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1. Introduction

Northern peatlands are a globally important carbon
reserve, storing 450610 Gt of carbon (Strack 2023).
The long-term net carbon sink function of north-
ern peatlands is largely the result of peatland plant
productivity exceeding peat and litter decomposition
and combustion (Rydin et al 2013), controlled by
high peat moisture content and water tables consist-
ently close to the surface. However, as air temperat-
ures rise with climate change, northern peatlands are
expected to experience an increase in evapotranspir-
ation that exceeds increases in precipitation, leading
to enhanced drying and greater water table depths
(Helbig et al 2020). There is a concern that these
drier conditions will increase peat decomposition,
moss moisture stress (Strack 2023), and combustion
losses of peat carbon (Wilkinson et al 2023), espe-
cially in peatlands with negligible surface or ground-
water supply, thereby placing the global peatland car-
bon sink at risk (Wilkinson et al 2023). Yet, there
is considerable uncertainty associated with the inter-
action between climate change and peatland carbon
accumulation, decomposition, and combustion, and
ultimately the integrity of the peat carbon sequestra-
tion function (Loisel et al 2021). This uncertainty is
not unexpected as peatlands are complex, dynamic
systems (e.g. Belyea and Baird 2006), which have
numerous interconnected feedback mechanisms that
ameliorate large fluctuations in water table depth
and maintain high moisture content in near-surface
peat (Waddington et al 2015). Due to the complex-
ity of these interacting feedbacks, inadequacies in
the experimental or conceptual representation of cli-
mate change in field and modelling studies can trig-
ger cascading effects that can alter projections of
whether a peatland will function as a future carbon
sink or source (Waddington et al 2015, Strack 2023).

© 2025 The Author(s). Published by IOP Publishing Ltd

As peatlands are increasingly considered for nature-
based climate solutions, it is essential to confidently
evaluate their trajectory and future function to ensure
that conservation and restoration efforts effectively
support long-term carbon storage (Harris et al 2022).

The efficacy of internal regulatory mechanisms
has contributed to the persistence and resilience of
pristine peatland carbon stocks over millennia (Loisel
et al 2021, Strack 2023). Nonetheless, there are lim-
its to the capacity of these feedbacks to moderate
the influence of exogenous drivers such as climate
change (Waddington et al 2015). In pristine, laterally-
extensive, deep peatlands, the capacity to maintain
homeostasis is often sufficient to prevent destabil-
ization from external disturbance like drought and
wildfire (Wilkinson et al 2020, Moore et al 2021).
These peatlands recover quickly and remain resi-
lient, however, not all peatlands possess the same
regulatory capacity nor exhibit the same vulnerab-
ilities. Increasingly, the strength of these feedback
mechanisms has been associated with water storage
(Waddington et al 2015). Given the limited water
storage capacity of shallow peatlands, they should
exhibit diminished resilience and a greater sensitivity
to external stressors (e.g. Moore et al 2021), reflect-
ing the precarious internal balance between regulat-
ory (negative) and destabilizing (positive) feedbacks.

Yet, shallow peatlands have been understudied
relative to deeper systems, which is partly a reflection
of the subjective approaches used to distinguish peat-
lands from mineral wetlands (Rydin et al 2013). The
distinction of peatlands from other types of wetlands
varies between jurisdictions and commonly takes the
form of a threshold organic soil depth (Lourenco
et al 2023). There are growing calls for these cri-
teria to be adjusted to accommodate shallow peat-
lands, with Lourenco ef al (2023) recommending a
0.1 m threshold, which we concur with and adopt
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here. Nevertheless, these ecosystems exist along a con-
tinuum, and as a result, systems that exhibit many
functional attributes of a peatland have not been clas-
sified and, as such, have not been studied from peat-
land ecohydrological or carbon biogeochemical per-
spectives. Despite these functional similarities, shal-
low peatlands demonstrate meaningful differences in
ecohydrological behaviour from their deeper coun-
terparts. For example, autogenic feedback mechan-
isms operating in shallow peatlands appear to have a
comparatively limited capacity to regulate their envir-
onment, predominantly owing to a water table that
frequently drops below the bottom of the peat profile,
markedly limiting upward water movement (Moore
et al 2021). Consequently, shallow peatlands have
exhibited greater vulnerability to external environ-
mental pressures, experiencing higher moss mois-
ture stress (Moore et al 2021), lower net carbon
sequestration (McDonald et al 2023), and higher
burn severity (Wilkinson et al 2020). These differ-
ences in ecohydrological behaviour suggest that shal-
low peatlands may function near critical ecohydrolo-
gical thresholds, where their ability to maintain key
functions is more easily disrupted. Shallow peatlands
are, therefore, likely operating near the margins of
their survivability.

Peatland researchers have adopted numerous
approaches (modelling, mesocosm and field experi-
ments, paleoecological studies) to discern when peat-
lands are near resilience thresholds. Quantifying these
thresholds allows researchers to identify when small
changes in external drivers could push shallow peat-
lands past a tipping point (e.g. Wilkinson et al 2020),
potentially leading to irreversible change and a shift
to rapid carbon loss (e.g. Ise et al 2008). We suggest
that shallow peatlands offer a unique opportunity and
valuable tool to study the thresholds and boundaries
of peatland resilience.

Shifting patterns of water availability may nudge
once-resilient peatlands into new regimes of eco-
hydrological stress. When stressed, the potential to
exceed the limits of peatland elasticity increases,
where short-term feedback mechanisms can no
longer prevent irreversible changes to peatland struc-
ture and function. If stress persists or intensifies, then
the boundary of peatland resilience may be reached,
causing a deterioration towards a new equilibrium,
which could include a non-peatland state (Harris et al
2022). Climate change is anticipated to enhance dry-
ing in northern peatlands (Helbig et al 2020), and
increase the frequency, severity, and areal extent of
wildfire (Wilkinson et al 2023). As such, we suggest
that the contemporary biogeochemical and hydro-
logical behaviour of shallow peatlands presages the
future behaviour of deep peatlands (figure 1).

Here we advocate for the study of shallow peat-
lands to better understand the effect of climate change
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Figure 1. Conceptual diagram illustrating ecohydrological
stress as a function of peat depth and water deficit, which
we define as precipitation minus evapotranspiration. Open
circles represent contemporary conditions, filled circles
represent future conditions. The limits of elasticity and
limits of resilience denote theoretical boundaries in the
stability of the peatland ecohydrological regime, where the
former represents the onset of permanent structural
changes in peatland form and function and the latter
represents a shift to a new ecosystem trajectory.

on peatlands by highlighting four critical research
questions.

1) What is the spatial distribution and environ-
mental envelope of shallow peatlands?

2) How strongare regulatory mechanisms in shallow
peatlands?

3) Where are the tipping points in shallow peatland
resilience?

4) What metrics can discern when peatlands have
exceeded thresholds of resilience?

2. Shallow peatland spatial distribution
and environmental envelope

The dearth of research on shallow peatlands has
meant that the global spatial distribution of these eco-
systems remains unknown. Consequently, not only is
their value on the landscape from an ecological and
carbon sequestration perspective uncertain but the
hydrological conditions that sustain these marginal
systems remain poorly understood. We encourage
regional and national peatland inventories to identify
and contrast the hydroclimatic and hydrogeomorphic
settings that support shallow peatlands, compared to
their deeper counterparts. Characterizing the hydro-
climatic and hydrogeomorphic settings of shallow
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peatlands will contribute to an understanding of the
envelope of hydrological conditions that will enable
peatland development and inform the (climatolo-
gical) boundaries of their resilience. This will facil-
itate the interpretation of climate change projec-
tions as a shift in the typical level of ecohydrological
stress experienced by a peatland, and allow for cross-
regional comparisons between fundamentally differ-
ent peat-forming regions.

3. Shallow peatland regulatory
mechanisms

Conceptual frameworks of regulatory and destabil-
izing feedback mechanisms have been developed for
northern peatlands (Waddington et al 2015), how-
ever the strength of these feedback mechanisms rel-
ative to each other and how they differ with peat-
land morphology remains unclear. We urge research-
ers to investigate the sign and strength of peatland
feedback mechanisms in shallow peatlands, which
consistently experience water stress with greater
intensity, frequency and duration. During periods of
pronounced water stress, some regulatory mechan-
isms may reach the limits of their efficacy (Moore
et al 2021). We theorize that shallow systems will
reach any such limits more quickly, with deleterious
effects exacerbated by climate change. Negative out-
comes include the activation of feedback mechan-
isms that reflect long-term deviations from optimal
conditions, like those that cause irreversible changes
to the peat structure (Whittington and Price 2006)
or the proliferation of non-peat forming vegetation
(e.g. Kettridge et al 2015). We will gain consider-
able understanding by contrasting the strength of
different feedback mechanisms between shallow and
deep systems. Although little direct study has been
done on feedback mechanisms in shallow peatlands,
research comparing peatland margins and middles
(e.g. Wilkinson et al 2019) and ecohydrological mod-
elling (Moore et al 2021) have provided limited
insight into the relative strength of some feedbacks
in shallow versus deep ecosystems. For example, the
water table depth—moss species moisture retention
feedback (see Waddington et al 2015 for details) has
been shown to be a weaker negative feedback in shal-
low peatlands relative to deep peatlands (Kettridge
et al 2015, Moore et al 2021). Yet, still other feed-
backs have not been studied and thus represent cru-
cial missing links in our conceptual understanding
of peatland ecohydrological resilience. These include
the moss productivity feedback, peat decomposition
feedback, and moss surface resistance and albedo
feedback, which we feel have the greatest potential
to steer peatland ecohydrological function while also
having high uncertainty.

O F Sutton et al

4. Shallow peatland tipping points

The net interaction between peatland feedback mech-
anisms may manifest threshold behaviour in the eco-
hydrological functioning and resilience of stressed
systems (e.g. Nijp et al 2017). When the efficacy of
multiple regulatory mechanisms are compromised,
vulnerability to disturbance will increase dispropor-
tionately and the ability to maintain critical func-
tions like carbon sequestration may be disrupted (e.g.
Kettridge et al 2015). Furthermore, enhanced sus-
ceptibility to wildfire means more frequent and more
severe burns (Wilkinson et al 2020). A shorter inter-
val between burns and greater depth of burn may
result in a progressive loss of stored carbon, as peat-
lands may not be able to recover quickly enough from
wildfire (Wilkinson et al 2023). Ultimately, this could
shift these ecosystems toward a degraded peatland
state. Therefore, investigating shallow systems, which
may already be on the verge of instability, offers an
important opportunity to evaluate the tipping points
that manifest from the cumulative effect of individual
feedbacks.

5. Shallow peatland ecohydrological
metrics

Untangling the contribution of the numerous inter-
connected feedback mechanisms operating within
peatlands to overall ecohydrological resilience will
require intensive investigation, consistent with the
vision of Webster et al (2025) of establishing a net-
work of peatland ‘supersites. Evaluating, detecting,
and quantifying tipping points in peatland ecohydro-
logical resilience will necessitate the integration of
multiple measurements of peatland function, which
precludes a diffuse monitoring strategy. Although the
water table is frequently used to distill a host of com-
plex hydrological processes, numerous studies have
identified the importance of near-surface soil water
tension (e.g. Kettridge et al 2021) and soil moisture
(e.g. Nijp et al 2017) for characterizing thresholds
in peatland feedback mechanisms and providing
process-based insights. These metrics are valuable
indicators of short-term ecohydrological stress, yet
they capture only part of the system’s response to
environmental change. In contrast, the net carbon
balance integrates the cumulative effects of hydro-
logical, pedological, biological, and climatic interac-
tions, offering a more holistic measure of peatland
function over time. As such, while soil water tension
and moisture provide essential mechanistic under-
standing, the carbon balance fundamentally reflects
the resilience and stability of peatlands in a chan-
ging climate. In addition to contemporary measure-
ments of the carbon balance, palacoenvironmental
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proxies from peat cores may also help us under-
stand the limits of peatland elasticity and resilience.
Hiatuses in peat accumulation, which can be iden-
tified from age-depth relationships, can sometimes
indicate past changes in the carbon balance due to
combustion from wildfire, increased decomposition,
or reduced production, resulting in phases of net
peat carbon loss—episodes during which the limits
of elasticity have been exceeded (e.g. van der Linden
etal 2014). Shallow peatlands will be more susceptible
to these interruptions in peat accumulation and will
be partly responsible for their contemporary depth.
Buried peat layers can even shed light on former peat-
lands that have exceeded their limits for resilience,
and have been replaced by other ecosystems (Treat
etal 2019).

Ultimately, evaluating the trajectory of deep peat-
lands and their crucial carbon stock will require a
combination of contemporary experiments, model-
ling, and palaeoenvironmental techniques. We sug-
gest these would be most effectively applied to shal-
low peatlands, which currently experience a level of
ecohydrological stress that will become increasingly
common in the future, allowing them to act as sen-
tinels of climate change.
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