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Abstract 

Background Codelists play a crucial role in ensuring accurate and standardized communication within healthcare. 
However, preparation of high-quality codelists is a rigorous and time-consuming process. The literature focuses 
on transparency of clinical codelists and overlooks the utility of automation.

Methods (Automated Framework Design and Use‑case: DynAIRx) Here we present a Codelist Generation Frame-
work that can automate generation of codelists with minimal input from clinical experts. We demonstrate the pro-
cess using a specific project, DynAIRx, producing appropriate codelists and a framework allowing future projects 
to take advantage of automated codelist generation. Both the framework and codelist are publicly available. DynAIRx 
is an NIHR-funded project aiming to develop AIs to help optimise prescribing of medicines in patients with multiple 
long-term conditions. DynAIRx requires complex codelists to describe the trajectory of each patient, and the interac-
tion between their conditions. We promptly generated ≈214 codelists for DynAIRx using the proposed framework 
and validated them with a panel of experts, significantly reducing the amount of time required by making effective 
use of automation.

Results The framework reduced the clinician time required to validate codes, automatically shrunk codelists using 
trusted sources and added new codes for review against existing codelists. In the DynAIRx case study, a codelist of ≈
14000 codes required only 7-9 hours of clinician’s time in the end (while existing methods takes months), and applica-
tion of the automation framework reduced the workload by >80%.

Conclusion This work examines current methodologies for codelist development and the challenges associated 
with ensuring transparency and reproducibility. A key benefit of this approach is its emphasis on automation and reli-
ance on trusted sources, which significantly lowers the workload, minimizes human error, and saves substantial time, 
particularly the time needed from clinical experts.
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Introduction
In recent years, there has been an increasing reliance on 
Electronic Health Records (EHRs) to study the health and 
care of large patient populations. Health systems around 
the world rely increasingly on the analysis of EHR data to 
plan and manage the quality of their services - a Popula-
tion Health Management1 (PHM) requirement. To per-
form these analyses, a critical but often overlooked step 
is the creation of “codelists” to process the raw patient 
record into a form suitable for analysis.

The patient record is a collection of coded events 
(typically using clinical terminologies such as ICD or 
SNOMED mapped to capture diagnosis, medications, 
procedures, referrals etc.) [1]. Each SNOMED code rep-
resents a specific diagnosis, symptom, or treatment and 
can have multiple variants. For example, SNOMED code 
“195967001” is Asthma and “281239006” is Exacerbation 
of Asthma. A codelist groups a set of codes into a clini-
cal concept at the correct level of detail to answer a given 
research question; in the example above these might fall 
under a general asthma codelist, or we may need to sepa-
rate out primary asthma diagnosis from worsening symp-
toms (depending upon the research question).

These codelists play a crucial role in ensuring accurate 
and standardized communication within healthcare pro-
vision, commissioning, and research. Efforts to be trans-
parent and share codelists such as OpenCodelists2 are 
welcome additions, but there will always be a need to cre-
ate new codelists. As demonstrated above, codelists are 
intimately linked to the research or commissioning ques-
tion, and the underlying set of SNOMED codes is regu-
larly updated with new additions, meaning that codelists 
cannot remain static in perpetuity.

Construction of high-quality codelists involves a range 
clinical, technical, and informatics expertise, meaning it 
can become a time-consuming process. In spite of the 
importance of codelists, they are often constructed or 
updated haphazardly, without any clear guidance or pro-
tocol. In this work we proposed a Codelist Generation 
Framework which derives a process for building codelists 
using automation where possible to reduce the amount 
clinical effort required whilst retaining high-quality. We 
use the ongoing DynAIRx project3, focused on multimor-
bidity, as a case study to show the impact of the frame-
work, and release the code required to implement our 
framework as open source software.

The resulting framework makes use of trusted sources 
(such as the Quality Outcomes Framework [2] and 

CALIBER [3, 4]) and automation to reduce the require-
ment for clinical expertise. In our case study, a codelist 
with ≈ 14000 items was compiled using only 7–9 hours 
of clinicians’ time by employing the proposed framework, 
and more than 80% of the codes were generated and vali-
dated using the framework before clinical validation.

This paper aims to provide a transparent generalized 
codelist development framework - demonstrated via 
application to the DynAIRx project - to semi-automate 
this time-consuming process. We take a metascience 
approach, combining best-practice guidance from a 
variety of sources to build a framework which improves 
the transparency and reproducibility of research using 
electronic healthcare records. Software to enable use of 
this framework and the resulting DynAIRx codelists are 
released for public use. The main contributions of this 
work can be summarized as follows:

• Design of a Codelist Generation Framework, appli-
cable to any codelist generation task, that aims to 
reduce clinical validation effort significantly based 
upon best-practice guidelines.

• Generation of large codelists for the DynAIRx case-
study, applicable to cohorts of multiple long-term 
conditions (multimorbidity) on multiple medicines 
(polypharmacy)

• Comprehensive evaluation of a codelist generated 
using the proposed framework including a reduction 
in clinicians’ workload in generating and validating 
codes.

• Releasing codelists and making the Generalised 
Codelist Automation Framework “GCAF” (Python 
Repository) publicly available for codelist generation.

The remainder of the paper is organized as follows. A 
brief overview of existing techniques with background 
are presented in Background  section. The proposed 
“Generalised Codelist Automation Framework (GCAF)” 
with details of design, implementation, and examples for 
different phases are discussed in Methods: the codelist 
generation framework methodology and automation sec-
tion. A case-study utilising the framework to generate 
codelists for the DynAIRx project is presented in Discus-
sion: case study - DynAIRx section. A comparison of the 
resulting DynAIRx codelist to common alternatives, and 
our learning from the process are captured in Results sec-
tion. Finally, concluding remarks and avenues for future 
work appear in Conclusion and future directions section.

Background
This section aims to provide a comprehensive over-
view of work in codelist generation to-date. It is divided 
into three subsections. First, we summarise the existing 

1 https:// www. engla nd. nhs. uk/ long- read/ popul ation- health- manag ement/
2 https:// www. openc odeli sts. org/
3 www. liver pool. ac. uk/ dynai rx

https://www.england.nhs.uk/long-read/population-health-management/
https://www.opencodelists.org/
http://www.liverpool.ac.uk/dynairx
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systematic reviews on codelist development, focusing on 
the strengths, and challenges they highlight. Second, we 
describe the recommended best practice with regards to 
codelist development, and note the issues around auto-
mation and reproducibility that motivated this work. 
Finally, we introduce existing codelists that are com-
monly used in multimorbidity research.

Codelists can consist of different types of codes like 
SNOMED, ICD, Read and other ontologies. When using 
electronic healthcare records (EHRs), clinicians store 
data about a patient using a standard ontology, com-
monly SNOMED, CTV2, or CTV3 in a primary care set-
ting, ICD or SNOMED in a secondary care setting, and 
DMD codes for medications. Each code represents a 
specific diagnosis, symptom, test, or treatment and can 
have multiple variants. For example, SNOMED code 
“195967001” is Asthma and “281239006” is Exacerba-
tion of Asthma. When using EHRs within a research or 
commissioning context we often want to group together 
similar concepts into codelists that indicates someone 
has asthma, or any other condition of interest. The ontol-
ogy within which clinicians record this information has 
evolved over time (and continues to evolve regularly); 
meaning that codelists also need to be regularly rebuilt 
to capture this evolving system. The increased inter-
est in research and policies to tackle the multimorbidity 
and polypharmacy arising from aging populations poses 
a major challenge for codelist generation due to the size 
and complexity of these ontologies.

Codelist publications typically refer to academic or 
research papers that focus on the development, imple-
mentation, or analysis of codelists in various fields such as 
healthcare, bioinformatics, data science etc. It is reported 
in the literature [5] that crafting high-quality codelists is 
time-consuming and requires a range of clinical, termi-
nological, and informatics expertise. Various synonyms 
for codelists are used interchangeably including “value 
set”, “code set”, “concept set”, and “enumeration”. Another 
important point they raise is that, despite widespread 
agreement on the importance of reusability, codelists 
often suffer from clutter and redundancy, greatly com-
plicating efforts at reuse. When users encounter multi-
ple codes with the same name or ostensibly representing 
the same clinical condition, it can be difficult to choose 
amongst them or determine if any differences among 
them are intentional or due to error.

There is a range of literature on the subject includ-
ing the definition of codelists [6–11], standardization 
of methods [12–16] and tools for codelists [17, 18], for 
assessing codelist quality and terminologies [19–25], and 
for enabling/promoting sharing of codelists for reuse 
[26–29]. It is clear then that many different codelists are 
required throughout the healthcare system when using 

routine datasets and, as they can be problem depend-
ent and time varying, we often need to reuse and adjust 
existing codelists. At present there is no clear framework 
for how to do this systematically, or how to leverage auto-
mation to decrease the amount of manual effort required 
during this process. The primary aim of this work is to 
provide a unifying framework that maximises automa-
tion and enables sharing of the construction process.

Codelist limitations highlighted by systematic reviews
Many systematic reviews of codelists found the idea of 
transparency and reporting of development methods as 
key requirement. One review of codelists [30] identified 
codelists related to hypertension that use EHRs and gen-
erated recommended codelists. Massen et  al. reviewed 
the literature, providing an extensive summary of codes 
reported to be used to define hypertension in publica-
tions using EHR data. The breadth of codes used to define 
hypertension varied between studies, leading to selection 
bias in the resulting research cohorts. They also encour-
aged a transparent methodology for codelist creation, 
which is essential for replication and aids in the interpre-
tation of study findings. The framework proposed here 
has transparency and reproducibility as key elements of 
the design.

Another review [31] recognized the importance of con-
structing reliable and reusable codelists. However, the 
authors found that codelist definitions are rarely trans-
parent and are seldom shared. There is a lack of meth-
odological standards for the management (construction, 
sharing, revision and reuse) of clinical codelists which 
needs to be addressed to ensure the reliability and cred-
ibility of research. This paper reviewed thirty meth-
odological papers on the management of codelists and 
provided best practice recommendations for designing 
and implementation for future studies. The paper empha-
sised the need for software tools to enable users to eas-
ily and quickly create, revise, extend, review, and share 
codelists.

Subsequent research [32] in the paper “Term sets: A 
transparent and reproducible representation of clinical 
code set” also highlights the need for transparency and 
reproducibility. They also propose the terminology “term 
sets” (equivalent to codelist) that are findable, accessi-
ble, interoperable. This work focused on 31 codelists and 
released them publicly. However they did not make use 
of automation to improve the reproducibility and trans-
parency of the development process.

Similarly other research [29,  33, 34] also encourages 
transparency and focuses on creating online reposito-
ries which can be used and modified publicly. However, 
releasing publicly available codes or making them useful 
widely for EHRs is not sufficient for reproducibility and 
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transparency, it needs to have transparent method of 
codelist development. Our work addresses these issues 
by developing an open source toolkit and framework for 
generating codelists.

Codelists development strategies
In this subsection we detail some published procedures 
for codelist generation, noting that most research does 
not have a transparent process for reproducibility. The 
use of UK primary care EHRs for developing codelists 
has been described in [35]. In that work, codelists were 
used to estimate the frequency of shortness of breath 
in a cohort of 28’216 patients within Clinical Practice 
Research Databank (CPRD) data. Its design is a three-
stage process: a priori discussion with clinical experts 
to look at features of interest, a thorough search for 
potentially relevant codes using computer software, and 
clinical agreement via a modified Delphi process (with 
an “uncertain” category for further sensitivity analy-
sis). Lastly, use same Delphi process to reach consen-
sus between primary care practitioners. There is limited 
discussion on the time and effort required for codelist 
generation, the research is focused on reporting of the 
approach taken. Watson et  al.  highlighted that codelist 
generation method is time-consuming, exhaustive, and 
needs modifications for future EHR studies.

Other strategies for developing clinical codelists have 
been published, for example [36]. This paper is focused 
on optimisation of EHR use to describe rheumatoid 
arthritis in primary care. This paper proposed a meth-
odology to develop “indicator markers” found in patients 
with early rheumatoid arthritis. They also propose a pri-
ori and a posteriori strategies for codelist development. 
This work discussed an iterative process for constructing 
codelists. First, a priori indicator markers are produced 
and, after intermediate steps, the a draft codelist is scruti-
nized by clinicians. The second, a posteriori, stage of this 
process involved a further review of the generated codes - 
though the exact process for reaching clinical agreement 
was not specified. Although codelists are reusable, they 
will ultimately need modifications for future projects, 
and the approach will require extensive involvement of 
clinical expertise during codelist modification.

Existing codelists

CALIBER CALIBER [3, 4] is the Health Data Research 
UK (HDR-UK) National Phenotype Library that pro-
vides comprehensive codelists for a variety of condi-
tions. CALIBER is an open-access resource led by Spi-
ros Denaxas and provides the research community with 
information, tools and phenotyping algorithms for EHR 
data. As the UK National Health Service (NHS) captures 

huge amounts of clinically coded data, CALIBER is a val-
uable resource for researchers. However, clinicians some-
times use different codes for the same term in different 
settings/contexts and therefore using and maintaining 
the codelist can be challenging. CALIBER also offers 
algorithms to help infer codes where they are missing, 
for example a diagnosis code for psychosis if a patient has 
been prescribed an anti-psychotic medication.

electronic Frailty Index (eFI) Increased interest in look-
ing at the impact of MLTCs on patient outcomes has led 
to the need for codelists summarising large numbers of 
conditions. One key example implemented within UK 
primary care systems and the NICE guidelines is the 
electronic Frailty Index (eFI). Published in 2016 it con-
tains 1691 SNOMED codes and is used to give a general 
overview of health in geriatric patients. The eFI2 will 
be released imminently and contains 7556 SNOMED 
codes. Both of these are available in multiple ontologies 
(SNOMED, CTV2, and CTV3) to enable better coverage 
of the population.

OPTIMAL The OPTIMAL [37] project focuses on 
improving therapies and AI-assisted clinical management 
for patients with complex MLTCs. It addresses the chal-
lenge of doctors treating diseases individually, often with-
out knowing how treatments for one condition might 
affect another. By identifying interactions between dis-
eases and treatments, OPTIMAL aims to help clinicians 
choose therapies that improve outcomes for patients 
with multiple conditions. This large project Optimal also 
prepared 30061 codes based codelists with help of cli-
nicians. This motivates the reported research on auto-
mated codelist generation by reducing the manual effort 
required to identify relevant treatments and conditions, 
improving efficiency and accuracy.

AI‑MULTIPLY The AI-MULTIPLY [38] project focuses 
on understanding the complex interactions between 
MLTCs and the use of multiple medications (polyphar-
macy). By analyzing relationships between conditions, 
treatments, and personal factors, it aims to optimize 
patient care. These conditions were reviewed by general 
practitioners, psychiatrists, geriatricians, gynaecologists, 
obstetricians, gastroenterologists, and diabetologists. This 
collaboration between Newcastle University and Queen 
Mary University highlights the need for accurate condi-
tion lists, which are reviewed and refined by healthcare 
specialists.

In general, codelist development is a key step for 
research projects to undertake before progressing with 
the study itself [39–41]. There are numerous existing 
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codelists such as those above and other efforts including 
the UK Biobank [42] and Cambridge codelists [43]. How-
ever, projects often need to create/modify these existing 
codelists leading to issues of transparency and reproduc-
ibility as highlighted in the previous sections.

Methods: the codelist generation framework 
methodology and automation
In this section we design a framework for generating 
codelists which addresses the issues highlighted above. 
In particular, it provides a transparent and reproduc-
ible codelist which makes use of automation where pos-
sible to reduce the amount of input needed by clinical 
colleagues.

The proposed approach (shown in Fig. 1) for the Gen-
eralised Codelist Automation Framework (GCAF) illus-
trates how to develop codelists using automation to 
minimize the workload for clinicians. The different mod-
ules of the GCAF are described below, using DynAIRx 
to ground the description. For context, DynAIRx uses 
primary care data from CPRD to predict adverse drug 
reactions in those with MLTCs (full details in Discussion: 
case study - DynAIRx section).

To begin, we assume there will be existing codelists 
that are related to the use-case of the project as a start-
ing point to build upon. In this case we begin using two 
codelists for MLTCs that have been clinical validated pre-
viously: eFI2 [44] and SERENDIP [45] (the latter based 
upon CALIBER).

GCAF Preprocessing In the first step, mapping files 
from NHS TRUD, for example, are used to convert these 
initial lists containing Readcodes, Medcodes, SNOMEDs 
etc., into the required format. For DynAIRx, SERENDIP 

codes needed converting from Read v3 to SNOMED. 
Once mapped into a uniform ontology, these codelists 
are transferred to the next module.

GCAF Derive Definite Conditions We commonly find 
that concepts can be given different names across codel-
ists, including use of spaces, under-scores, capital letters, 
joining two names, and plurals etc., though we need to 
have consistency in the names for automation. Match-
ing concepts across these preprocessed lists allows us to 
create a list of definitive conditions. The purpose of this 
module is to scan all input codelist, perform text opera-
tions on condition names, and generate a list of definitive 
conditions. For instance, name of conditions like Alco-
hol-related Brain Injury, Autoimmune liver Disease, Pul-
monary hypertension, Chronic Obstructive Pulmonary 
Disease (COPD), Anaemia Folate Deficiency, Schizoaf-
fective etc. The definitive list of conditions is then used in 
the next module “Clinical Intervention”.

Clinical Intervention This intervention module is 
important in receiving guidance on which clinical con-
cepts in the codelist need to be split and which to be 
grouped or merged based on the specific usecase of the 
project. For example, it may be necessary to split men-
tal health into subsets for depression, anxiety, etc. This 
manual step is only working with the names of conditions 
rather than individual SNOMED codes at this stage. In 
DynAIRx, we capture ≈ 214 concepts, which makes it the 
largest MLTC codelist in the UK to the best of our knowl-
edge. In this phase, clinician’s add comments like “keep”, 
“group”, and “split” for condition names. For instance, in 
the case of abdominal hernia, if clinicians’ indicate “keep”, 
then GCAF will leave all underlying SNOMED codes for 

Fig. 1 Generalised codelist automation framework (GCAF)



Page 6 of 17Aslam et al. BMC Medical Research Methodology          (2025) 25:138 

this condition alone. Similarly in case of “Alcohol Prob-
lems Others” if clinicians’ suggest “Group” which indi-
cates merging with similar name codelists, so GCAF 
will automatically find other condition names which 
consist of “Alcohol Problems Others” and then merge all 
SNOMED codes in one category with final condition 
name as “Alcohol Problems Others”. It could be possible 
a category need to be split into multiple categories like 
“Alcohol” can be classified into “Alcohol related Brain 
Injury”, “Alcoholic Liver Disease”, “Alcohol Problems” and 
other problems.

GCAF Codelists Distribution On the basis of the clini-
cians’ comments, we distribute conditions into two types 
“keep” comments type and “Group/Split” type com-
ments. This is just an automated decision phase, which 
helps in deciding which list of conditions can be pro-
cessed directly by GCAF and which need more attention.

Investigate related condition names In this module, 
we focus on those concepts where the clinical team 
indicated the need for merging or splitting to produce 
a potential list of concepts we need to capture. Finding 
condition names that need to be grouped and/or split is 
a fairly manual process but can largely be done without 
clinical oversight at this stage. For example, the SEREN-
DIP codelist has concepts for “Macular Degeneration”, 
“Visual Impairment and Blindness” and “Cataract” whilst 
eFI2 has just “Visual impairment”. The comment from 
clinicians was to split “Visual impairment” into the con-
stituent parts. This modules takes care of finding similar 
texts using comments and generate list of related condi-
tion names. So for this specific example, our draft list of 
concepts for Macular Degeneration is “Macular Degen‑
eration”, “Cataract”, “Visual Impairment and Blindness”, 
and finally “Visual impairment” to catch non-specific 
SNOMED terms.

GCAF Keywords based Codelist Generation This auto-
mated phase performs a keyword search across the pre-
processed codelists (using terms from the previous step), 
fetching the associated SNOMED codes, and generating 
draft codelists for condition names agreed in the previ-
ous module. For simpler conditions this can often com-
plete the majority of the codelist, whilst more compli-
cated conditions are handled in the net module.

Grouping/Splitting of Codelists In this module we focus 
on those concepts deemed more difficult, usually due to 
the need for splitting and grouping, using the draft list 
of concepts from the module “Investigate related condi‑
tion names”. In this module clinicians agree upon the 
final divisions or grouping of categories by skimming 

through the draft codelists. In our example of Macular 
Degeneration, our intermediate categories were “Macu‑
lar Degeneration”,“Visual impairment”, “Cataract”, and 
“Visual Impairment and Blindness”. After clinical feed-
back these conditions were split into Cataract, Macular 
Degeneration, Blindness, Visual Impairment and Blind‑
ness, Visual Impairment Diabetic, Visual Impairment 
Macular, Visual Impairment Diabetic and Macular, 
Visual Impairment Diabetic and Cataract, and Visual 
Impairment Other.

GCAF Codelist Comparison for Load Reduction In this 
module, the codelist outputs from the last two modules 
are “shrunk” where possible using a trusted source where 
the concepts match our requirements. Using a trusted 
source to verify parts of the draft codelists can signifi-
cantly reduce the amount of clinical effort needed in sub-
sequent validation. In DynAIRx, we used the CALIBER 
[4] codelist for matching of codes and shrinking codelists 
where the clinical concepts matched. This process auto-
matically verified > 90% of the codes, leading to a huge 
reduction in the amount of time needed by our clinical 
team. A full analysis is given in Results section.

Specifically “shrinking” means automatically validating 
codes using a trusted source (CALIBER for DynAIRx), 
as such codelists have already been clinically validated. 
If the codelist gets “Fully Shrinked” i.e. 100% that means 
“all” codes were already present in the trusted sources 
and therefore don’t need validation from clinicians in 
the project. If it’s “Partially Shrinked” then some were 
validated via automation and a few codes need manual 
validation from clinicians. In the next section discussing 
DynAIRx, we find that this saves an enormous amount of 
clinical effort.

Clinician’s Validation of Partially Shrunken codel‑
ists This final module of the GCAF requires clinical 
validation of the partially shrinked codelists. A second-
ary benefit of this phase is the final verification of new 
SNOMEDs by clinicians which can be trusted in future 
projects. The additional number of new codes added by 
DynAIRx, with comparison with existing codelists, is also 
detailed in Results section.

It is important to note that “GCAF Preprocessing”, 
“GCAF Derive Definite Conditions”, “GCAF Codelists 
Distribution”, “GCAF Keywords based Codelist Genera‑
tion”, “GCAF Codelist Comparison for Load Reduction”, 
and “Investigate related Condition names” modules are 
largely automated by GCAF and our software is avail-
able for use by researchers intending to develop codelists 
within reduced time for their usecase. We indicated same 



Page 7 of 17Aslam et al. BMC Medical Research Methodology          (2025) 25:138  

with Automatic/Manual labels in different modules of 
Fig. 1. “Clinical Intervention” and “Grouping/Splitting of 
Codelists” phases requires clinical guidance only for the 
name of conditions, there is no need to go through 1000s 
of SNOMED codes in these phases, and condition names 
could be few in number, depending upon the focus of 
the project. The “Clinician’s Validation for Partially 
Shrunken codelists” phase requires clinical feedback but 
the shrinking process dramatically reduces the amount 
of effort required. We show the workload reduction for 
DynAIRx in Results section.

We implemented and managed this framework within 
our team using GitHub4. Different GitHub branches 
are used to integrate the different conditions like alco-
hol, pulmonary, heart diseases, etc. with one individ-
ual responsible for reviewing and merging branches. 
Various tasks are assigned and tracked by designating 
GitHub Issues for each team member. We are releasing 
our repository publicly with this paper, and recommend 
using GitHub (Issues, Branches, Comments, Documenta-
tion) for maintenance and development of the codelists 
of future projects.

Innovative Theoretical and Methodological Advance‑
ments for Future Research from GCAF There are several 
important areas in codelist development that require fur-
ther attention in future research. One key area is improv-
ing harmonisation and interoperability of codelists across 
different healthcare databases, especially within the UK, 
where a range of clinical ontologies such as SNOMED, 
ICD-10/11, and Read Codes are used. Extending the 
GCAF framework to handle multiple ontologies would 
make it much easier to apply codelists consistently 
across datasets and research projects. Another critical 
challenge is managing updates to codelists over time to 
reflect changes in clinical terminologies, ensuring that 
the codelists remain accurate and relevant for long-term 
research use. Future research can also explore how AI 
models trained on healthcare-specific data could help 
automate parts of the codelist creation and maintenance 
process. For example, large language models (LLMs), 
when properly adapted to the clinical domain, may assist 
researchers in interpreting complex clinical terms, sug-
gesting potential codes, and identifying gaps in existing 
codelists. These AI techniques could significantly reduce 
the manual effort involved in reviewing and generating 
codelists, while also improving consistency and qual-
ity. In addition, developing tools that help researchers 
search, combine, and adapt existing codelists from prior 

studies would promote reuse and avoid duplication of 
effort. Establishing standardised, reusable formats for 
codelists based on FAIR (Findable, Accessible, Interop-
erable, and Reusable) principles will also be essential for 
supporting transparent and reproducible research. While 
GCAF is a critical step forward, ongoing work on these 
innovations will be necessary to ensure scalability, flex-
ibility, and wider adoption in clinical research and health-
care service delivery.

Discussion: case study ‑ DynAIRx
The DynAIRx (Dynamic Artificial Intelligence for Medi-
cines Optimisation) project aims to develop new, easy 
to use tools that support GPs and pharmacists to find 
patients living with multimorbidity (two or more long-
term health conditions) who might be offered a bet-
ter combination of medicines [46, 47]. DynAIRx uses 
structured EHR data from the Clinical Practice Research 
Datalink (CPRD5 [48–51]).

The National Health Service (NHS) introduced Struc-
tured Medication Reviews (SMRs), undertaken by GPs 
and pharmacists, with an aim to reduce the number of 
people taking potentially harmful drug combinations. 
However, there is no easy way of predicting who is most 
likely to benefit from a medication review. The DynAIRx 
project is developing tools to combine information from 
EHRs, clinical guidelines and risk-prediction models to 
ensure that clinicians and patients have the necessary 
information to prioritise and support SMRs.

DynAIRx focuses on multimorbidity [41] and poly-
pharmacy [52, 53] within three key groups: (a) Older 
people with frailty, (b) People with co-existing mental 
and physical health problems, and (c) Other people with 
complex multimorbidity ( ≥ 4 long-term conditions). 
‘Multimorbidity’ [54–59] is a priority for global health 
research’, and defined by the NIHR as the co-existence of 
two or more long-term conditions, each one of which is 
either (a) A physical non-communicable disease of long 
duration, such as a cardiovascular disease or cancer. (b) A 
mental health condition of long duration, such as a mood 
disorder or dementia. (c) An infectious disease of long 
duration, such as HIV or hepatitis C.

In the following subsections we detail the application of 
the GCAF for DynAIRx.

Baseline codelists
In this design we used two baseline codelists from previ-
ous projects: the eFI2 (expansion of the electronic frailty 
index (eFI) [44]), and the “SERENDIP codelist” from a 

4 https:// github. com/ 5 https:// www. cprd. com/

https://github.com/
https://www.cprd.com/
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project on relational pattern mining for multi-morbidity 
[45]. The eFI is a frailty indicator derived from routinely 
available primary care electronic health record data and 
designed to support the identification of elderly peo-
ple living with frailty. “SERENDIP” is a modified sub-
set of CALIBER. We also made use of the NHS Digital 
SNOMED CT Browser6 for manually creating some of 
the conditions.

Simple conditions for GCAF within DynAIRx
To begin, we start by preprocessing the baseline codelists 
(discussed in Baseline codelists  section). In this step we 
convert all the codelists into SNOMED.

After mapping to SNOMED, we derive the specific 
condition names like Epilepsy, Abdominal Hernia, Anxi‑
ety, Heart failure etc. This list of conditions was passed 
to “Clinician’s Intervention” to add comments regard-
ing to keep all SNOMEDs, or split into sub categories or 
group with any other categories. Clinician’s of DynAIRx 
indicated one of “keep”, “group”, or “split”. Those marked 
“keep” were deemed to be “Simple Conditions” which 
do not require further aggregation or dis-aggregation. 
GCAF generates automatic codelists for such conditions, 
and then automatically validate them through CALIBER 

codelists (see Fig.  1). After this automatic validation, 
there are a small number of SNOMED codes requiring 
clinical validation, drastically reducing the clincal effort 
required.

Using this approach, we generated 112 conditions 
which each consist of between 2 and 207 SNOMED 
codes (see Fig.  2 for details including the name of con-
ditions and their corresponding number of SNOMED 
codes). We observed that we have 15 conditions which 
each consist of 80 to 207 number of codes, 40 codelists 
which consist of 30 to 80 codes, 20 codelists with ∼ 20 
codes, 25 codelists with ∼ 10 codes, and 35 codelists con-
sisting of 2 to 10 codes.

Complex conditions for GCAF within DynAIRx
This subsection covers the conditions where clinicians 
recommended we group or split concepts, and with 
detailed instructions. Some examples of complex condi-
tions are shown in Fig. 3. GCAF generates draft codelists 
for each of them using automation and then we manually 
merge or divide them following clinical recommendation. 
After this GCAF, shrinks and automatically validates 
codes using CALIBER (our trusted source) where possi-
ble and the remainder are validated by the clinical team. 
These codes get validated in short meetings, and the final 
codelists for DynAIRx are then agreed. Some examples of 

Fig. 2 Simple conditions retrieved by GCAF along with the number of SNOMED codes they contain

6 https:// termb rowser. nhs. uk/?

https://termbrowser.nhs.uk/?
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the journey when preparing difficult conditions are dis-
cussed below.

Alcohol Upon analysis of ‘Alcohol’ related conditions, 
we found the initial concepts: Alcohol Problem, Alcoholic 
Liver Disease, Alcohol‑related Brain Injury, Autoimmune 
liver Disease, Chronic Liver disease And Viral hepatitis, 
Oesophageal varices, Alcohol, Liver problems, and Fatty 
Liver. We prepared draft codelists for these conditions 
using the GCAF modules and passed only the condition 
names to clinicians to review. Some example comments 
included: “eFI list includes codes for alcoholic liver dis‑
ease. separate and have 1) alcohol problems and 2) alco‑
holic liver disease and 3) alcohol brain injury. The current 
eFI list is missing some of the alcohol brain injury codes”, 
and “would prefer to break this down by cause (alcohol 
being one, viral being another)’’. Using these guidelines 
we created final codelists of “Alcohol Problems”, “Alco-
hol-related Brain Injury”, “Alcohol Problems Others”, 

“Alcoholic Liver Disease”, “Autoimmune liver Disease”, 
“Fatty Liver”, “Liver Disease - Other”, “Liver Disease - 
Viral”. These were shrunk with the remainder undergoing 
clinical review Fig. 3a.

Cancer For cancer, we initially generated codelists for 
“Cancer Haematological” and “Cancer Solid organ” from 
SERENDIP and a generic “Cancer” list from eFI2. After 
removing duplicates, this was shrunk and taken for clini-
cal review. In this case we only removed a few rows of 
cancer using automation and the final number of codes 
for these conditions are shown in Fig. 3c.

Pulmonary Conditions During analysis of pulmonary 
conditions, we initially drafted the following list of con-
ditions: Chronic Obstructive Pulmonary Disease (COPD), 
Respiratory disease, COPD, Asthma, Primary Pulmonary 
Hypertension, Pulmonary Fibrosis, Recurrent pulmo‑
nary embolus, and Secondary Pulmonary Hypertension. 

Fig. 3 Complex condition analysis after following clinical recommendations
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Clinical feedback on this intial list led to the following 
comments: “in eFI, can check and compare the codel-
ists? asthma and COPD and pulmonary fibrosis are dis-
tinct codelists, is this covering others?”, “compare codel-
ists”, “need to compare codelists for consistency”, “need to 
compare codelists for consistency”, and “Keep this - not 
currently covered by eFI list”. Following these comments, 
the final list of conditions that were shrunk and sent for 
clinical review were “Chronic Obstructive Pulmonary 
Disease (COPD)”, “Pulmonary embolism”, “Other Res-
piratory Disease”, “Respiratory failure”, “Sleep apnoea”, 
“Primary Pulmonary hypertension”, “Rheumatic heart 
disease”, “Asthma”, “Bronchiectasis”, “Cystic fibrosis”, “Pul-
monary Fibrosis”, “Sarcoidosis”, “Occupational lung dis-
eases”, “Pulmonary hypertension”, and “Interstitial lung 
disease”. The size of these conditions is shown in Fig. 3b.

Mental Health We invested a significant amount of 
time in properly capturing mental health conditions. 
Our initial draft list of conditions included Learning Dis‑
ability, Cognitive impairment, Dementia, Anxiety, Schizo‑
phrenia, depression, and different General mental health 
disorders. We got lots of feedback including: “Keep this 
‑ not currently covered by eFI list, might be some over‑
lap with codes within cognitive impairment list ‑ com‑
pare”, “include”, “compare to eFI cognitive impairment, 
dementia and memory problems list. happy to split into 
those 3 categories as per eFI” etc. After some clarifica-
tion we were left with the following conditions “Ano‑
rexia/bulimia”, “Anxiety”, “Bipolar”,“Dementia”,“Personali
ty Disorder”,“Schizoaffective”, and “Depression”. The num-
ber of codes for each mental health condition is shown 
in Fig. 3d.

Some of the other complex conditions requiring signifi-
cant effort included tremor, fracture, headache, anaemia, 
stroke, bleed, angina, and ischaemic heart disease. Full 
details can be found by exploring our publicly available 
codelist repository (attached with proposed work), in 
particular the Github issues.

Shrinking of codelists for reduced validation requirement
All the complex and simple conditions went through the 
shrinking procedure prior to clinical review. In this phase 
we match the condition names with those of CALIBER 
to remove those SNOMED codes which were previously 
validated by CALIBER. For example: Bladder Dysfunc-
tion to the CALIBER lists kuan neuro bladder and kuan 
pri bladder, OCD to kuan ocd, Sickle cell anaemia to 
kuan sickle cell and kuan sickle trait, Gastritis and 
Duodenitis to kuan gastritis duodenitis etc. We then 
remove overlapping codes of all codelists, and sent the 
remaining codes (that are not present in CALIBER) for 

clinical review. An evaluation of the amount of workload 
this saved our clinical team is given in Results on shrink-
ing of lists section.

Clinical validation strategy used with DynAIRx
After we automatically verify most of the SNOMED 
codes using CALIBER, we put the remaining “shrunken 
codelists” to a clinical review. Within DynAIRx we fol-
lowed a strict strategy for reviews.

Strategy for clinical review Codelists which fit at least 
one of the criteria below need to be reviewed by at least 
two clinicians:

• Are a subset of a previously verified codelist but have 
not been clinically reviewed in any other context

• Are a combination of previously clinically verified 
codelists but have not been clinically reviewed in any 
other context

• Are for a condition without any existing published 
codelist (that has undergone clinical review)

• Involve test codes (e.g. diagnosis as a result of a bio-
marker; in the case that none of the above criteria are 
fulfilled only the test codes need to be reviewed)

Codelists will not need to be manually reviewed if none 
of these criteria are met, meaning that codelists which 
have been previously published and require no modi-
fication when following our clinical comments may be 
used in DynAIRx without further review. In this case, the 
source of the codelist will be clearly logged.
Review process All decisions will be clearly logged in the 
corresponding code files used to generate the final codel-
ists (primarily notebook files, stored in GitHub, codes 
provided with paper).

Ambiguous/boundary codes Some codes might be 
mildly or highly suggestive of a condition but not exclu-
sive to it. Some researchers may favour including this 
code (prioritising sensitivity of codelists) whilst others 
may choose to exclude it (prioritising specificity), hence 
the terminology of ‘boundary’ codes. In cases where clin-
ical input suggests a code may be considered a bound-
ary case, this will be clearly logged (through a column 
‘Boundary_case’ in the codelist CSV files which contains 
a value of 1 if a boundary code). Boundary codes must 
be reviewed by 2 clinicians, and each must give a prefer-
ence for inclusion or exclusion (it is unlikely that this will 
be done in a blind or anonymous manner, since codelist 
review is likely to occur within a clincial panel). In the 
case where two clinicians disagree, a third will be used 
for a casting vote. Boundary codes which are chosen to 
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be excluded will be noted in the corresponding code file 
used to generate the codelist.

Prevalence checking Following completion of the codel-
ists, the prevalence of conditions within the DynAIRx 
populations will be calculated and compared to published 
estimates of similar populations (where available). Should 
the estimates obtained using DynAIRx codelists be sig-
nificantly different to those published estimates, codelists 
will be (re)reviewed. It is expected that DynAIRx preva-
lence estimates will be higher than those in the general 
population due to the multimorbid nature of the cohorts.

Patients and Public Involvement and Engagements (PPIE) 
Workshops DynAIRx also conducted three workshops 
on Patients and Public Involvement and Engagement 
(PPIE). First in-person workshop (Feb 2024) was focused 
on aim of DynAIRx optimizing Structured Medical 
Reviews (SMR) using AI, involving six Work Packages 
(WP), focused on SMRs, AI Prediction, Causal Inference, 
Natural Language Processing (NLP), Visualization, and 
focusing on PPIE feedback. The second meeting (online 
in April 2024) was about listening of two PPIE members, 
clarifying their doubts, and noting things they want us 
to incorporate in our communication groups. The third 
workshop (in-person, June 2024) was held in the Civic 
Health Innovation Labs (CHIL), with the University 
of Liverpool about presenting AI work of clustering of 
patients trajectories for optimizing medications and gen-
eration of codelists along with proposed framework. As 
outcomes of these workshops mainly cover the priority 
of conditions, side effects, the burden of long-term pre-
scriptions on patients, and feedback from public advisors 
using AI for medication optimizations, more details of 
them are out of the scope of this paper.

Results
In this section we demonstrate the benefits of using this 
framework within DynAIRx across four experiments. 

1. We demonstrate the efficiency of GCAF by quanti-
fying the reduction in number of SNOMED codes 
requiring clinical review.

2. We compare existing codelists applicable to MLTC 
research with the DynAIRx codelist, discussing their 
strengths and weaknesses, and the number of condi-
tions and codes.

3. We investigate how many “new” codes DynAIRx 
codelist adds over CALIBER codelist in each condi-
tion, which makes DynAIRX codelist more compre-
hensive for public use. All of these new codes have 
been through our clinical review process.

4. Finally, we discuss the time investment of clinicians, 
and the phases of review. Appendix-A (moved to 
supplementary material) provides the list of condi-
tion names that are covered in DynAIRX and the 
codelists generated by GCAF.

Results on shrinking of lists
An analysis of the percentage of codes that could be 
shrunk during the codelist development is presented in 
Fig.  4. Here, for each condition, shrinking percentages 
show the proportion of codes that could be automatically 
verified using CALIBER. To simplify the figure, only 90 
conditions are shown in Fig. 4a, b, c, and d. Specifically, 
Fig.  4a consisted of codelists with less than 10 codes, 
and we see that automation saved 100% of the work for 
most of the codelist except for Alcoholic Liver Disease 
66.67%, Fatty Liver 80%, and Sick Sinus Syndrome and 
conditions related to Cardiomyopathy at 0%. In Fig.  4b 
most of the conditions were 100% shrunk using GCAF, 
thus saving clinical time, apart from Chronic Tinnitus 
0% Abdominal Aortic Aneurysm 36.35% and Pulmonary 
Fibrosis 91.67%. Similarly Fig.  4c and d contain many 
conditions which were fully shrunk and therefore did not 
need further review. Overall, we observe that many con-
ditions like Fragility fracture, Dermatitis atopic contact, 
Self-harm, Musculoskeletal problems, HIV, Anterior and 
Intermediate Uveitis were automatically constructed by 
GCAF (Fig. 1). Some of the more complicated conditions 
including Alcohol Problems were 54.62% automatic, sim-
ilarly Psychoactive Substance Misuse at 84.43%, Cataract 
at 87.38%, Fatty Liver at 80.00%, and Abdominal Aortic 
Aneurysm ay 36.36% etc. A number of conditions such 
as Polycythaemia vera, Sick sinus Syndrome, and Chronic 
Tinnitus were newly introduced within DynAIRx, and so 
require full clinical review. Overall GCAF automation 
validated > 80% of the SNOMED codes, leaving < 20% 
requring clinical time for review.

Comparison with existing codelists
Table  1 presents a comparison of existing codelists 
with DynAIRx. We compare the DynAIRx codelists to 
CALIBER, eFI2, AI-Multiply, and Optimal. Details of the 
origin of these codelists is presented in Existing codel-
ists section. All these codelists are from recent projects in 
the area of multimorbidity. We compared codelists based 
on the number of conditions covered, number of codes, 
number of conditions related to MLTC, and number of 
total codes related to MLTC. Note that CALIBER con-
tains a number of codelists which are specific to COVID-
19. In DynAIRx codelists, we did grouping (merging) 
of different conditions and removed conditions that are 
not directly related to MLTC so codelist count is less 
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Fig. 4 Reduction percentage (displayed on top) of SNOMED codes for clinicians with and without using automation in GCAF. We separated 
the conditions across 4 figures to display the reduction percentage clearly
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but number of conditions are more than existing codel-
ists. Please note, codelists that we are not considering in 
DynAIRx can be found in separate folder within codelists 
(attached in supplementary material of this paper).

We find that Optimal, and AI-MULTIPLY are large 
codelists but consist of many conditions which are not 
technically LTCs. Table  1 summarises the differences 
between the codelists.

DynAIRx added new codes
As previously discussed, the DynAIRx codelist aims to 
be comprehensive within the UK for research involv-
ing MLTCs. In Table  2 we show the number of new 
SNOMED codes added in various conditions compared 

to CALIBER. We find that DynAIRx codelist adds a num-
ber of new SNOMED codes for conditions including 
Renal Stones, Peripheral Neuropathy, Alcohol Problems, 
Chronic Dermatitis Eczema, and Cystic fibrosis etc. The 
full list of ≈ 214 conditions covered by DynAIRx and 
released in our repository can be seen in Appendix-A 
(moved to Supplementary Material).

Clinical validation
As discussed in Background  section, the limitations of 
existing codelist development methods include time 
investment and limited use of automation leading to 
inefficiency and potential for error. Often this requires 
a huge investment of time from clinical colleagues, who 

Table 1 Comparison of existing codelists used within MLTC research and codes (all based on SNOMED)

Codelists OPTIMAL CALIBER eFI2 AI‑MULTIPLY DynAIRx

Number of Conditions 167 357 77 210 214

Number of Codes 30061 13105 7557 11764 14000

Number of Conditions related to MLTC 129 168 57 203 214

Number of Codes related to MLTC 27828 11738 6948 11287 14000

Table 2 Conditions with new SNOMED codes added in DynAIRx compared to CALIBER codelists

Condition Name Number of new codes added Condition name Number of 
new codes 
added

Abdominal Aortic Aneurysm 8 End Stage Renal Disease 37

Alcohol Problems 55 Fatty Liver 2

Alcohol Problems Others 15 Falls 2

Alcoholic Liver Disease 2 Hypertension 56

Anaemia B12 Deficiency 13 Hypertrophic Cardiomyopathy 4

Anaemia Folate Deficiency 5 Hypotension/Syncope 23

Anaemia Haemolytic 13 Liver Disease - Other 40

Anaemia Iron Deficiency 8 Liver Disease - Unknown 2

Anaemia Other 25 Liver Disease - Viral 32

Anxiety 16 Migraine 7

Asthma 36 OCD 6

Back pain 78 Osteoporosis 39

Benign 33 Peptic ulcer Disease 34

Bronchiectasis 22 Peripheral Neuropathies 83

Cataract 14 Polycystic Ovarian Syndrome 2

Chronic Dermatitis Eczema 44 Polycythaemia vera 6

Chronic Tinnitus 10 Psychoactive Substance Misuse 27

Chronic Urticaria 28 Pulmonary Fibrosis 2

CKD 15 Renal Stones 78

Cystic fibrosis 86 Sick sinus Syndrome 3

Depression 62 Sickle cell anaemia 17

Dilated Cardiomyopathy 4 Thyroid Problem 79



Page 14 of 17Aslam et al. BMC Medical Research Methodology          (2025) 25:138 

also have clinical commitments, making codelist devel-
opment a lengthy process. To demonstrate the huge 
potential for saving time when using GCAF, we list all the 
clinical engagement required for the DynAIRx codelist in 
Table 3.

We see a huge reduction in the amount of clinical time 
required, particularly given the large size and scope of 
the DynAIRx codelist. The validation of the shrunk lists 
required only four 1-hour meetings with our team of cli-
nicians. Prior to these meetings, the DynAIRX codelists 
also involved two meetings and a dozen emails to clarify 
the comments from the “Clinical Intervention” GCAF 
module.

Using the partially shrunk codelists that come from the 
automated part of GCAF, the four meetings for clinical 
validation were extremely efficient. In these four clini-
cal meetings we covered 45 codelists in Phase-1, 24 in 
Phase-2, 17 in Phase-3, and 25 in Phase-4. The difference 
in coverage over time is because we primarily focused on 
the “easy” conditions in the first meeting and progres-
sively moved to the more complicated ones (see Simple 
conditions for GCAF within DynAIRx and Complex con-
ditions for GCAF within DynAIRx  sections). As previ-
ously shown, the automated shrinking process managed 
to reduce the number of codes needing manual review 
substantially allowing for hugely efficient meetings. After 
each meetings, we performed the minimal changes that 
were required and finalised each condition. The com-
pleted codelists are accessible in the publicly available 
repository for this work. Details of meetings and valida-
tion strategy can be found in Clinical validation strategy 
used with DynAIRx section and Table 3. Our clinicians/

experts (details can be found on our website7) cover a 
variety of clinical specialities including pharmacology, 
mental health, geriatrics, psychiatry, internal medicine, 
and general practitioner.

Conclusion and future directions
In this work, we explored existing codelist development 
methodologies and barriers to having transparent, repro-
ducible codelists. We found limited research that lived 
up to these ideals, with many not sharing their codel-
ists, and others having opaque processes for codelist 
development. These are critical issues, as codelists need 
to be adapted for different research questions and can-
not always be used as-is. Taking a metascience approach, 
we distilled the best-practice guidelines from a variety of 
previous sources into the GCAF framework which aims 
to dramatically improve the transparency, reliability, and 
reproducibility of research using EHRs; whilst signifi-
cantly reducing the amount of human workload required.

The GCAF framework we propose also addresses issues 
(of reproducibility and transparency) and results in pub-
licly accessible SNOMED codelists and software (Python 
toolkit) to aid codelist development. The primary advan-
tage of this approach is the increased use of automation 
and using trusted sources to reduce the workload, which 
leads to reduction in human error and considerable time 
saved (particularly the time investment required by clini-
cal experts). Software and codelists developed as part of 
this project have been made openly available.

In addition to this, we provide a case study applying this 
approach to the DynAIRx project. In this case study we 

Table 3 Type and time investment of clinicians for the development and validation of codelists generated in DynAIRx, using GCAF

No. Feedback Expertise Number 
of 
experts

Total duration GCAF module

1 Add comments like keep, group, and split 
for condition names (no SNOMED codes)

Clinical Pharmacist 1 2–3 hours Clinician’s Intervention

2 Feedback on condition names splitting 
and grouping before generation of auto-
mated codelists (no SNOMED codes)

Clinical Pharmacist 1 1–2 hours Clinician’s Intervention

3 Reviewing codes for partially shrunk codel-
ists

Experts from Mental Health, Primary Care, 
Pharmacy, and General Practitioner (Part-1)

4 1 hour Clinician’s Validation

4 Reviewing codes for partially shrunk codel-
ists

Experts from Mental Health, Primary Care, 
Pharmacy, and General Practitioner (Part-2)

4 1 hour Clinician’s Validation

5 Reviewing codes for partially shrunk codel-
ists

Experts from Mental Health, Primary Care, 
Pharmacy, and General Practitioner (Part-3)

4 1 hour Clinician’s Validation

6 Reviewing codes for partially shrunk codel-
ists

Experts from Mental Health, Primary Care, 
Pharmacy, and General Practitioner (Part-4)

4 1 hour Clinician’s Validation

Total Time Required by Clinicians = after applying proposed GCAF Automation 7–9 hours

7 https:// www. liver pool. ac. uk/ dynai rx/ our- people/

https://www.liverpool.ac.uk/dynairx/our-people/
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provide details of how to apply the framework in practice. 
We also provide evaluation of the development process 
which show the benefit of automation, strategies for hav-
ing efficient clinical meetings, and a comparison against 
other contemporary codelists in the multimorbidity area. 
We conclude that by applying the proposed framework, 
a codelist of approximately ≈9500 codes requires only 
7–9 hours of clinical time, with over > 80% of the codel-
ists validated beforehand using automation from trusted 
sources. Finally, we release the codelists from DynAIRx 
(covering ≈214 conditions) and the software used to 
speed-up the development process for future researchers.

There are some limitations to this framework which 
should be addressed in future work. Some outstanding 
issues in the development of codelists for EHRs include 
harmonization and temporal drift.

Harmonization refers to how different datasets from 
across the UK and beyond can be combined to produce 
more generalisable results with larger sample sizes. At 
present, these datasets often use different clinical ontol-
ogies and may have different inclusion and exclusion 
critera for patients. Approaches to derive standardised 
metadata for healthcare datasets (led by efforts such as 
the HDR-UK Gateway https:// healt hdata gatew ay. org/ 
en) should be included when extending this framework 
to consider multiple datasets. One common approach is 
to use the Observational Medical Outcomes Partnership 
Common Data Model (OMOP-CDM) as a standard clini-
cal ontology. However, even OMOP has various versions 
which change over time.

The second issue, temporal drift, captures the changing 
nature of healthcare over time and how this is reflected 
within datasets. This includes changes to coding ontolo-
gies, the way that incentive systems such as the Quality 
and Outcomes Framework (QOF) impact data quality, 
and changing demographic factors. Another key exten-
sion of this work would be to handle these issues more 
directly, for instance capturing how the QOF changed 
over time and building that into the data pre-processing 
pipeline. There are existing tools which help researchers 
to search, combine, and modify codelists from previously 
published research [60] (which may now be feasible due 
to advances in cutting-edge large language models), and 
aid with the standardization of codelists to enable reuse. 
The development and release of automated frameworks 
such as GCAF are the first step in fully realising the capa-
bility of routinely collected healthcare in research.
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