still holds
but the right hand side should be —S;. Meanwhile, we have

B OSi(x¢ — py) |
] = Faeen) [ dvec(S,)T ] =0
(28)

again since the expectation of (x; — ) is zero, similar to the
derivation of (19). The lower-right block of FIM(83) is

5 9logq(x:)
90 | G, Ovec(S,)T

d?logq(x¢) 1 dvec(S; 1)
) 7| = " 33vecs)r 2
Ovec(S:)dvec(S:) 2 Ovec(Sy)
Combining these results gives
Stk (0]
FIM(GQ,k») = 0 1 Bvec(St_}C)
T 29vec(Sy )T (30)

Sik (o)
o %S;@@Sgg’

where (8) has been applied to obtain the second equality. S; j,
is the estimated posterior precision matrix in the k-th iteration.

The gradient %ﬁ"') can be expressed as
T 7T
OL(02) _ l(aaez,k)) < DL(02.1.) > ] ah)
003 1, Oty "\ Ovec(Sy.k) '
By substituting (15b), the partial derivative %ﬁ:’) can be
OL(81,k)

shown to be equal to Bhy given in (24a) with 6,

being replaced by 65 ;. Putting the above result together with
(30) into (16) produces the NGD-based update rule for the
parameterization q(x;) = N (x; p;, S; ), which is

My p+1 = Mk

N . 5logp 7+ |X
- Oékst,li (Pt 1(Ht,k —my) — Eq(x) [M]

8Xt

Ovec(Sex) OL(O21)
. = . 20y, : :
vee(Set1) = vee(Se.) + 205 8VCC(St_,11)T Ovec(Sy 1)

OL(O2k)
as;,i '
(33)

Applying again (15b) and the Price’s theorem [49], [50], and
removing the column-vectorisation operator from both sides

= vec(S;k) + 2y vec <



of (33) yield the update rule for estimating iteratively the
posterior precision matrix S:

Stk+1 =Sek
(34)
).

— Qg (St,k — Pt_l 4 Eq(xt) |:
0 i

9logp(x¢|x+)
8xt8x;f

C. Discussions

Several important observations can be obtained. First, under
the two parameterizations of the approximate Gaussian pos-
terior g(x;), the FIMs of their unknown parameters are both
block diagonal (see (22) and (30)). The two parameterizatons
are thus block coordinate (BC) parameterizations [40].

Second, from (25) and (32), we can see that the update rules
for the posterior mean g, under the two parameterizations in
consideration are indeed the same. This is somewhat expected,
as the parameterizations differ only in how they represent the
posterior covariance, and they are also BC parameterizations.

Third, the stationary points of the update rules under the two
parameterizations are identical. From (25), (27) and (34), we

have that they must satisfy p, = m; + P, Ey(y,) Ologp(ze|x1)
9logp(zs|x+)

Ox¢
and S; = 2]‘_1 _ Pt_l _ Eq(x,g) |: ox,OxT
Gaussian measurements (i.e., p(z:|x:) = N(z:; Hx;, R) with
H and R being the measurement matrix and noise covariance),
these conditions recover the KF. The developed update rules
are therefore optimal for linear Gaussian systems.

Fourth, the update rules for the posterior covariance X; in
(27) and posterior precision matrix S; in (34) are approx-
imately equivalent if their correction terms are sufficiently
small. For example, in (34), the correction term is

8210gp(xt x¢)
3xt8x;f

. For linear

).

M2,k‘ = —Q (St,k — Pt_l + Eq(xt) l:
021

Having a small step size aj; and/or the matrix in the paren-
theses being close to a zero matrix, which occurs when the
iteration converges, would greatly decrease My . In this case,
inverting both sides of (34) and applying the approximation
for small 02, (A+0?B)" ! =~ A1 —0?A"'BA~! (see (191)
in Chapter of [46]), yields (27). Similarly, we can show that
taking the matrix inverse on both sides of (27) under a small
correction term leads to (34) as well.

Fifth, [37] developed the update rule based on the natural
parameterization of ¢(x;), which is, with A ; representing the
estimate of the natural parameter of ¢(x;) in the k-th iteration,

Sikt1 = (1 —ar)Sek +arP;!

0*log(p(z¢|x+))
8xtc")xtT

(36)
- akEQA,”k (xt) [

Bt g1 = My — aks;;+1 ‘P (g g, — my)
_ Olog(p(z:|x:))
1 ¢ t
T arS; g1 Eo,  x0) { %, '
(37

Comparing (36) with (34) indicates that using ¢(x:) =
N (x¢; py, S;7') and the natural parameterization would result

in the same update rule for the posterior precision matrix S;.
However, contrasting (37) with (32) reveals that with natural
parameterization, the pre-conditioning matrix for refining the
posterior mean p, is the updated posterior covariance, rather
than the one from the previous iteration'. The impact of this
subtle difference on the estimation accuracy and convergence
speed will be investigated in Section V.

Lastly, the FIMs and natural gradients for the two param-
eterizations are functionally consistent with these from [40],
[41]. But the derivations in this work do not utilize differentials
as in [41]. Moreover, they are established explicitly for state
filtering applications in a more detailed and unified manner
than [40] using the Bonnet’s theorem and Price’s theorem. The
main purpose is to facilitate comparison between themselves
and against the results under natural parameterization, which
was less explored in literature such as [35], [39]-[41].

IV. POSITIVE DEFINITENESS GUARANTEE

There is no guarantee that the update rules for the posterior
covariance X, in (27) and posterior precision matrix S; in (34)
can maintain the positive definiteness of their estimates. [40]
showed that adding an extra term in (27) and (34) can correct
this issue. With Einstein summation notation, the c-th element
of the column-vectorised version of this extra term is equal to

1 C a 1 (& a
—§F w9 g’ = —§F Ty.apg®g”

= S FY S Tuug
d a b

Here, ¢g® denotes the a-th element of the column-vectorised
version of the correction term in (27) or (34). I'° , and I'g 4
are the Christoffel symbol of the 2nd kind and the 1st kind. In
the context of NGD and BC natural (BCN) parameterizations
such as the parameterization q(x;) = N (x¢; p,,S; '), Fo4 is
the element in the c-th row and d-th column of the inverse of
the FIM of S;, and I'g 45 becomes (see Theorem 3 in [40])
3
e LI (39)
$a0p0dq

A(¢) is the log partition function [36], [51]. Under the BCN
Gaussian posterior q(x;) = N (x; p;, S; ), we have that ¢ =
vec(S;) and A(vec(S;)) = —1log|S:| + 2uf Sip,.

We first present an alternative way to derive the extra
term that can ensure the positive definiteness of the estimated
posterior precision matrix S; in (34). For this purpose, ¢ and
A(¢) in (39) are replaced with vec(S;) and A(vec(S;)). We
substitute the transformed (39) into (38), and stack the results
in the ascending order of c. The column-vectorised version of
the desired extra term can be expressed in the matrix form as

(38)

T 9% A(vec(Si 1))
1 agQ»k’ avec(Sf,,k)avecf(gttk)T 82,k

dvec(St k) ’
where g2, = vec(Maz ;) and My, is defined in (35).

—;lFIM(vec(Stfk))_ (40)

IThere is an error in (25) of [35], which considered the parameterization
q(x¢) = N(x¢;py,S; ") only. The updated posterior covariance was
incorrectly used there as the pre-conditioner for refining the posterior mean.



Using (30) and putting the definition of A(vec(S;)) given
under (39) convert (40) into

p _ -1 T DQIOg\StY |
-~ 1 dvec(StJi) agZ-,k 8vec(St,k)6vecl(cSt,k)TgQ»k
4 \ dvec(Sei)T Ovec(S: i)

6vec(S;1) _ _
1 5g2T,k 8VC—C(St,kk)T 22k B 1 Oggkst’é &® St’égzyk

4 (")vec(S;é) 4 8vec(S;,1)

1 _
= §VCC(M2)kSt¢;M2‘k).
(41)

Here, we have applied (11) to obtain the last equality. Drop-
ping the column-vectorisation operator in (41) and incorporat-
ing the result into (34) yield the modified update rule for the
posterior precision matrix S;, which is

1 _
Strt1 =Sk + My + §M2,kst7;M2,k- (42)
The right hand side can be re-written as 3S; (S, + (S; +
S;éMz,kS;é)St,k(S;;i + St_’,ng,kSt_,;))Styk, the symmetry
of which establishes the positive definiteness of S j11.
The extra term for guaranteeing the estimate of the posterior
covariance 3, in (27) being positive definite can be found by

following the approach that leads to (41) and applying the

. Of (vec(Xy)) _ Ovec(Sy) Of(vec(Xy))
chain .rule (S Dvec(S,)T  Bvec(S,) The column
vectorised version of the desired extra term is given at the

bottom of this page, where g; ;, = vec(M; ;) is the column
vectorised correction term in (27) and M, ; is equal to

82108p(zt x¢)
thaxgp

—op 3k (P — 2?2 — Eqxi) {

)tk

LK.
61k

Applying (22), (41) and again (11) simplifies (43) into

T Ovec(St,) Ovec(XEy ) Ovec(Six)
1 agl-,k‘ Ovec(Z¢, k)T Ovec(St k)T Ovec(Be, )T 81k

4 Ovec(St )

ovec(S; k
_lag;k%ng B lang,kSt,k ® St rg1r (45)

4 Ovec(Sy k) 4 Ovec(Sy k)
1 -
= §vec(M1,k2t7,ﬁM1,k).

Including the above result in (27) after removing the column-
vectorisation operator yields the modified update rule for the
posterior covariance 3;, which is

1 _
Stkst = Bek+ Mg+ s MUE Mg (46)

The modified rules (42) and (46) are consistent with those
originally developed in [40]. That X; 54, in (46) must be
positive definite if X, ; is positive definite can be established
by following the same argument presented under (42).

V. SIMULATION RESULTS
A. Tracking Scenario and Algorithm Implementation

We adopt the simulation experiment used in [37]. The task
is to track a moving target in a 2D plane using the bearing
and range measurements obtained by a stationary sensor at
the origin. The sampling period is 3s. The bearing and range
measurements are corrupted by additive zero-mean Gaussian
noise with standard deviations o, = 0.3° and o, = 50m.

The tracking process lasts for 300s, during which the target
makes two 90 turns with a constant acceleration of 1.07g. The
first turn is a right turn from 100s to 132s, while the second
turn is a left turn from 132s to 200s. Other times, the target
motion follows a constant velocity (CV) model with Gaussian
process noise having zero mean and a standard deviation of
0.01m/s?. At the start of the tracking process, the target is
located at [155.88,90]7km. It has a speed of 200m/s and
moves towards southwest with velocity [—100, —173.2]7'm/s.

We replace the measurement update step of the VGF from
[37] with the NGD-based rules developed in Sections III and
IV to obtain new VGFs for estimating the target trajectory. At
time ¢, the established VGFs first utilize the prediction step
of the GHKF [12]-[14] with 32 sigma points to find the state
predictive distribution N (xy; my, P;). The NGD-based rules
derived under two parameterizations of the Gaussian posterior,
given in (25) and (27), and (32) and (34), or their modifications
(46) and (42) are used to carry out the measurement update.
All of these rules are iterative, and they start with Ky o = My,
30 =Py, and S;p = Pt_l. The NGD-based update rules
are deemed to have converged if the KLD between the state
posteriors from two successive iterations is smaller than 107,
The above measurement update step will then be repeated two
times for achieving the desired Gaussian filtering, each time
with the state prediction covariance P; reset to be

v

Q=—
v+1

P, + VL—l—l (Et + (o —my)(py — mt)T) .

(47
The purpose of employing (47) with v = 4 is to allow the
adaptive adjustment of the state prediction covariance using
the newly available measurements at time ¢.

Implementing the NGD-based update rules requires comput-
ing expectations with respected to the estimated Gaussian pos-
terior. We utilize the low-discrepancy generalized Fibonacci
grid [52] with 32 grid points to realize deterministic Gaussian
sampling-based integration for evaluating these expectations.
Other details on the VGF realization can be found in [37].

B. Results and Discussions

Four VGFs established in the previous subsection are simu-
lated. The first two VGFs (‘VGF1’ and ‘VGF1+PD’) uses the
mean and covariance to parameterize the Gaussian posterior.

Ovec(Sy 1)

82A(vec(SLk)) Ovec(S¢, k)

—}LFIM(Vec(Zm))

agT T T 781,k
1 1,k Ovec(Xy )T Ovec(Sy,k)Ovec(Sy, k)T Ovec(Z¢, k) ;

Ovec(Xy 1) “43)



‘VGF1’ applies (25) and (27), and ‘VGF1+PD’ utilizes (25)
and the modified version of (27), (46), to carry out the NGD-
based measurement update. The other two VGFs (‘VGF2’
and ‘VGF2+PD’) adopts the mean and precision matrix to
parameterize the Gaussian posterior. Correspondingly, (32) and
(34), and (32) and (42) are respectively employed by these two
VGFs in their measurement update.

Figs. 1 and 2 plot the estimation root mean square errors
(RMSEs) for the target position and velocity from the four
simulated VGFs. For comparison, the results of CKF [15]
(‘CKF’), GHKEF [12]-[14] (‘GHKF’), the stochastic search KF
[21] (‘SKF’), and VGF from [37] are included. The results are
obtained by averaging over 2,000 ensemble runs.

‘VGF1’ and ‘VGF2’, which are based on the NGD-based
update rules derived in Sections III.A and III.LB under two
parameterizations of the Gaussian posterior, yield very similar
accuracy. This is expected as the update rules for the posterior
mean are the same and the updates of the posterior covariance
and precision matrix become equivalent when the iterations
converge (see Section II1.C). Applying the modified rules (46)
and (42) for ensuring that the computed posterior covariance
and precision matrix are positive definite does not affect the
performance. This is because the extra terms introduced in
(46) and (42) are quadratic in the correction terms M j
and M, ;.. They would become negligible when the iterations
converge, reducing the modified rules to (27) and (34). Finally,
the estimation accuray of the four simulated VGFs is close
to that of the VGF from [37] developed under the natural
parameterization of the Gaussian posterior. They are superior
to existing GFs, especially when the target makes turns.

‘VGF1’, ‘"VGF1+PD’, ‘“VGF2’ and ‘VGF2+PD’ need 56-60
iterations on average for their NGD update to converge, taking
26-28 ms CPU time. The VGF wtih natural parameterization
[37] requires about 4 iterations and 2.5 ms CPU time. ‘CKF’
and ‘GHKF’ use 0.15 ms and 0.3 ms. The difference comes
from that with the natural parameterization, in each iteration,
the posterior covariance is updated first and then used as
the pre-conditioner to refine the posterior mean (see Section
[I1.C). With two parameterizations considered in this work, the
posterior covariance from the previous iteration is employed
as the pre-conditioner. This necessitates the use of a small step
size of 0.05 to avoid divergence, while the VGF from [37] has
a much larger step size of 1. The ‘SKF’ from [21] requires
100 iterations due to approximating the true gradient.

VI. CONCLUSIONS

This paper considered the VGFs whose measurement update
is realized via NGD-based forward KLD minimization. We
re-derived the iterative measurement update rules under two
parameterizations of the Gaussian posterior, one consisting of
the mean and covariance and the other comprising the mean
and precision matrix. The obtained algorithms were compared
with the one developed under the natural parameterization of
the Gaussian posterior. It was found empirically that the three
parameterizations have similar tracking performance but the
natural parameterization offers the quickest convergence.

550 CKF
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400 SKF
VGF
750 [l —e—VGF1
—~ 8 —+—VGF1+PD
E 0 —o—VGF2
w —+—VGF2+PD
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Fig. 1. Comparison of target position estimation RMSEs.
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Fig. 2. Comparison of target velocity estimation RMSEs.

APPENDIX I

To make the derivation more general, the Gaussian ap-
proximation of the state prediction distribution p(x¢|z1.¢—1),
7(x¢) = N(x¢;mye, Py), is expressed in its exponential family
form as 7(x;) = exp(A! ¢(x;)—A(Ny)) [36], [51]. Therefore,
finding the predictive mean m; and covariance P, of 7(x;)
reduces to determining the natural parameter A;, which is
achieved by minimizing the backward KLD [44]

KLD(p(x¢|z1:¢—1)||7m(%¢)) —'/p(xt|z1:t_1)10g7r(xt)dxt.

Putting the exponential family form of 7 (x;), taking the partial
derivative with respect to A, setting the result to zero, and
applying 9A(A;)/OA; = n,, where 7, is the mean parameter
of m(x¢) [51], we have that the minimizer must satisfy

M = Epx, 1lz1.0 1) [Ep(xtlxt—l)[¢(xt)]] . (48)

For Gaussian density (and other minimal exponential family
distributions), it is known [37], [51] that the natural parameter
A¢ can be uniquely found from the mean parameter 7,.
As such, the predictive mean m; and covariance P, of the
approximate predictive distribution 7(x;) can thus be obtained
via the moment matching (48).
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