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Abstract—Most current proposals for entanglement distribu-
tion networks assume a connection-oriented approach, where
resources along a path may be reserved before the start of the
session. This strategy, however, does not match the common
practice in the existing infrastructure for the Internet, which
relies on connectionless packet switching. In our work, we
study how a hop-by-hop teleportation can be used to perform
entanglement distribution across a network without any prior
resource reservation. Specifically, we investigate the attainable
secret key generation rate between two users employing this
protocol in a repeater chain setup. We analyze this scenario
for deterministic quantum repeaters with and without encoding,
where we consider a three-qubit repetition code for error detec-
tion in the former case. Typical models for the operational errors
in these protocols are considered. Our results suggest that the
usage of quantum error detection schemes will enable trust-free
secret key distribution at distances of interest.

Index Terms—Quantum repeaters, quantum communications,
quantum networks, quantum key distribution, quantum cryptog-
raphy.

I. INTRODUCTION

With certain applications of quantum communications, such

as quantum key distribution (QKD) [1]–[3], reaching commer-

cial maturity [4], [5], the interest in the construction of early

quantum networks is on the rise. Several examples of such

networks have already been deployed [6]–[13]. Nevertheless,

most of them rely on trusted nodes, operate only over small to

medium distances and/or are ad hoc solutions for specific ap-

plications (e.g. QKD). In the future, it is expected that a global

network of trust-free, general-purpose quantum networks will

be deployed in order to offer users around the globe access

to useful quantum technologies. Importantly, many challenges

have to be solved first in order to realize such a network of

networks, often referred to as the quantum Internet [14]–[18].

A key challenge is that of enabling quantum communi-

cations at arbitrarily long distances, which has motivated

the proposal of different quantum repeater schemes [19]–

[21] over the years. Among these, the so-called one-way

repeaters [22], [23], which reliably transmit quantum states by

using quantum error correction codes, may be able to achieve

the highest performance. However, the quantum circuitry

required to prepare these codes is out of reach for today’s

technology. What is more, these schemes often require repeater

nodes to be positioned at short distances from each other,

which is hard to integrate into the current infrastructure for

terrestrial communications. Therefore, early quantum networks

will probably make use of repeaters based on entanglement

distribution [19], [24], [25], although this will not be without

implementation challenges either. Nonetheless, much of the

literature concerning networking protocols for these repeaters

assumes that resources along a communications path must

be allocated to the users beforehand. While this connection-

oriented strategy, reminiscent of the classical circuit switching

paradigm [26], [27], might offer the best performance for

a pair of users, it is not immediately compatible with the

connectionless, packet-switched approach used in the Internet

and most modern networks [26], [27].

To address the above issue, repeater schemes [28]–[31] in

which entanglement is distributed using sequential entangle-

ment swapping [32], [33] have been proposed lately. These so-

lutions appear to be more compatible with the current Internet

protocols, as distribution can be achieved without the necessity

of establishing any dedicated “virtual circuit”. Nonetheless,

they suffer from increased waiting times, which decreases the

quality of the shared entanglement due to the effects of mem-

ory decoherence. This, together with other common sources

of error in entanglement distribution schemes, highlights the

necessity of error handling mechanisms to be integrated within

the protocols. Despite this, most studies so far have focused

on probabilistic repeaters [19], [24], and ignored the problem

of error propagation. The work in [28] considers entanglement

distillation as an error correction mechanism, but this strategy

is probabilistic and might face scalability issues not captured

in the small topology considered in their work.

In our work, we propose instead a sequential entanglement

swapping scheme in which encoded quantum repeaters [25]

are employed for error detection. We analyze the performance

of our scheme in a repeater chain setup running a QKD

session, as it has been shown that error detection is sufficient

to obtain good secret key rates in similar contexts [34].

For reference, we also study two versions of the sequential

scheme without any encoding, where the swapping operation is

implemented, in the first case, through a probabilistic, optical

Bell state measurement (BSM), and, in the other, through a

deterministic, gate-based circuit. We consider typical models

for the respective circuits’ operational errors and for the mem-



ory decoherence due to waiting times. Our findings suggest

that sequential protocols for entanglement distribution based

on error detection might soon be compatible with the current

infrastructure for the Internet. What is more, intercontinental

distances could be achieved in the long-term, given operational

errors can be kept under control.

The outline of the paper is the following. We describe the

proposed sequential swapping protocol in Section II, both for

the unencoded and encoded repeater chains, and model the

sources of error that we take into account for our simulations.

Then, we go over the analysis of the secret key rate in this

setup in Section III. We present our numerical results in

Section IV and, lastly, we summarize our work in Section V.

II. DESCRIPTION OF THE PROPOSED SETUP

In order to measure the potential performance of a sequen-

tial entanglement distribution scheme with error detection, we

consider here the problem of distributing a secret key, using

an entanglement-based QKD protocol [35], over a repeater

chain. That is, given two users Alice and Bob (A and B) away

from each other at a total distance L, we consider that Nr
intermediate nodes are used, each of them connected to two

neighboring nodes through quantum and classical channels

(in practice, these could be integrated in the same physical

channel) of equal length

L0 =
L

Nr + 1
, (1)

as shown in Fig. 1.

For the sake of clarity, we refer to a node as being

downstream (upstream) with respect to another when it is

closer to the destination (source). For instance, in Fig. 1 the

source A and the node R2 are the upstream and downstream

neighbors of node R1, respectively.

We assume that each node is capable of distributing en-

tanglement to its neighbors by using a meet-in-the-middle

scheme [36]–[39]. In this scheme, two participating nodes

locally generate entanglement between some quantum mem-

ories (which we call communication qubits) and photons.

Then, simultaneously, they send the photons through the

shared quantum channel, where some intermediate devices,

assumed to be equidistant to both nodes, perform a Bell state

measurement (BSM). If the BSM is successful, the quantum

memories are assumed to be projected into an entangled state,

and the intermediate device transmits a success message to the

nodes. Otherwise, the nodes simply make subsequent attempts

until success. The probability of success for a single attempt

can be computed as

pgen = p2coupBSM10−αchL0/10, (2)

where pcou is the coupling efficiency of the communication

qubits with the optical fibers, and of the fibers with the device

implementing the BSM, including any frequency conversion

needed along the way; pBSM denotes the success probability

of the BSM given that both photons have been received; and

αch is the attenuation constant of the fiber.

BSM

BSM

QKD
measurement

QKD
measurement

Fig. 1. Operational scheme for the sequential exchange of a single secret
key bit over an unencoded repeater chain with Nr = 2 repeaters and
Ncomm = 1 communication qubit per node per channel. Filled blue circles
represent qubits in use (generating or storing entanglement), empty blue circles
represent inactive qubits, and orange circles represent qubits whose state is
correlated to the result of the QKD measurement. Dashed lines represent
attempts of entanglement generation. Twisted lines represent entanglement.
Double solid lines represent classical communications, with the arrows below
them indicating its direction.

In order to reduce the waiting time of the entanglement

generation procedure, we consider that each node possesses

two sets of Ncomm communication qubits, where all the qubits

within each set can be used all at once to generate entan-

glement with a neighboring node. We assume that rounds of

entanglement generation attempts are made concurrently for

all communication qubits in these sets, which can be achieved

for instance through multiplexing techniques. Moreover, we

assume that the generation procedure is only activated on-

demand, and hence an initialization signal must be exchanged

between nodes to initiate it.

As for the strategy used to distribute the secret key, we con-

sider that the users run an end-to-end session of BBM92 [35],

i.e., the entanglement-based alternative to BB84 [40]. In the

general setup for this scheme, Alice and Bob use shared

pairs of end-to-end entangled qubits and perform single-qubit

measurements of their local qubits in either the Z or X bases.

Then, they discuss the basis they have chosen for each round

(each entangled pair) over a classical channel, and discard the

measurement results from rounds where their basis choice was

different. The results of a subset of the remaining rounds are

used to perform parameter estimation to possibly detect the

action of an eavesdropper. Finally, the leftover results can be

used to distill the shared secret key.

In the following subsections, we give a detailed description

of the protocol run by the nodes to distribute entanglement

and, eventually, obtain a secret key. Specifically, we describe

the considered strategy in Section II-A, and later identify the

most relevant sources of error and how we model them in

Section II-B.

A. QKD over the sequential repeater chain

Here, we first illustrate the proposed scheme to distribute

a single secret bit between two users using two repeater

nodes without encoding. As a first step, Alice (A) starts the

entanglement generation procedure with R1. Once a pair of



communication qubits in these nodes are entangled, she im-

mediately performs her QKD measurement in a random basis

Z or X . Simultaneously, R1 initiates entanglement generation

with R2. Importantly, this can happen at the same time because

the meet-in-the-middle generation scheme notifies both nodes

of successful generation at the same time. Note that, after

Alice’s measurement, the state of the upstream communication

qubit in node R1 is correlated with Alice’s result but the

entanglement itself has been consumed, and therefore Alice is

free to use her communication qubit for any other task without

affecting the distribution of the secret bit.

Later, when nodes R1 and R2 obtain an entangled pair,

node R1 performs a BSM on both of its quantum memories.

In the case of the probabilistic repeater chain, the state of

both memories is translated into a pair of photons which are

interfered at a local, optical BSM. Instead, the gate-based

quantum repeaters perform the BSM deterministically through

a quantum circuit. In both cases, the results are forwarded

through classical signals to R2. This effectively teleports the

state of the upstream communication qubit in R1 to R2, up to a

Pauli frame adjustment described by the measurement result.

Moreover, node R2 also begins generating entanglement

with Bob (B) as soon as it receives the successful heralding

signal, canceling the procedure if a message heralding the

failure of the BSM is received. When this final entanglement

is achieved, R2 performs another BSM and repeats R1’s proce-

dure, forwarding any necessary Pauli adjustment and teleport-

ing the state of its upstream communication qubit onto Bob’s

quantum memory. Concurrently, Bob immediately performs

his own QKD measurement on his local qubit. Finally, when

he receives the result of the intermediate BSMs (assuming

they have all been successful), he performs the necessary

adjustments to his result. Crucially, these adjustments can be

applied classically, during the sifting stage, by taking into

consideration the basis Bob has selected for his measurement.

Sifted key bits will then be used in the rest of the QKD

protocol.

Moving on to the encoded repeater chain, we consider

here repeaters using a typical setup for three-qubit repetition

codes [25], [34]. That is, two neighboring nodes can each

apply local operations to three quantum memories (which

we call memory qubits) and three entangled communication

qubits, followed by measurements of the latter, to get a joint

entangled state in the memory qubits which we call encoded

entanglement. A node sharing encoded entanglement with

two neighbors can then locally employ an encoded swapping

circuit consisting of three gate-based BSMs to measure his

own memory qubits, projecting the two other nodes into

an extended encoded entangled state up to an adjustment

described by some classical information that the node must

transmit through the network. The user nodes may decode

the end-to-end encoded entanglement to obtain a single, high

quality entangled pair of memory qubits.

With this in mind, we describe our proposed strategy for the

distribution of a single secret bit, where we assume that each

communication qubit in the nodes is paired with a memory

qubit onto which the encoding circuit may be applied. Firstly,

Alice (A) uses the communication qubits to generate entan-

glement with the first repeater, R1. Once three communication

qubits are entangled, she prepares the corresponding memory

qubits in the necessary state and applies the encoding and

decoding circuits back to back. Moreover, she also performs

the QKD measurement over the decoded memory qubit. She

classically transmits the results of the encoding procedure to

R1. At the same time as Alice, node R1 initiates entanglement

generation towards the next hop and uses its own encoding

circuit, projecting its memory qubits onto a joint state that

is correlated to the bit obtained by Alice’s measurement.

When the results of Alice’s measurement arrive to R1, the

repeater can discern if any error has occurred and, if that is

the case, choose to drop the distribution attempt, i.e., to stop

generating entanglement towards the next hop. The reason for

this choice is the insight shown by some studies that most of

the secret key rate in QKD over encoded repeater networks

comes from rounds with no errors, and so dropping erroneous

transmissions early liberates the resources for rounds that

have a higher chance of success [34]. If no errors have

been detected, the repeater simply completes the entanglement

generation procedure, following it up with the application of

the encoding and swapping circuits. Any classical information

obtained will be forwarded to the next hop, who then behaves

similarly. Once Bob is reached, he will immediately use the

encoding, decoding and QKD measurements as Alice did, and

then classically adjust the result of his QKD bit according to

all intermediate measurements.

The complete secret key procedure is executed by repeating

the above strategy for as many times as needed. The rounds

where a probabilistic BSM has failed or the encoded swapping

has detected an error can then be discarded in the sifting stage

after some discussion between Alice and Bob.

B. Imperfections and error models

Depending on the underlying hardware used for the entan-

glement generation scheme, the communication qubits may

not be perfectly entangled after a heralding success signal is

received. We will assume in general that, after entanglement

generation, all communication qubits are left in a Werner

state of fidelity F0 with respect to the Bell state |Φ+〉 =
(|00〉 + |11〉)/

√
2, which corresponds to a quantum state of

the form:

WF0
= F0 |Φ+〉〈Φ+|+ 1− F0

3

(

I− |Φ+〉〈Φ+|
)

. (3)

Moreover, after some time delay τ of being stored in a quan-

tum memory, a state may suffer from quantum decoherence.

We model quantum memories as a probabilistic depolarization

channel, that is, for a state with density matrix ρ stored for a

time τ , each qubit i decoheres independently according to the

following transformation:

ρ→ e−τ/Tcohρ+
(

1− e−τ/Tcoh

)

Tri(ρ)⊗
Ii

2
, (4)

where Tri denotes the partial trace over qubit i and Ii/2
denotes the maximally mixed state in i.



Another possible source of error is the quantum circuits

themselves. All circuits considered for our simulations use

exclusively single-qubit and two-qubit gates. In particular, we

consider that each gate-based BSM, both the one in the deter-

ministic repeater chain and the three in the encoded swapping

for the encoded chain, consists of a single CNOT gate and

two single-qubit measurements; the local entanglement to be

prepared in the memory qubits before encoding is obtained

with the circuit in Ref. [41]; the decoding circuit is the one

described in Ref. [34]; and any other operations necessary for

the encoded repeater setup follow the design in Ref. [25].

We assume that all single-qubit gates are ideal, since low

error rates compared to more complex gates can be achieved

in practice. On the other hand, we define β as the probability

that the qubits involved in some two-qubit gate with unitary

operator go through a quantum depolarizing channel rather

than the desired operation being applied. That is, for a gate

with ideal unitary operator Uij being applied to two qubits i

and j, the overall quantum state described by density operator

ρ undergoes the following transformation:

ρ→ (1− β)UijρU
†
ij + β Trij(ρ)⊗

Iij

4
, (5)

where Trij denotes the partial trace over qubits i and j, and

Iij/4 denotes the maximally mixed state in ij.

As for the operation of the optical BSM-mediated swap-

ping in the probabilistic repeater chain, we assume that this

operation introduces no errors and has a probability of success

pBSM.

Finally, we model single-qubit measurements such that they

have a probability δ of returning the wrong result. That is, the

POVM in the Z and X basis are defined, respectively, as:
{

P0 = (1− δ) |0〉〈0|+ δ |1〉〈1| ,
P1 = (1− δ) |1〉〈1|+ δ |0〉〈0| ,

{

P+ = (1− δ) |+〉〈+|+ δ |−〉〈−| ,
P− = (1− δ) |−〉〈−|+ δ |+〉〈+| .

(6)

III. ERROR AND RATE ANALYSIS

In this section we go over the analysis of the secret key rate

for our systems of interest. Specifically, we obtain the secret

key rate in the asymptotic regime as the following product:

SKR = Rr∞, (7)

where R is the repetition rate, that is, the entanglement

distribution rate, and r∞ denotes the secret fraction in the

asymptotic regime, which can be derived from the security

proofs of BBM92 [40], [41] by computing:

r∞ = pEE max{0, 1− h2(eZ)− h2(eX )}, (8)

where pEE denotes the probability of obtaining an end-to-end

state (i.e. no BSM has failed in the probabilistic chain, nor

has any error been detected in the encoded chain); h2(p) =
−p log2(p) − (1 − p) log2(1 − p); and eZ (eX ) denotes the

error rate in the Z (X ) basis.

In terms of repetition rate, we have considered that Alice

restarts the entanglement distribution procedure as soon as

possible, building up a pipeline of sequential teleportations

along the chain. Nevertheless, we observe that whenever a

repeater node is generating entanglement downstream, some

quantum memories are needed to store the state which is to be

teleported. Therefore, the entanglement generation procedure

in the upstream direction must run with a reduced subset of

quantum memories. While this resource limitation is negligible

when considering a large number of quantum memories,

it can lead to a staggered pipeline in the more memory-

constrained scenarios. For the sake of simplicity, we consider

only this latter case, in which each repeater node distributes

entanglement in one direction exclusively, hence halving the

repetition rate, whose average we compute as:

R =
1

2E{τhop}
, (9)

where τhop is the waiting time at each hop, that is, the

delay before generating an entangled pair in the unencoded

repeater chains, or before generating three entangled pairs

when employing encoded repeaters.

Since we are considering an on-demand meet-in-the-middle

scheme, which must be initiated by some classical messages

sent downstream, the waiting time of the entanglement gener-

ation can be computed as:

τhop =
L0

c
(Gattempts + 1), (10)

with Gattempts being the number of entanglement generation

rounds that are necessary to generate the desired entanglement,

and c corresponding to the speed of light in fiber, which we

take to be the typical value of c = 200 000 km/s.
In the case of the repeater chain without encoding, that

is, when we only require one entangled pair, we can model

Gattempts with a geometric distribution characterized by the

probability of generating (at least one) entangled pair in

a generation round. Therefore, for both deterministic and

probabilistic repeaters, its expected value is:

E{Gattempts}
∣

∣

∣

Det
= E{Gattempts}

∣

∣

∣

Prob

=
1

1− (1− pgen)Ncomm
.

(11)

Similarly, the number of entanglement generation rounds

needed to share the necessary entanglement for encoded

repeaters can be expressed as the third order statistic of a set

of Ncomm realizations of a geometric distribution, which has

the following average:

E{Gattempts}
∣

∣

∣

Enc
=

(Ncomm − 2)(Ncomm − 1)

2− 2(1− pgen)Ncomm

− (Ncomm − 2)Ncomm

1− (1− pgen)Ncomm−1

+
(Ncomm − 1)Ncomm

2− 2(1− pgen)Ncomm−2
.

(12)



Finally, we compute the error rates in Eq. (8) by taking into

account the error models described in Section II-B. That is,

we ignore any disturbance that may be caused by the action

of a potential eavesdropper, and worry only about the error

rates due to legitimate operation. Then, we can express:

eZ = Tr{P(A)
0 P

(B)
1 ρEE}+Tr{P(A)

1 P
(B)
0 ρEE},

eX = Tr{P(A)
+ P

(B)
− ρEE}+Tr{P(A)

− P
(B)
+ ρEE},

(13)

where ρEE is the end-to-end distributed entangled state right

before the QKD measurements in each setup (provided the

distribution was successful), and P
(Q)
ψ is the POVM element

corresponding to measuring state |ψ〉 in system Q.

In order to obtain ρEE, we go over the evolution of the

quantum state step by step. Firstly, we define ρ0 as the

initial entangled state (after encoding in the case of encoded

repeaters) after a single hop. That is [34]:

ρ0

∣

∣

∣

Det
= ρ0

∣

∣

∣

Prob
=WF0

,

ρ0

∣

∣

∣

Enc
=

Trcomm

{

MEncξEnc

(

ρmem ⊗W⊗3
F0

)}

pEnc

,

(14)

where Trcomm denotes tracing out the communication qubits;

MEnc denotes the measurement operator that corresponds to

the resulting state requiring no adjustment; ξEnc denotes the

transformation of the encoding circuit according to the de-

scribed error models; ρmem corresponds to the joint state of

the memory qubits following the preparation analyzed in [41];

and

pEnc = Tr
{

MEncξEnc

(

ρmem ⊗W⊗3
F0

)}

. (15)

Importantly, it is sufficient to consider the case where

no adjustment is necessary because we are considering that

all adjustments are applied in the classical domain, without

introducing any errors.

To analyze the swapping operation, we first make the

observation that the transformation of the optical BSM can

be modeled as the ideal operation, i.e. β = δ = 0, of the gate-

based BSM, provided it was successful. Considering that, we

express the quantum state after i sequential swaps along the

repeater chain as:

ρi =
Tri

{

MSwapξSwap

(

Dτhop
(ρi−1)⊗ ρ0

)}

pi
, (16)

for i ≤ Nr, where Tri denotes tracing out the quantum

memories in node Ri (where the swapping takes place); MSwap

denotes the measurement operator in which no Pauli frame

adjustments are required and, in the case of the encoded

chain, no errors were detected; ξSwap corresponds to the

transformation implemented by the swapping quantum circuit;

Dτhop
corresponds to the memory decoherence of the quantum

memories in repeater node Ri after a delay τhop; and

pi = Tr
{

MSwapξSwap

(

Dτhop
(ρi−1), ρ0

)}

. (17)

Once again, we restrict our analysis to the case where no

Pauli frame adjustments are needed, since these adjustments

pcou pBSM αch Ncomm F0 β δ Tcoh

0.81 0.5 0.2 dB/km 6 0.99 0.001 0.001 2 s

TABLE I
PARAMETERS CONSIDERED IN THE SIMULATIONS.

are applied ideally. Moreover, for the encoded chain, we

consider solely the measurements without errors, since our

error detection strategy drops any round in which a different

result is read.

Finally, the end-to-end state can be obtained directly in the

case of the unencoded chains, and after the decoding stage.

Specifically, we have that:

ρEE

∣

∣

∣

Det
= ρNr

∣

∣

∣

Det
,

ρEE

∣

∣

∣

Prob
= ρNr

∣

∣

∣

Prob
,

ρEE

∣

∣

∣

Enc
=

Trred

{

MDcdξDcd

(

ρNr

∣

∣

Enc

)}

pDcd

,

(18)

where Trred denotes tracing out the quantum memories storing

any redundant entanglement in both end nodes; MDcd denotes

the measurement operator in which no errors were detected;

ξDcd corresponds to the transformation implemented by the

decoding quantum circuit; and

pDcd = Tr
{

MDcdξDcd

(

ρNr

∣

∣

∣

Enc

)}

. (19)

Finally, the probability of obtaining an end-to-end entangled

state can be obtained for each strategy as:

pEE

∣

∣

∣

Det
= 1,

pEE

∣

∣

∣

Prob
= (pBSM)

Nr ,

pEE

∣

∣

∣

Det
= pDcd

Nr
∏

i=1

(16pi),

(20)

where the factor 16 comes from the fact that there are 16

measurement results at the swapping stage which detect no

errors (but which may require Pauli frame adjustments).

IV. RESULTS

In order to examine the viability of the proposed strategies

in the near-to-mid term, we consider a set of parameters as

shown in Table I for our numerical calculations. Specifically,

we investigate first whether these protocols are compatible

with the current infrastructure for classical networks, which

often relies on optical fiber links with lengths in the upper

range of tens of kilometers, or even upwards of 100 km. Then,

we fix a practical value for L0 and observe how the secret

key rate changes with distance, with a special interest in the

maximum range at which key distribution is possible.

Given the aforementioned structure, we start by plotting

the secret key rate against L0 for a fixed total distance of

L = 800 km in Fig. 2. For reference, we also plot the capacity

bound for the repeaterless channel, commonly known as the

PLOB bound [42], adjusted to a clock rate (repetition rate)
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Fig. 2. Secret key rate against the distance between repeaters, L0, for a
total distance between users L = 800 km. Solid blue line: encoded repeater
chain using three-qubit repetition code. Dashed yellow line: unencoded
repeater chain with deterministic, gate-based swapping. Dot-dashed green line:
unencoded repeater chain with probabilistic, optical-BSM-based swapping.
Dotted black line: PLOB bound, given a repetition rate of 1GHz.

of 1GHz. As we can see in Fig. 2, the variation of the key

rate is not monotonic with L0. Even though each additional

node decreases the average waiting time (and therefore the

memory decoherence), any non-ideal implementation will also

introduce operational errors. This results in having an optimum

value for L0. It is interesting to note that, for our chosen

parameters, the optimal point is found at a larger hop length for

the unencoded repeater chains. The reason is that, as expected,

any additional swap with these types of repeaters results in the

unmitigated propagation and compounding of errors and, in the

specific case of deterministic repeaters, also in the introduction

of additional noise, which makes them more likely to suffer

from heavier diminishing returns. Importantly, however, we

notice that the optimal hop length in both unencoded chains

is achieved around a similar point of about 80 km, which

could indeed be compatible with existing infrastructure. In

fact, while the encoded case behaves best at shorter intervals,

it is still capable of distilling secret key and convincingly

surpassing the PLOB bound for values of L0 below 110 km,

which suggests that encoded repeaters could also be potentially

suited for integration in real-life networks in the near future.

Having checked the issue of physical compatibility with the

underlying topology, we now move on to check the achievable

range of the repeater chains for a practical hop length. In

particular, we fix this value to L0 = 80 km, which we have

found to be close to optimal in the scenario without any

coding, and compute the secret key rate against the total

distance between users. The results are displayed in Fig. 3.

First of all, we see that the PLOB bound is beaten by

all three repeater chains considered, confirming the fact that

we are effectively increasing the capacity of the channel

with quantum repeaters. Moreover, we see that the unencoded

chain with gate-based swapping, labeled as Deterministic in

Figs. 2 and 3, offers the best performance at short ranges. The

reason is that, unlike the encoded chain, only one entangled
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Fig. 3. Achievable secret key rate against the total distance between users,
L, in km, for a distance between neighbouring stations of L0 = 80 km. Solid
blue line: encoded repeater chain using three-qubit repetition code. Dashed
yellow line: unencoded repeater chain with gate-based swapping. Dot-dashed
green line: unencoded repeater chain with probabilistic swapping. Dotted
black line: PLOB bound, given a repetition rate of 1GHz.

pair of communication qubits needs to be generated at each

hop, therefore reducing the waiting time in the generation

procedure and increasing the overall repetition rate of both

unencoded strategies. What is more, the SKR attained by the

chain of probabilistic repeaters rapidly falls as the distance

grows, due to a large number of failure points. Despite this,

probabilistic repeaters are capable of distributing a secret

key up to about 1100 km, which convincingly surpasses the

range of deterministic unencoded repeaters, which only reach

distances of around 900 km. This illustrates the advantage of

the former strategy, which more heavily relies on the repeat

until success paradigm, allowing a lower repetition rate in

exchange for a setup which introduces no errors, and thus

produces higher-quality entanglement in the rounds where it

does not fail.

Finally, we focus on the encoded repeater chain. As men-

tioned, the requirement of three entangled pairs per hop

increases the hop delay and makes this strategy worse in short

range but, in exchange, the improved resilience to errors allows

this setup to distribute keys up to distances close to 2200 km.

For reference, this is more than double what is currently the

limit for twin-field QKD protocols [43], and could be sufficient

for large scale quantum key distribution at a transnational, or

even continental scale. Therefore, it is possible that, if inte-

grated with satellite technology or strategically-placed trusted

nodes, a network relying on encoded repeaters following

sequential swapping could reach ranges at intercontinental

scale.

V. CONCLUSION

We described strategies for sequential swapping over re-

peater chains based on three repeater schemes. Specifically,

we considered repeaters without encoding where the entangle-

ment swapping was implemented through probabilistic optical

BSMs and deterministic gate-based BSMs, as well as encoded



repeaters which employ simple repetition codes for error

detection. Then, we investigated the performance of these

strategies for QKD applications, assuming the usage of a

BBM92 protocol for the purpose of illustration. We analyzed

the attainable secret key rates under these scenarios consid-

ering typical error models in repeater systems. Preliminary

results showed that encoded repeater networks based on the

proposed strategies could be compatible with current optical

infrastructure. Furthermore, we show that long-range quan-

tum communications could be achieved with relatively few

resources if quantum circuits with sufficiently low operational

errors can be implemented. This will pave the way for future

generations of quantum networks.
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Wootters, “Teleporting an unknown quantum state via dual classical and
einstein-podolsky-rosen channels,” Phys. Rev. Lett., vol. 70, pp. 1895–
1899, Mar. 1993.
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