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STEENROD OPERATIONS ON POLYHEDRAL PRODUCTS

SANJANA AGARWAL, JELENA GRBIĆ, MICHELE INTERMONT, MILICA JOVANOVIĆ,
EVGENIYA LAGODA, AND SARAH WHITEHOUSE

Abstract. We describe the action of the mod 2 Steenrod algebra on the cohomology of
various polyhedral products and related spaces. We carry this out for Davis-Januszkiewicz
spaces and their generalizations, for moment-angle complexes as well as for certain poly-
hedral joins. By studying the combinatorics of underlying simplicial complexes, we deduce
some consequences for the lowest cohomological dimension in which non-trivial Steenrod
operations can appear.

We present a version of cochain-level formulas for Steenrod operations on simplicial com-
plexes. We explain the idea of “propagating” such formulas from a simplicial complex K

to polyhedral joins over K and we give examples of this process. We tie the propagation
of the Steenrod algebra actions on polyhedral joins to those on moment-angle complexes.
Although these are cases where one can understand the Steenrod action via a stable ho-
motopy decomposition, we anticipate applying this method to cases where there is no such
decomposition.
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1. Introduction

Beginning with a simplicial complex K on m vertices and m topological pairs (X,A) =
((X1, A1), . . . , (Xm, Am)), the polyhedral product (X,A)K is a colimit construction over the
face category of K, that is,

(X,A)K =
⋃

σ∈K

(X,A)σ ⊂ X1 × . . .×Xm

where (X,A)σ = {(x1, . . . , xm) ∈
∏
Xi | xi ∈ Ai if i /∈ σ}.

This construction covers a surprisingly large family of topological spaces. For example,
when (X,A) = (Dn, Sn−1) and K is a triangulation of a sphere, the polyhedral product
(Dn, Sn−1)K is a manifold. In particular, the manifold (D2, S1)K , called a moment-angle
manifold, comes equipped with a Tm-action and is a topological analogue of projective toric
varieties studied in algebraic geometry. It is also an intersection of quadrics which is an object
of interest in complex geometry. For an arbitrary simplicial complex K, the moment-angle
complex (D2, S1)K can be identified as the complement of a complex coordinate subspace
arrangement, linking polyhedral products to combinatorics and commutative algebra.

The main goal of this paper is to introduce a systematic study of the action of the Steenrod
algebra on the cohomology of polyhedral products. So far sporadic observations regarding
the Steenrod algebra actions in toric topology have been made in several papers (see for
example [4], [2]). Here we describe the action of the mod 2 Steenrod algebra A on the
cohomology of polyhedral products and related spaces. For the case of Davis-Januszkiewicz
spaces there is a well-known explicit presentation of the cohomology as the Stanley-Reisner
algebra and this has an action of the Steenrod algebra, stemming from the action on complex
projective space CP∞. We also note a generalization to polyhedral products (X, ∗)K that
works in a similar way.

For moment-angle complexes (D2, S1)K , the situation is more complicated. This is because,
while the cohomology can be described as a Tor algebra, there is no known presentation of
the cohomology in terms of algebra generators and relations. However, the Steenrod action
can be understood via the Hochster splitting and the underlying homotopy decomposition of
moment-angle complexes after suspension. As an example we consider for K a triangulation
of real projective space RP 2 and we deduce some consequences for the lowest dimension in
which a non-trivial Sq1 can appear in the cohomology of a moment-angle complex. When
K is a graph, a 1-dimensional simplicial complex, we deduce that there is no non-trivial
Steenrod operation on the moment-angle complex (D2, S1)K .

Consideration of the Hochster splitting motivates us to understand the action of the Steen-
rod algebra on simplicial complexes. So we also present a combinatorial formula for the action
of Steenrod squares on the cochains of the simplical complex K which is a version of formulas
found in [8]. Then we examine how the action of the Steenrod algebra on the cohomology
of K can be propagated to more complicated simplicial complexes built out of K. That is,
given K and non-trivial actions of Steenrod operations on K, we study operations on various
polyhedral join constructions built from K. Finally, we relate the results back to our earlier
analysis by considering the moment-angle complexes associated to these complexes.
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The paper is organized as follows. In section 2 we recall the necessary definitions and
notation. Section 3 describes the action of the Steenrod algebra A on the cohomology of
Davis-Januszkiewicz spaces (CP∞, ∗)K and on the more general polyhedral products of the
form (X, ∗)K . In section 4 we turn our attention to describing the action of A on the co-
homology of moment-angle complexes. We also provide some results when the simplicial
complex K contains the minimal triangulation of RP 2. Section 5 covers the combinatorial
formula for computing the action of Sqn on cochains. In Section 6 we turn our attention to
polyhedral joins, in particular to substitution complexes K〈K1, . . . , Km〉 and obtain some
results on how Steenrod operations on K,K1, . . . , Km may be used to understand Steenrod
operations on the substitution complex itself. Finally we use this to deduce some information
about how Steenrod operations act on the associated moment-angle complex.

Acknowledgements. We would like to thank the Hausdorff Research Institute for Math-
ematics for hosting the Women in Topology IV workshop and for financial support. We
would also like to thank the Foundation Compositio Mathematica, the Foundation Nagoya
Mathematical Journal and the K-theory Foundation for financial support for this event.

2. Preliminaries

In this section we review some necessary background. We begin with the construction of
the polyhedral product, before giving some brief background on Steenrod operations.

2.1. Notation. We denote by [m] the set {1, . . . , m} endowed with its natural order and we
use this to label the vertices of a simplicial complex, K, on m vertices. The full subcomplex
of K obtained by restricting to J ⊆ [m] will be denoted by KJ .

We work with cohomology with F2 coefficients throughout the paper and we will write
H∗(−) for H∗(−;F2). Where we discuss other coefficients, we will write them explicitly. We
write A for the mod 2 Steenrod algebra.

Suspension for both spaces and graded modules is denoted by Σ. For suspension of a
graded module M , we have (ΣM)n =Mn−1.

2.2. Polyhedral products.

Definition 2.2.1. Given a simplicial complex K on m vertices, and m topological pairs
(X,A) = ((X1, A1), . . . , (Xm, Am)), the polyhedral product (X,A)K is the subspace of the
product

∏m
i=1Xi given by

(X,A)K =
⋃

σ∈K

(X,A)σ

where

(X,A)σ =

m∏

i=1

Yi and Yi =

{
Xi if i ∈ σ

Ai if i /∈ σ.

There are some special cases of this construction worth mentioning. When K is an (m−1)-
simplex, then (X,A)K = X1 × · · · ×Xm. When K is the disjoint union of m points and the
spaces Ai are all taken as a point, then (X, ∗)K is the wedge X1∨· · ·∨Xm. We write (X,A)K

when (X,A) = ((X1, A1), . . . , (Xm, Am)) = ((X,A), . . . , (X,A)). The Davis-Januszkiewicz
space, DJ(K) = (CP∞, ∗)K , and the moment-angle complex, ZK = (D2, S1)K , are key
examples in this paper.
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2.3. Steenrod operations. Steenrod operations are the primary stable operations of ordi-
nary cohomology with Fp coefficients for a prime p. In this paper, we will focus on the case
p = 2, but many of the results have obvious analogues for odd primes. In particular this
applies to results which come from stable homotopy decompositions.

For a space X , its cohomology with F2 coefficients, which we denote H∗(X), has an action
of the mod 2 Steenrod algebra A. This action satisfies a stability property, meaning that
it commutes with the suspension isomorphisms. The F2-algebra A has generators Sqn for
n ≥ 1 subject to the Adem relations. The interaction of the A-algebra structure and the
cup product is controlled by the Cartan formula. This can be conveniently captured by the
statement that the total Steenrod operation, that is, the formal sum

∑∞
n=0 Sq

n, is a ring
map. Here Sq0 = 1, acting as the identity operation. The instability condition satisfied by
the cohomology of a space is that if x is a class in degree d then Sqd(x) = x2 and Sqn(x) = 0
for n > d. This ensures that the total Steenrod operation acts as a finite sum on each
homogeneous element.

An introductory account of mod 2 Steenrod operations and their properties can be found
in [11, Section 4L]. Classical treatments include [13] and [14] .

3. Davis-Januszkiewicz spaces and generalizations

In this section we describe the action of the Steenrod algebra A on the cohomology of
Davis-Januszkiewicz spaces via the description of the cohomology as the Stanley-Reisner
algebra. We also generalize this result to polyhedral products (X, ∗)K for arbitrary pointed
topological spaces Xi.

3.1. Davis-Januszkiewicz spaces. To a simplicial complex K on [m] and a commutative
ring R, one can associate the Stanley-Reisner algebra

(1) R[K] =
R[x1, x2, . . . , xm]

IK

where the Stanley-Reisner ideal IK is generated by the squarefree monomials corresponding
to non-faces of K,

IK = 〈xi1xi2 . . . xik | (i1, i2, . . . , ik) /∈ K〉.

Recall [7, Proposition 4.3.1] that the cohomology algebra of the Davis-Januszkiewicz space
DJK is the Stanley-Reisner algebra

(2) H∗(DJK;R) ∼= R[K]

where each xi is of degree 2.
Since our goal is to study the action of the mod 2 Steenrod algebra A, we now specialize

to the case R = F2.
We define an A-algebra structure on the polynomial algebra F2[x1, x2, . . . , xm] by requiring

the total Steenrod operation Sq to act on generators by Sq(xi) = xi + x2i , and extending to
F2[x1, x2, . . . , xm] by requiring Sq to be an F2-algebra map. Of course, as discussed below,
this is the usual action on the cohomology of a product of infinite complex projective spaces.

Lemma 3.1.1. Let K be a simplicial complex on [m]. An A-algebra structure on the Stanley-
Reisner algebra F2[K] can be defined on generators by Sq(xi) = xi + x2i .
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Proof. Given the definition of the A-algebra structure on the polynomial algebra, we only
need to check that the Stanley-Reisner ideal IK is an A-ideal. For an arbitrary squarefree
monomial of the form xi1 · · ·xik for which (i1, . . . , ik) /∈ K, we show that Sq(xi1 · · ·xik)

belongs to IK . This follows by expanding the product Sq(xi1 · · ·xik) =
∏k

j=1 Sq(xij ) =∏k
j=1(xij+x

2
ij
) into a sum of monomials in which every summand is divisible by xi1 · · ·xik . �

To understand the action of the Steenrod algebra on H∗(DJK), we consider isomor-
phism (2) in more detail. The complex projective space CP∞ can be given a CW structure
with exactly one cell in each even dimension. We endow the product (CP∞)m with the prod-
uct CW structure which consequently consists of only even-dimensional cells. Since DJK is
a cell subcomplex of (CP∞)m, the same holds for DJK . This implies that the cohomology
algebras of (CP∞)m and DJK coincide with their cellular cochain algebras.

The inclusion i : DJK →֒ (CP∞)m induces a homomorphism of differential graded algebras
on cellular cochains

C∗((CP∞)m) −→ C∗(DJK).

As an F2-vector space C∗((CP∞)m) has a basis of cochains (D2k1
j1
· · ·D

2kp
jp

)∗ dual to the

products of cells D2k1
j1
× · · · × D

2kp
jp

. Note that the cup product of basis elements is again a
basis element.

Denote by Φ the A-algebra isomorphism C∗((CP∞)m) −→ F2[x1, x2, . . . , xm]. The isomor-

phism Φ maps the cochain (D2k1
j1
· · ·D

2kp
jp

)∗ to the monomial xk1j1 · · ·x
kp
jp
.

Lemma 3.1.2. The isomorphism (2) is an A-algebra isomorphism.

Proof. We denote the algebra isomorphism (2) by Ψ. Via Ψ, the generator (D2k1
j1
· · ·D

2kp
jp

)∗ of

H∗(DJK) is identified with the equivalence class of the monomial xk1j1 · · ·x
kp
jp

in the Stanley-

Reisner algebra F2[x1, x2, . . . , xm]/IK . Considering the A-algebra structure on F2[K] given
in Lemma 3.1.1, we show that Ψ is an A-algebra isomorphism.

By the surjectivity of i∗ : H∗((CP∞)m) −→ H∗(DJK), by the naturality of Steenrod op-
erations, and since Φ is an A-algebra isomorphism, we have

Ψ ◦ Sq(D2k1
j1
· · ·D

2kp
jp )∗ = Ψ ◦ i∗ ◦ Sq(D2k1

j1
· · ·D

2kp
jp )∗ = [Φ ◦ Sq(D2k1

j1
· · ·D

2kp
jp )∗]

= [Sq ◦ Φ(D2k1
j1
· · ·D

2kp
jp

)∗] = [Sq(xk1j1 · · ·x
kp
jp
)].

At the same time, by the definition of the Steenrod action on F2[x1, x2, . . . , xm]/IK ,

Sq([xk1j1 · · ·x
kp
jp
]) = [Sq(xk1j1 · · ·x

kp
jp
)].

Thus,

Ψ ◦ Sq(D2k1
j1
· · ·D

2kp
jp

)∗ = Sq ◦Ψ(D2k1
j1
· · ·D

2kp
jp

)∗

which proves that Ψ is an A-algebra isomorphism. �

3.2. Generalizations: (X, ∗)K . Davis-Januszkiewicz spaces can be generalized to the poly-
hedral products (X, ∗)K for arbitrary pointed topological spaces Xi. Recall [5, Theorem 2.35]
that if R is a ring such that the natural map

H∗(Xj1 ;R)⊗ · · · ⊗H
∗(Xjk ;R) −→ H∗(Xj1 × · · · ×Xjk ;R)



6 SANJANA AGARWAL ET AL.

is an isomorphism for any {j1, . . . , jk} ⊂ [m], then there is an isomorphism of algebras

(3) H∗((X, ∗)K ;R) ∼=

⊗m
i=1H

∗(Xi;R)

IK(X1, . . . , Xm)

where IK(X1, . . . , Xm) = 〈xi1xi2 . . . xik | xij ∈ H̃
∗(Xij ;R) and (i1, i2, . . . , ik) /∈ K〉.

Specialising to the case R = F2, our goal is to show that isomorphism (3) is an A-algebra
isomorphism. The proofs follow the same pattern as for the case of Davis-Januszkiewicz
spaces. The action of the Steenrod algebra A on ⊗m

i=1H
∗(Xi)/IK(X1, . . . , Xm) is induced

from that on ⊗m
i=1H

∗(Xi) which as a tensor product of A-modules has a standard A-module
structure coming from the comultiplication on A.

Lemma 3.2.1. The ideal IK(X1, . . . , Xm) is an A-ideal.

Proof. For xi1xi2 · · ·xik ∈ IK(X1, . . . , Xm), that is, for (i1, i2, . . . , ik) /∈ K and xij ∈ H̃
∗(Xij ;F2)

for each j ∈ {1, . . . , k}, we prove that Sq(xi1xi2 · · ·xik) ∈ IK(X1, . . . , Xm). As the total
Steenrod operation is multiplicative,

Sq(xi1xi2 · · ·xik) = Sq(xi1)Sq(xi2) · · ·Sq(xik).

Since Sq(xij ) ∈ H̃
∗(Xij), it follows that Sq(xi1xi2 · · ·xik) is a sum of monomials of the form

yi1yi2 · · · yik , where each yij ∈ H̃
∗(Xij ). Since (i1, . . . , ik) /∈ K, we obtain that yi1yi2 · · · yik ∈

IK(X1, . . . , Xm) and thus Sq(xi1xi2 · · ·xik) ∈ IK(X1, . . . , Xm). �

Lemma 3.2.2. The isomorphism (3) is an A-algebra isomorphism.

Proof. Denote isomorphism (3) by Ψ. By Lemma 3.2.1, since IK(X1, . . . , Xm) is an A-
ideal, the A-algebra structure on the tensor product ⊗m

i=1H
∗(Xi) passes to the quotient

ring ⊗m
i=1H

∗(Xi)/IK(X1, . . . , Xm). We prove that Ψ is also an A-algebra isomorphism.
Consider the following commutative diagram

(4)

H∗(X1 × . . .×Xm)
m⊗
i=1

H∗(Xi)

H∗((X, ∗)K)
m⊗
i=1

H∗(Xi)/IK(X1, . . . , Xm)

i∗

Φ

Ψ

where i : (X, ∗)K → X1× . . .×Xm is the inclusion and the right hand arrow is the projection
to the quotient. Let [α] ∈ H∗((X, ∗)K) be a class that is identified under the isomorphism
Ψ with [xj1 · · ·xjp] in ⊗

m
i=1H

∗(Xi)/IK(X1, . . . , Xm). By the commutativity of (4), there is a
class [α̃] ∈ (i∗)−1([α]) ⊆ H∗(X1× . . .×Xm) that is mapped under the Künneth isomorphism
Φ to xj1 · · ·xjp ∈ ⊗

m
i=1H

∗(Xi). Then

Ψ ◦ Sq([α]) = Ψ ◦ i∗ ◦ Sq([α̃]) = [Φ ◦ Sq([α̃])] = [Sq ◦ Φ([α̃])] = [Sq(xj1 · · ·xjp)]

where the first equality is by naturality of Steenrod operations and the second equality is
by commutativity of (4). At the same time, by the definition of the Steenrod action on
⊗m

i=1H
∗(Xi)/IK(X1, . . . , Xm),

Sq([xj1 · · ·xjp]) = [Sq(xj1 · · ·xjp)].

Thus,
Ψ ◦ Sq([α]) = Sq ◦Ψ([α]). �
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Remark 3.2.3. The same proof can be extended to the cohomology splittings of [6, Theo-
rem 3.3, Theorem 3.4], showing that the isomorphisms hold as algebras over the Steenrod
algebra.

Example 3.2.4. For (X, ∗) = (RP∞, ∗) consider the polyhedral product (RP∞, ∗)K. Recall
that H∗(RP∞) ∼= F2[x], where deg(x) = 1, and the action of the total Steenrod square on the
generator is given by Sq(x) = x+ x2. Thus, by (3), the mod-2 cohomology of (RP∞, ∗)K is
isomorphic to the Stanley–Reisner ring F2[K] = F2[x1, . . . , xm]/IK . It follows that the action
of the Steenrod squares on H∗((RP∞, ∗)K) is described by Sq([xi]) = [Sq(xi)] = [xi + x2i ].

4. Moment-angle complexes

Describing the Steenrod operations for moment-angle complexes ZK is more complicated
than for Davis-Januszkiewicz spaces because there is no known presentation of the cohomol-
ogy of ZK . Instead, for K on [m] the cohomology as an algebra is given by

H∗(ZK ;F2) ∼= TorF2[x1,x2,...,xm](F2[K],F2)

see [7, Theorem 4.5.4]. At the moment, we do not know how to describe the Steenrod action
directly on the Tor; we leave this for a future project. There is, however, a stable splitting
of ZK which we use to obtain some understanding of the Steenrod operations.

4.1. Splitting after suspension. In one sense, complete information about the Steenrod
operations on moment-angle complexes can be read off from the homotopy decomposition

(5) ΣZK ≃
∨

J /∈K

Σ|J |+2|KJ |

see [7, Corollary 8.3.6(b)]. Note that the wedge here could be expressed in terms of all
J ⊆ [m], or as we have done, just such J /∈ K, since |KJ | is contractible if J ∈ K.

Proposition 4.1.1. There is an isomorphism of A-modules

(6) H̃∗(ZK) ∼=
⊕

J /∈K

Σ|J |+1H̃∗(KJ).

Proof. From the homotopy decomposition (5), there is an additive splitting of cohomology

H̃∗(ZK) ∼=
⊕

J /∈K

H̃∗(Σ|J |+1KJ).

Since the Steenrod operations are stable, this gives the stated isomorphism ofA-modules. �

Thus the only non-trivial Steenrod operations are internal to the summands in this co-
homological decomposition. This is in contrast to the cup product structure: cup products
within summands are of course trivial since each summand is the cohomology of a suspen-
sion; the only potentially non-trivial cup products pair the summands corresponding to full
subcomplexes on J and L to the summand corresponding to J ∪ L if J ∩ L = ∅, see [7,
Proposition 3.2.10].
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Figure 1. P 2
6 , a 6-vertex triangulation of RP 2. Here the vertices with the

same label are identified, and the boundary edges are identified according to
the orientation shown.

4.2. Main example. Let us consider a specific example which combinatorially detects Sq1

on moment-angle complexes. For the topological space RP 2, we know Sq1 : H1(RP 2) →
H2(RP 2) is non-trivial. Let K be the triangulation of RP 2 on six vertices, P 2

6 , given by
Figure 1. Given that P 2

6 has a non-trivial Sq1, we describe the action of Sq1 on the moment-
angle complex over P 2

6 .
By the homotopy splitting (5),

ΣZP 2

6
≃ (Σ5S1)∨10 ∨ (Σ6S1)∨15 ∨ (Σ7S1)∨6 ∨ Σ8

RP 2

≃ (S6)∨10 ∨ (S7)∨15 ∨ (S8)∨6 ∨ Σ8
RP 2

where X∨k denotes the k-fold wedge of X . Here we are using the fact that all the strict
subcomplexes of P 2

6 are homotopic to the circle, and P 2
6 itself is homotopic to RP 2. For this

example we have a stronger result, namely an unstable splitting [9]

(7) ZP 2

6
≃ (S5)∨10 ∨ (S6)∨15 ∨ (S7)∨6 ∨Σ7

RP 2.

Thus, the cohomology of ZP 2

6
is given by

Hn(ZP 2

6
) =





F2 n = 0, 8, 9

(F2)
10 n = 5

(F2)
15 n = 6

(F2)
6 n = 7

0 otherwise.

Generators in degrees 8 and 9 are suspensions of generators in degrees 1 and 2 of H∗(P 2
6 )

and there is a non-trivial Sq1 action taking the degree 1 generator to the degree 2 generator.
Hence, there is a non-trivial Sq1 action on ZP 2

6
taking the degree 8 generator to the degree

9 generator. All other Steenrod operations act trivially on H∗(ZP 2

6
) since S1 has trivial Sqn

action for n ≥ 1.
Note that the description of the cohomology of ZP 2

6
comes from splitting (7) of topological

spaces. Given a cochain in ZP 2

6
, one can split it into cochains coming from individual full

subcomplexes and vice versa. Thus, combinatorially, knowing how Sq1 acts on these full
subcomplexes gives us complete information on how Sq1 acts combinatorially on ZP 2

6
. There

are many choices for a simplicial cochain representative of the cohomology class generating
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H1(P 2
6 ). For example,

x = [1, 4]∗ + [1, 6]∗ + [2, 5]∗ + [2, 6]∗ + [4, 5]∗

generates H1(P 2
6 ) as does

x′ = [1, 2]∗ + [1, 3]∗ + [1, 4]∗ + [1, 5]∗ + [2, 4]∗ + [2, 5]∗ + [2, 6]∗ + [3, 4]∗ + [4, 6]∗.

Here by [a, b]∗, we mean the dual of the corresponding chain [a, b], where [a, b] is a 1-simplex.
Since these classes are of degree one, the operation Sq1 is given by the cup square which

at the combinatorial level is concatenation of cochains, that is, x2 has a summand [a, b, c]∗

if and only if the cochain x has summands [a, b]∗ and [b, c]∗ and [a, b, c] is a simplex in P 2
6 .

Thus, we have

Sq1(x) = [1, 4, 5]∗

Sq1(x′) = [1, 2, 6]∗ + [1, 4, 6]∗ + [3, 4, 6]∗.

Each of these is a generator ofH2(P 2
6 ), and so non-trivial, and these expressions give cochain-

level representations of the non-trivial operation Sq1 on P 2
6 , which is reflected in the moment-

angle complex as the non-trivial operation

Sq1 : H8(ZP 2

6
)→ H9(ZP 2

6
).

4.3. Some results about Sq1 on moment-angle complexes. The splitting (6) and Ex-
ample (4.2) allow us to deduce some general results for moment-angle complexes. Recall that
the dimension of a simplicial complex is the maximal dimension of its simplices.

Corollary 4.3.1. If dim(K) = d, then Sqn = 0 in H∗(ZK) for n > ⌊d/2⌋.
In particular, if K is a graph (d = 1), then there are no non-trivial Steenrod operations

on H∗(ZK).

Proof. Recall the instability condition for Steenrod operations acting on the cohomology of
a space: a class in degree i only supports non-zero Steenrod operations Sqj for 0 ≤ j ≤ i.
Thus for any space X whose F2-cohomology is concentrated in degrees at most d, we have
Sqn = 0 in H∗(X) for n > ⌊d/2⌋. But if dim(K) = d, this holds for the cohomology of K
and all of its full subcomplexes. And then it follows from splitting (6) that the same holds
in the cohomology of ZK . �

Remark 4.3.2. Analogous results hold for real moment-angle complexes due to a similar
homotopy decomposition after suspension, see [7, Corollary 8.3.6(a)]. And the same consid-
erations apply more generally for polyhedral products (X,A)K where each Xi is contractible,
again because of the homotopy decomposition of the suspension [7, Theorem 8.3.5].

Corollary 4.3.3. If K contains P 2
6 (the 6-vertex model of RP 2 in Figure 1) as a full sub-

complex, then there is a non-trivial Sq1 in H∗(ZK).

Proof. This follows from the splitting and the fact that we have a non-trivial Sq1 inH∗(RP 2).
�

Corollary 4.3.4. Sq1 acts trivially on classes of dimension ≤ 7 in an arbitrary ZK . This
bound is optimal.
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Proof. Rewriting the isomorphism (6) by incorporating suspensions as shifts of the graded
cohomology we get

H̃k(ZK) ∼=
⊕

J /∈K

H̃k−|J |−1(KJ).

Now a class of dimension at most 7 in an arbitrary ZK is a sum of classes of dimension
7 − |J | − 1 in reduced cohomology of full-subcomplexes, where they are zero when |J | > 6.
For |J | = 6, they can be non-zero only when KJ is disconnected, i.e., a disjoint union of
simplicial complexes on fewer vertices. For such a KJ , the cohomology is a direct sum of
cohomology of its connected component simplicial complexes, hence a non-zero class will
further split into classes coming from simplicial complexes on 5 or fewer vertices (and the
Steenrod square respects this). Hence, every class of dimension ≤ 7 of an arbitrary moment-
angle complex splits into classes in the reduced cohomology of full subcomplexes on 5 or
fewer vertices. But, simplicial complexes on 5 or fewer vertices have no non-trivial Sq1. This
was verified by enumerating all such simplicial complexes and computing their cohomologies
using packages for finite simplicial complexes and for cohomology with a basis in Sage [15],
implemented by John H. Palmieri and Travis Scrimshaw, which proves the first statement.

The example of P 2
6 shows that this bound is optimal. �

Note that the Sage computation also implies that P 2
6 is the minimal triangulation of RP 2.

Remark 4.3.5. Define the natural number mi to be the minimal m for which there exists a
simplicial complex K on m vertices admitting a non-trivial Sqi in mod 2 cohomology. Then
the same argument shows that Sqi acts trivially on classes of dimension ≤ mi + i in an
arbitrary ZK . The above is the case i = 1 with m1 = 6. We are not aware of other known
values of mi.

5. Steenrod operations on cochains of simplicial complexes

There are several ways of describing Steenrod operations on simplicial cochains combi-
natorially. See, for example, [12, Definition 2, Theorem 10] or [8, Corollary 3.2]. We give
another description which is essentially a reinterpretation of formulas from [12]. Our interest
in this stems from the idea of seeing how such formulas may be carried over from a simplicial
complex to constructions such as polyhedral products and joins.

Let K be a simplicial complex and j ∈ N. We write Kj for the set of j-simplices in K,
and we write Cj(K), for the simplicial chains on K with coefficients in F2. That is, Cj(K)
is the free F2 vector space generated by the elements of Kj . Similarly, we write Cj(K) for
the simplicial cochains Hom(Cj(K),F2), and we write 〈−,−〉 : Cj(K)⊗Cj(K)→ F2 for the
pairing of cochains and chains.

Our simplicial complex comes with natural maps called face maps ∂i : Kj → Kj−1 for
0 ≤ i ≤ j which send a j-simplex to its ith face. These maps extend linearly to maps
∂i : Cj(K)→ Cj−1(K) on the chain level.

5.1. Combinatorial formula for cochain-level Sq1. We present first a particularly ac-
cessible description of Sq1 and then show that this does in fact agree with the formula in
[12] before proceeding to higher Sqn.
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For c ∈ Cj(K), x ∈ Cj+1(K),

(8) Sq1(c)(x) =
∑

0 ≤ u < v ≤ j + 1
u+ v even

µ(〈c, ∂ux〉 ⊗ 〈c, ∂vx〉)

where µ : F2 ⊗ F2 → F2 is the multiplication in F2.
Notice that the set U from [12, Definition 7] is exactly U = {u, v}, so the formula (8)

follows directly from [12, Definition 2, Theorem 10].
While this gives a formula for Sq1 via the pairing of cochains and chains, we can now give

an explicit formula internal to cochains by using pasting functions fu,v.
Let x = [x0, x1, . . . , xj ]

∗ and y = [y0, y1, . . . , yj]
∗ represent generators of Cj(K) with S =

support(x)∪ support(y) (i.e., S = {x0, . . . , xj, y0, . . . , yj}). If |S| = j+2, define (z0, . . . , zj+1)
as the elements of S listed in their natural order.

On generators define fu,v : C
j(K)× Cj(K)→ Cj+1(K) as

fu,v(x, y) =





[z0, . . . , zj+1]
∗ if |S| = j + 2, S \ support(x) = {zv}

and S \ support(y) = {zu}

0 otherwise

and extend fu,v to Cj(K)× Cj(K) bilinearly.
Finally, for c ∈ Cj(K),

Sq1(c) =
∑

0 ≤ u < v ≤ j + 1
u+ v even

fu,v(c, c).

5.2. Combinatorial formula for cochain-level Sqn. For n > 1, [12, Definition 2, Theo-
rem 10] gives us a similar combinatorial formula for Sqn.

Let A ⊂ B ⊂ N be ordered finite sets and let posB : A→ N be the function that gives the
position of element a ∈ A in set B (for example if B = (3, 6, 7, 9), then posB(6) = 2).

Let j ∈ N. For c ∈ Cj(K), x ∈ Cj+n(K),

(9) Sqn(c)(x) =
∑

µ(〈c, ∂u1
∂u2
· · ·∂un

x〉 ⊗ 〈c, ∂v1∂v2 · · ·∂vnx〉)

where ∂i : Cj+k(K) → Cj+k−1(K), 1 ≤ k ≤ n, 0 ≤ i ≤ j + k is the face operator and
µ : F2 ⊗ F2 → F2 is the multiplication in F2. The sum in (9) goes over all ordered subsets
U = (u1, . . . , un) and V = (v1, . . . , vn) of {0, . . . , j + n} (i.e., u1 < u2 < · · · < un and
v1 < v2 < · · · < vn) such that U ∩ V = ∅, and for all i ∈ {1, . . . , n}

posU∪V (ui) ≡2 ui, posU∪V (vi) 6≡2 vi.

Notice sets U and V are exactly sets U0 and U1 from [12, Definition 7]. The only difference
is that sets U and V have n elements each and U0 and U1 have 2n elements in total, but the
end result for Sqn(c)(x) is the same since all summands in (9) for U0 and U1 not having the
same number of elements will vanish. Once again, the formula (9) follows from [12, Definition
2, Theorem 10].

We now give an explicit formula on cochains by using pasting functions fU,V .
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Let x = [x0, x1, . . . , xj ]
∗ and y = [y0, y1, . . . , yj]

∗ represent generators of Cj(K) with
S = support(x) ∪ support(y) (i.e., S = {x0, . . . , xj, y0, . . . , yj}). If |S| = j + n + 1, define
(z0, . . . , zj+n) as the elements of S listed in their natural order. Let U, V ⊂ {0, . . . , j + n}.

On generators define fU,V : Cj(K)× Cj(K)→ Cj+n+1(K) as

fU,V (x, y) =





[z0, . . . , zj+n]
∗ if |S| = j + n+ 1, S \ support(x) = V

and S \ support(y) = U

0 otherwise

and extend fU,V to Cj(K)× Cj(K) bilinearly.
Finally,

(10) Sqn(c) =
∑

fU,V (c, c),

where the sum in (10) goes over all ordered subsets U = (u1, . . . , un) and V = (v1, . . . , vn)
of {0, . . . , j + n} such that U ∩ V = ∅, and for all i ∈ {1, . . . , n}

posU∪V (ui) ≡2 ui, posU∪V (vi) 6≡2 vi.

In the next section we will initiate the study of how these combinatorial formulas for
Steenrod operations of a simplicial complex K may be used to investigate the effect of
combinatorial changes in K on the Steenrod action. In particular this leads us to consider
the construction known as polyhedral join.

6. Polyhedral joins

In this section we introduce polyhedral joins and investigate Steenrod operations on their
cohomology. We begin with special cases where the homotopy type is understood as that of
a join. Then we consider substitution complexes for which we establish a homotopy decom-
position. This is then used to establish how non-trivial Steenrod operations on the building
complexes are propagated to the substitution complex.

Definition 6.0.1. Given a simplicial complex K on m vertices, and m topological pairs
(X,A) = ((X1, A1), . . . , (Xm, Am)), the polyhedral join (X,A)∗K is the subspace of the join

∗m

i=1Xi given by

(X,A)∗K =
⋃

σ∈K

(X,A)σ

where

(X,A)σ =
m

∗
i=1
Yi and Yi =

{
Xi if i ∈ σ

Ai if i /∈ σ.

Here we see that if K is an (m− 1)-simplex then (X,A)∗K = X1 ∗ · · · ∗Xm, and if K is a
disjoint union of m points then (X, ∅)∗K = X1 ⊔ · · · ⊔Xm.

While the polyhedral join is defined for topological pairs (X,A), in this paper we are
mostly concerned with this construction for pairs (K,L) of simplicial complexes. In this
case, (K,L)∗K is again a simplicial complex, not just a topological space.
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6.1. Special cases. The following table records some other important cases of the polyhe-
dral join.

(K,L) polyhedral join (K,L)∗K name

(notation)

(∆1, ∂∆1) D(K) simplicial double

(∆l, ∂∆l) K(∆l1 , . . . ,∆lm) simplicial wedge

(∆l, L) K(L1, . . . , Lm) simplicial composition

Each line of the table above is successively more general and the homotopy type is known
to be a join [3, Proposition 6.1]

(11) K(L1, . . . , Lm) ≃ K ∗ L1 ∗ · · · ∗ Lm.

Since a join is homotopy equivalent to the suspension of the smash product, its reduced
cohomology is given by the shifted tensor product of the cohomologies. This is also recovered
as [17, Example 3.11].

Proposition 6.1.1. There is an isomorphism of A-modules

H̃∗(K(L1, . . . , Lm)) ∼= ΣmH̃∗(K)⊗ H̃∗(L1)⊗ · · · ⊗ H̃
∗(Lm).

Proof. This follows directly from the homotopy equivalence (11), using that X ∗Y ≃ ΣX∧Y ,

that H̃∗(X ∧ Y ) ∼= H̃∗(X)⊗ H̃∗(Y ) and the stability of Steenrod operations. �

6.2. Substitution complexes. Let K be a simplicial complex on [m] and Ki, i ∈ [m],
simplicial complexes on [ni]. The substitution complex is defined in [1] as the polyhedral join

K〈K1, . . . , Km〉 = (K, ∅)∗K .

We can label vertices of K〈K1, . . . , Km〉 by vi,j, i ∈ [m] and j ∈ [ni] to indicate that they
arise in K〈K1, . . . , Km〉 as a result of the substitution of the complex Ki into the vertex
vi ∈ K.

In what follows, let • denote a simplicial complex consisting of a single vertex. We will
also use the following notation.

K0 = K,

K1 = K〈K1, •, . . . , •〉,

K2 = K1〈•, . . . , •,︸ ︷︷ ︸
n1

K2, •, . . . , •〉

...

Km = Km−1〈•, . . . , •,︸ ︷︷ ︸
∑m−1

i=1
ni

Km〉.

(12)

Observe that, by the definition of the substitution complex, the complex K is a full sub-
complex of K〈K1, . . . , Km〉 on vertices v1,k1 , . . . , vm,km for any kj ∈ [nj ]. In particular, we can
choose kj = 1 for all j, then, when we talk about the vertex vi, i ∈ [m] in K〈K1, . . . , Km〉,
we identify vi with the vertex vi,1.
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The main result of this section is the homotopy decomposition of substitution complexes
described in Theorem 6.2.1 below. For the statement of the theorem and for further discus-
sion, we recall the definition of a link. Let K be a simplicial complex and v ∈ K a vertex.
The link of v in K is the subcomplex

linkK(v) = {τ ∈ K | v /∈ τ, τ ∪ {v} ∈ K}.

We omit the subscript K and write simply link(v) when it is obvious in which simplicial
complex the link is taken.

Theorem 6.2.1. Let K,K1, . . . , Km be simplicial complexes on [m], [n1], . . . , [nm], respec-
tively. Assume that K is connected. Then

K〈K1, . . . , Km〉 ≃ K ∨ linkK0(v1) ∗K1 ∨ . . . ∨ linkKm−1(vm) ∗Km.

To prove the theorem, we first prove several technical statements.

Proposition 6.2.2. The substitution complex K〈K1, . . . , Km〉 is isomorphic to the substi-
tution complex

(K〈K1, . . . , Km−1, •〉)〈•, . . . , •︸ ︷︷ ︸
n1

, . . . , •, . . . , •︸ ︷︷ ︸
nm−1

, Km〉.

It follows that a substitution complex can be constructed sequentially.

Proof. Let σ ∈ K〈K1, . . . , Km−1, •〉 be a simplex not containing the vertex vm. Observe
that we can represent σ as σ = τi1 ∗ · · · ∗ τik , where τij ∈ Kij , for {vi1, . . . , vik} ∈ K and
m /∈ {i1, . . . , ik}. Next note that simplices of

(13) (K〈K1, . . . , Km−1, •〉)〈•, . . . , •︸ ︷︷ ︸
n1

, . . . , •, . . . , •︸ ︷︷ ︸
nm−1

, Km〉

are all possible σ ∈ K〈K1, . . . , Km−1, •〉 not containing the vertex vm and additionally all
simplices σ ∗ τm for τm ∈ Km, whenever {vi1, . . . , vik , vm} ∈ K. In other words, all simplices
in (13) are of the form τi1∗· · ·∗τik for {vi1, . . . , vik} ∈ K (here we allowm to be in {i1, . . . , ik})
and τij ∈ Kj. These are exactly the simplices of K〈K1, . . . , Km〉, so the claim holds. �

The star of v in K is the subcomplex

starK(v) = {τ ∈ K | τ ∪ {v} ∈ K}.

We omit the subscript K and write star(v) when K is understood from the context.

Proposition 6.2.3. Let K and Ki be simplicial complexes and vi ∈ K a vertex. Then

K〈•, . . . , •, Ki, • . . . , •〉 ∼= K
⊔

starK(vi)

starK(vi)〈Ki, •, . . . , •︸ ︷︷ ︸
si−1

〉

where the isomorphism is of simplicial complexes, si is the number of vertices in star(vi)
and, for the ease of notation, we assume that vi is the first vertex of star(vi).

Proof. When substituting Ki in K, we are placing Ki instead of the vertex vi and joining
it with everything vi was connected to, i.e., we are joining it with linkK(vi). This means we
have an isomorphism

K〈•, . . . , •, Ki, • . . . , •〉 ∼= K|[m]\{vi}

⊔

link(vi)

link(vi) ∗Ki.
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Similarly link(vi)∗Ki can be seen as star(vi)〈Ki, •, . . . , •︸ ︷︷ ︸
si−1

〉, where si is the number of vertices

of star(vi). Thus

K〈•, . . . , •, Ki, • . . . , •〉 ∼= K|[m]\{vi}

⊔

link(vi)

star(vi)〈Ki, •, . . . , •︸ ︷︷ ︸
si−1

〉

∼= K
⊔

star(vi)

star(vi)〈Ki, •, . . . , •︸ ︷︷ ︸
si−1

〉.

�

Lemma 6.2.4. Let K,L and M be connected CW -complexes and L ≃ M . Then (K, v) ∨
(L, v′) ≃ (K, v) ∨ (M, v′′) for any choice of base points v ∈ K, v′ ∈ L and v′′ ∈M .

Proof. Let ϕ : L→M and ψ : M → L be such that ϕ ◦ ψ ≃ idM and ψ ◦ ϕ ≃ idL. Since the
spaces are path-connected and well-pointed for any choice of base point, we can assume that
ϕ(v′) = v′′ and ψ(v′′) = v′.

The space (K, v) ∨ (L, v′) is a push-out of

K ← {v} → L

and similarly, the space (K, v) ∨ (M, v′′) is a push-out of

K ← {v} →M.

Since CW -complexes are cofibrant objects and the inclusions of v in the above diagrams
are cofibrations, we apply [7, Proposition C.3.5] to conclude that these push-out objects are
weakly (and, thus for CW -complexes also strongly) homotopy equivalent to their homotopy
colimits. Since we also have homotopy equivalences between the respective objects of the
diagrams, we conclude that the push-outs are homotopy equivalent. �

Lemma 6.2.5. Let K and Ki be simplicial complexes and vi ∈ K a vertex. Assume that K
is connected. Then

K〈•, . . . , •, Ki, • . . . , •〉 ≃ (K, vi) ∨ (star(vi)〈Ki, •, . . . , •〉, vi),

where we assume that vi is the first vertex of star(vi).

Proof. Let S = K〈•, . . . , •, Ki, • . . . , •〉. Since (S, star(vi)) has the homotopy extension prop-
erty and star(vi) is contractible, we have a homotopy equivalence of topological spaces

S ≃ S/star(vi).

From Proposition 6.2.3, we now get

S ≃ (K/star(vi)) ∨ (star(vi)〈Ki, •, . . . , •〉/star(vi))

≃ K ∨ star(vi)〈Ki, •, . . . , •〉

where the last homotopy equivalence follows from Lemma 6.2.4.
Since both K and star(vi)〈Ki, •, . . . , •〉 are path connected, we can choose vi to be the

base point for both of them, i.e.,

�(14) S ≃ (K, vi) ∨ (star(vi)〈Ki, •, . . . , •〉, vi).

We are now ready to prove Theorem 6.2.1.
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Proof of Theorem 6.2.1. Recall the definition (12) of simplicial complexes K0, K1, . . . , Km.
By Proposition 6.2.2, we have that Km ∼= K〈K1, . . . , Km〉 and, by the definition of the
substitution complex, we have that the complex Ki is a full subcomplex of Ki+1 on vertices

v1,1, . . . , v1,n1
,

...

vi,1, . . . , vi,ni
,

vi+1,1,

...

vm,1.

By Lemma 6.2.5, we have a homotopy equivalence

Ki+1 ≃ (Ki, vi+1,1) ∨ (starKi(vi+1,1)〈Ki+1, •, . . . , •〉, vi+1,1).

To simplify the notation, let Xi+1 = starKi
(vi+1,1)〈Ki+1, •, . . . , •〉. Notice that Xi+1 =

linkKi(vi+1,1) ∗Ki+1.
Thus, to get to the conclusion of the theorem, we observe the sequence of homotopy

equivalences

K〈K1, . . . , Km〉 ∼= Km ≃ (Km−1, vm,1) ∨ (Xm, vm,1)

≃
(
(Km−2, vm−1,1) ∨ (Xm−1, vm−1,1), vm,1

)
∨ (Xm, vm,1)

...

≃
(
· · ·

((
(K0, v1,1) ∨ (X1, v1,1), v2,1

)
∨ (X2, v2,1)

)
. . .

)
∨ (Xm, vm,1)

which we can obtain by Lemma 6.2.5.
The claim follows since K is connected, by an application of Lemma 6.2.4 to change the

base point to v1,1. �

6.3. Propagation of Steenrod operations on substitution complexes. In this section
we consider situations where we can deduce the existence of a non-trivial Steenrod operation
on a substitution complex from the existence of such an operation for one of the simplicial
complexes used to build the substitution complex. We refer to this scenario as propagation
of Steenrod operations.

Here we establish some results on how non-trivial Steenrod operations on K and the
Kis propagate to the substitution complex K〈K1, . . . , Km〉 given the splitting from Theo-
rem 6.2.1. Further we study explicitly how these propagations manifest combinatorially with
examples.

Proposition 6.3.1. If K has a non-trivial Sqn, then the same is true for the substitution
complex K〈K1, . . . , Km〉.

Proof. This is immediate from Theorem 6.2.1. The simplicial complex K appears as a wedge

summand in the splitting of the substitution complex and thus H̃∗(K) is a summand in the
cohomology of the substitution complex. �

By similar reasoning, we get the following propagation result.
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Proposition 6.3.2. If Ki has a non-trivial Sqn and linkK(vi) is not acyclic, then the sub-
stitution complex K〈K1, . . . , Km〉 has a non-trivial Sqn propagating from Ki.

Proof. Reorder the vertices of the complex K, so that i is now the first vertex (and in
the substitution complex Ki is now K1). By Theorem 6.2.1 for this reordered substitution

complex, up to suspension, H̃∗(linkK(vi))⊗ H̃
∗(Ki) is a summand in the cohomology of the

substitution complex. Using non-acyclicity of linkK(vi) and stability of Steenrod operations,
we have the result. �

In general, one cannot propagate Sqn fromKi to the substitution complex K〈K1, . . . , Km〉.

Example 6.3.3. Let K = ∆1 and let K1 = P 2
6 . Then K〈K1, •〉 ∼= ConeP 2

6 ≃ ∗ does not
inherit a non-trivial Sq1 from P 2

6 . More generally, for K = ∆1, the substitution complex
K〈K1, •〉 = ConeK1 ≃ ∗. A whole family of examples of this type can be derived by
requiring, for example, that link(vi) is contractible.

Remark 6.3.4. Each Ki is a full subcomplex of the substitution complex K〈K1, . . . , Km〉,
but this does not ensure a non-trivial propagation of the Steenrod operations (unlike in the
case of moment-angle complexes). We return to this below.

6.3.1. Combinatorial study of propagation in substitution complexes. By Proposition 6.3.1, a
non-trivial Steenrod action in K propagates to the substitution complex K〈K1, . . . , Km〉. If
we know a cochain representative of a class in H∗(K) on which the Steenrod action is non-
trivial, the question arises as to how to obtain a representative of a class in the substitution
complex with non-trivial Steenrod action. One can then use the formulas from Section 5 to
calculate the non-trivial Steenrod operation on this class.

To begin, let us focus on a simple example.

Example 6.3.5. Let K = P 2
6 , K1 = S0 and Ki = •, i ∈ {2, 3, 4, 5, 6}.

Here, a non-trivial Steenrod square is Sq1 from the first to the second cohomology group
of K. To address our question, we want to know which conditions ensure that a cochain is
a cocycle and not a coboundary, i.e., that it represents a non-trivial cohomology class in the
substitution complex P 2

6 〈S
0, •, •, •, •, •〉.

For a simplicial complex K, in order for a one-dimensional cochain to be a cocycle, it must
contain an odd length cycle of duals of edges. And in order for it to not be a coboundary, for
each 2-simplex in K, this cochain needs to contain the duals of an even number of its edges
(so either 0 or 2). For higher dimensions, we do not know the corresponding conditions. For
P 2
6 this works out nicely. First, since there are no 3-simplices, each two-dimensional cochain

is a cocycle. Second, since each edge belongs to exactly two 2-simplices, if a two-dimensional
cochain is the sum of an odd number of duals of 2-simplices, it is not a coboundary.

Recall from Section 4.2 a cochain representative

x = [1, 4]∗ + [1, 6]∗ + [2, 5]∗ + [2, 6]∗ + [4, 5]∗

of the generator in H1(P 2
6 ).

The substitution complex P 2
6 〈S

0, •, •, •, •, •〉 is obtained by adding a new vertex 7 and
connecting it to everything vertex 1 was connected to, i.e., we are adding facets [2, 3, 7],
[2, 6, 7], [3, 5, 7], [4, 5, 7] and [4, 6, 7] to P 2

6 .
In order to obtain a representative of the generator in the substitution complex, we start

from x and then add edges to it to construct a cocycle that is not a coboundary. It is enough
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for each edge in x containing the vertex 1 to add an edge where 1 is exchanged for 7. Thus
we get

y = [1, 4]∗ + [1, 6]∗ + [2, 5]∗ + [2, 6]∗ + [4, 5]∗ + [4, 7]∗ + [6, 7]∗ = x+ [4, 7]∗ + [6, 7]∗.

Now we can use the combinatorial formula in order to calculate Sq1(y), which in this case is
the cup product, i.e. concatenation of cochains. Thus, y2 has a summand [a, b, c]∗ if and only
if the cochain y has summands [a, b]∗ and [b, c]∗ and [a, b, c] is a simplex in P 2

6 〈S
0, •, •, •, •, •〉.

This gives us

Sq1(y) = y2 = [1, 4, 5]∗ + [2, 6, 7]∗.

Since Steenrod squares commute with the coboundary operator, Sq1(y) is a cocycle and it
is not difficult to check that it is not a coboundary, so y is indeed a representative of a class
with non-trivial Steenrod action.

Next we consider replacing S0 with S1 in the example above, where S1 is modelled as the
simplicial complex ∂∆2.

Example 6.3.6. Let K = P 2
6 , K1 = ∂∆2 and Ki = •, i ∈ {2, 3, 4, 5, 6}.

The substitution complex P 2
6 〈∂∆

2, •, •, •, •, •〉 can be obtained by adding two vertices 7
and 8 and 15 facets [a, b] ∗ [c, d] for each edge [a, b] in linkP 2

6
(1) and [c, d] an edge in triangle

[1, 7, 8]. If we start again with the same cochain

x = [1, 4]∗ + [1, 6]∗ + [2, 5]∗ + [2, 6]∗ + [4, 5]∗

and for each edge containing vertex 1 we add two new edges where 1 is exchanged for 7
and then 8, we will get a representative of a non-trivial class in the substitution complex.
Namely, we take

y = [1, 4]∗ + [1, 6]∗ + [2, 5]∗ + [2, 6]∗ + [4, 5]∗ + [4, 7]∗ + [4, 8]∗ + [6, 7]∗ + [6, 8]∗

= x+ [4, 7]∗ + [4, 8]∗ + [6, 7]∗ + [6, 8]∗.

Now, by the combinatorial formula we have

Sq1(y) = y2 = [1, 4, 5]∗ + [1, 4, 7]∗ + [1, 4, 8]∗ + [1, 6, 7]∗ + [1, 6, 8]∗ + [2, 6, 7]∗ + [2, 6, 8]∗.

Again, since Steenrod squares commute with the coboundary operator, Sq1(y) is a co-
cycle. Notice that all edges except for [1, 7], [1, 8] and [7, 8] belong to an even number of
2-simplices, so if a two-dimensional cochain contains an odd number of duals of 2-simplices
whose boundary does not have any of the edges [1, 7], [1, 8] and [7, 8], then this cochain is
not a coboundary. This is true for Sq1(y) (it contains three such 2-simplices [1, 4, 5], [2, 6, 7]
and [2, 6, 8]) and thus, Sq1(y) is non-trivial.

The same procedure can be carried out for more general substitutions P 2
6 〈K1, . . . , K6〉.

In general, if K is an arbitrary simplicial complex with non-trivial Steenrod action, de-
scribing appropriate cochains can be more difficult. The problem lies in determining whether
a cochain is a cocycle and not a coboundary. With P 2

6 we were only dealing with cochains of
dimension 1 and 2 where things are still not too complicated, but in higher dimensions it is
far more difficult to give these non-triviality conditions. If we were to have a simple enough
way to determine whether a cochain is a representative of a non-trivial class we could carry
out a similar procedure to that described above. Start with a non-trivial cochain represen-
tative x in H∗(K) which supports a non-trivial Sqn. Next, extend it “minimally” by adding
what is needed for it to become a non-trivial representative y in the substitution complex.
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Then calculate Sqn(y) by using the combinatorial formula (10) and finally, check if Sqn(y)
is non-trivial.

6.4. Propagation of Steenrod operations on moment-angle complexes. The inter-
action of moment-angle complexes and polyhedral joins of pairs of simplicial complexes has
been of interest in many contexts (see for example [16], [10]). In this section we consider
various ways Steenrod operations on the cohomology of K,K1, . . . , Km, L1, . . . , Lm can be
propagated to Steenrod operations on the cohomology of moment-angle complexes over the
polyhedral joins (K,L)∗K .

Recall that the Hochster formula determines the cohomology of the moment-angle complex
ZK in terms of the cohomology of all full subcomplexes KJ of K. The homotopy type of
a full subcomplex KJ of K is not in general related to the homotopy type of K. For an
illustration, one can consider for K a cone over an arbitrary simplicial complex L and thus
K is contractible, while L, which is a full subcomplex of K, can be of an arbitrary homotopy
type. We have a slightly better control over the homotopy type of certain polyhedral joins
and their particular full subcomplexes.

Consider a composition complex (∆, L)∗K , where (∆, L) = (∆ni−1, Li)
m
i=1 . As noted

in (11), (∆, L)∗K is homotopy equivalent to K ∗ L1 ∗ . . . ∗ Lm. It is easy to notice that
in general neither K nor the Lis are full subcomplexes of the composition complex (∆, L)∗K .
As an example, take for each of K,L1 and L2 two disjoint vertices. Then the composition
complex (∆1, S0)∗S

0

is the simplicial complex ∂∆3, the boundary of a 3-simplex, and no two
disjoint vertices form a full subcomplex of it.

Lemma 6.4.1. Let K be a simplicial complex on [m] and L1, . . . , Lm simplicial complexes on
ni vertices (allowing ghost vertices). If none of K, L1, . . . , Lm is contractible, then the non-
trivial Steenrod operations on K, L1, . . . , Lm propagate to non-trivial Steenrod operations on
the moment-angle over the composition complex (∆, L)∗K.

Proof. By the Hochster formula, the cohomology of the suspended composition complex
(∆, L)∗K appears as a summand of the cohomology of the moment-angle complex. By the
Cartan formula and the fact that the composition complex is homotopy equivalent to K ∗
L1 ∗ . . . ∗Lm, the non-trivial Steenrod operations on K, L1, . . . , Lm propagate to non-trivial
Steenrod operations on the moment-angle complex. �

We end by returning to substitution complexes K〈K1, . . . , Km〉 = (K, ∅)∗K . By Theo-
rem 6.2.1,

K〈K1, . . . , Km〉 ≃ K ∨ linkK0(v1) ∗K1 ∨ . . . ∨ linkKm−1(vm) ∗Km.

In the previous section, we commented that the non-trivial Steenrod operations on Ki

do not necessarily propagate to non-trivial Steenrod operations on the substitution complex
(K, ∅)∗K , in particular, when link(vi) is contractible. Nevertheless, we can propagate the non-
trivial Steenrod operations onKi to those on the moment-angle complex over the substitution
complex (K, ∅)∗K . It is easy to see that all K and K1, . . . , Km appear as full subcomplexes
of the substitution complex (K, ∅)∗K .

Proposition 6.4.2. Let K be a simplicial complex on [m] and K1, . . . , Km simplicial com-
plexes on ni vertices, respectively. Then the non-trivial Steenrod operations on K, K1, . . . , Km

give rise to non-trivial Steenrod operations on the moment-angle complex over the substitu-
tion complex (K, ∅)∗K .
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Proof. By the Hochster formula, the cohomology of the moment-angle complex over the
substitution complex (K, ∅)∗K decomposes into the direct sum of the cohomology of all
(suspended) full subcomplexes of the substitution complex. In the substitution complex itself,
K, K1, . . . , Km are all full subcomplexes, so all the Steenrod operations on their cohomology
will give propagate to non-trivial Steenrod operations on the moment-angle complex. �
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