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Abstract

Unanchored population-adjusted indirect comparisons (PAICs) such as matching-adjusted indirect comparison

(MAIC) and simulated treatment comparison (STC) attracted a significant attention in the health technology

assessment field in recent years. These methods allow for indirect comparisons by balancing different patient

characteristics in single-arm studies in the case where individual patient-level data are only available for one

study. However, the validity of findings from unanchored MAIC/STC analyses is frequently questioned by

decision makers, due to the assumption that all potential prognostic factors and effect modifiers are accounted for.

Addressing this critical concern, we introduce a sensitivity analysis algorithm for unanchored PAICs by extending

quantitative bias analysis techniques traditionally used in epidemiology. Our proposed sensitivity analysis involves

simulating important covariates that were not reported by the comparator study when conducting unanchored STC

and enables the formal evaluating of the impact of unmeasured confounding in a quantitative manner without

additional assumptions. We demonstrate the practical application of this method through a real-world case study of

metastatic colorectal cancer, highlighting its utility in enhancing the robustness and credibility of unanchored PAIC

results. Our findings emphasise the necessity of formal quantitative sensitivity analysis in interpreting unanchored

PAIC results, as it quantifies the robustness of conclusions regarding potential unmeasured confounders and

supports more robust, reliable, and informative decision-making in healthcare.

Highlights

What is already known

• Population-adjusted indirect comparisons (PAICs) are increasingly used to account for differences in patient

characteristics between two treatments evaluated in different studies.

• Unanchored PAICs such as matching-adjusted indirect comparison and simulated treatment comparison, are

commonly used when the evidence involves single-arm trials.

• Confounding significantly challenges the reliability of using evidence from single-arm trials to inform the

relative effect of treatments.

This article was awarded Open Data and Open Materials badges for transparent practices. See the Data availability statement
for details.
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What is new

• We extended quantitative bias analysis for unmeasured confounding to unanchored PAICs, presenting a set of

graphical tools to explore the sensitivity of indirect treatment effect estimates to the presence of unmeasured

confounder(s).

• We illustrated how our proposed approach can quantify the potential bias associated with unmeasured

confounding where certain prognostic factors and/or effect modifiers are not reported in the comparator

study, aiding decision-making via a real-world case study.

• Our findings emphasise the necessity of formal quantitative sensitivity analysis in the interpretation of

unanchored PAIC results, ensuring more robust, reliable, and informative decision-making in healthcare.

Potential impact for Research Synthesis Methods readers

• Sensitivity analysis can quantify how robust the conclusion is to the potential unmeasured confounder(s) and

should be used to aid decision-making.

• The quantitative bias analysis approach may have applicability in other areas where decision-making relies

on untestable assumptions.

1. Introduction

Health technology assessment (HTA) evaluates the clinical and economic impacts of health technolo-

gies. It provides systematic evidence to policymakers and healthcare providers with the goal to ensure

healthcare meets high-quality standards and offers optimal value for money. The evidence that informs

HTA decision-making encompasses a wide variety of types with well-conducted randomised controlled

trials (RCTs) regarded as the gold standard for evaluating relative treatment effects.1 However, an RCT

may not be feasible due to ethical and practical challenges, for example, in rare diseases and highly

targeted patient populations. In these cases, ‘single-arm trials’ in which all patients receive the same

treatment may be conducted. A review of submissions to HTA bodies revealed a significant year-on-

year increase in the submissions with single-arm trials (from 8 in 2011 to 102 in 2019).2 Lack of

randomisation of single-arm trials raises a particular challenge in HTA where the estimate of the relative

treatment effect against an intervention used in routine practice is required for decision-making.

Unanchored indirect treatment comparison is required to estimate the relative treatment effect based

on single-arm trials without a common comparator. In HTA, it is common that the evidence for the

efficacy of the comparator treatment is available only as a set of published summary statistics (i.e.,

as aggregate data), and that the individual patient-level data (IPD) from the single-arm trial of the

treatment of interest are available to the pharmaceutical company that developed the treatment and is

conducting the analysis. This is the setting that we are considering in this article.

Due to the inherent lack of randomisation in single-arm trial designs, confounding issues signif-

icantly challenge the reliability of using evidence from these studies to inform the relative effect of

treatments. Population-adjusted indirect comparison (PAIC) methods such as the matching-adjusted

indirect comparison (MAIC)3,4 and the simulated treatment comparison (STC)4,5 were developed with

an aim to adjust for differences in baseline characteristics between the two study population in the case

IPD are only available for one of the studies. MAIC is based on propensity score weighting and STC

is based on regression adjustment. Both methods provide an estimate of the relative treatment effect in

the comparator study population where only aggregate data are available.

A valid unanchored MAIC/STC requires that all potential prognostic factors and effect modifiers

are included in the analysis.6 Both approaches require sufficient overlap between the study populations.

The STC approach also requires the correct specification of the form of the outcome regression model

in order to provide unbiased estimates. The assumption of no unmeasured confounding is largely

considered impossible to meet in an unanchored comparison,6–8 and all the previous simulation studies

show the importance of adjusting for all relevant covariates in MAIC and STC to avoid bias.9–14

However, the selection of covariates is often restricted by the availability of the data. Information on
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the baseline characteristics for the comparator study population is often reported only for a smaller set

of covariates compared to those that were measured in the company’s study. Adjustment using MAIC

and STC would be limited only to the covariates reported in the comparator study, which is likely to

lead to bias. There is currently no standard approach to quantifying this potential bias, which has led to

caution in the use of results from unanchored MAIC/STC analyses in reimbursement decisions.

A recent review on the use of PAICs in practice show that there is a substantial increase in the use

of these methods in recent years, with about three-quarters being unanchored and MAICs were applied

significantly more frequently than STCs.15 Methodological review of these methods also highlighted

that there are currently no methods to assess the robustness of PAIC with regard to the no unmeasured

confounding assumption; and there is a pressing need for additional guidelines and recommendations

regarding methodological and reporting standards to enhance the quality of such analyses in the

future.15,16

In this article, we aim to address the limitation of the current unanchored PAIC methods where

certain prognostic factor and/or effect modifiers are not reported in the comparator study. We firsty

explain the impact of uncontrolled confounding in a simple case. We then introduce the concept of

quantitative bias analysis (QBA) for unmeasured confounding in a general setting. We extend the QBA

technique for uncontrolled confounding to unanchored PAIC methods. We present how sensitivity

analysis could be conducted for important covariates that were not reported by the comparator study

when conducting unanchored STC. We demonstrate the method through a real-world case study in

metastatic colorectal cancer.

2. Consequences of uncontrolled confounding

We now demonstrate the exact bias associated with omitting a single binary unmeasured confounding

variable 𝑈. Suppose that we know the full linear regression model to estimate the effect of treatment 𝐴

on an outcome 𝑌 by controlling for a set of covariates 𝑶 and 𝑈 is

𝑌𝑖 = 𝛽0 + 𝛽1𝐴𝑖 + 𝜷𝑻2 𝑶𝒊 + 𝛽3𝑈𝑖 + 𝜀
𝑓 𝑢𝑙𝑙

𝑖
, (1)

where 𝑌𝑖 is the outcome of interest for individual 𝑖; 𝐴𝑖 is the treatment variable for individual 𝑖; 𝑶𝒊 is

a 𝑝 × 1 vector of observed 𝑝 covariates for individual 𝑖; 𝑈𝑖 is the unmeasured covariate for individual

𝑖; 𝛽0 is the intercept; 𝛽1 is the coefficient for the treatment variable; 𝜷2 is a 𝑝 × 1 vector of coefficients

for observed 𝑝 covariates; 𝛽3 is the coefficient for the unmeasured covariate; and 𝜀
𝑓 𝑢𝑙𝑙

𝑖
is the random

error of the full model.

Because 𝑈 is unmeasured, we have to estimate the treatment effect using a restricted model without

the covariate 𝑈:

𝑌𝑖 = α0 + 𝛼1𝐴𝑖 + 𝜶𝑻
2 𝑶𝒊 + 𝜀𝑟𝑒𝑠𝑖 , (2)

where 𝛼0 is the intercept; 𝛼1 is the coefficient for the treatment variable; 𝜶2 is a 𝑝 × 1 vector of

coefficients for observed 𝑝 covariates; and 𝜀𝑟𝑒𝑠
𝑖

is the random error of the restricted model.

Cinelli and Hazlett (2020) showed that by applying the Frisch–Waugh–Lowvell (FWL) theorem,17

there is a closed form solution for the bias associated with the estimate of 𝛼1 from the restricted

model comparing with the estimate of 𝛽1 from the full model.18 The bias by omitting the unmeasured

confounding variable 𝑈 when estimating the treatment effect is

𝑏𝑖𝑎𝑠 = 𝛽3𝛾̂1. (3)

𝛽3 is the least square estimate of the coefficient for the unmeasured 𝑈 in the full model and it describes

how the change in the values of the unmeasured confounding variable would impact the prediction of

the outcome 𝑌 . That is, 𝛽3 = 𝐸 (𝑌 |𝑎, 𝑜,𝑈 = 1) − 𝐸 (𝑌 |𝑎, 𝑜,𝑈 = 0). 𝛾̂1 is the estimate of the coefficient

of the regression of 𝑈 on the treatment 𝐴. It describes the difference in the predicted value of the

unmeasured confounder 𝑈, when comparing individuals with the same covariates 𝑶 but different
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treatment 𝐴. That is, 𝛾̂1 = 𝑃 (𝑈 = 1|𝑎1, 𝑜) − 𝑃 (𝑈 = 0|𝑎0, 𝑜), where 𝑎0 and 𝑎1 are the two possible

treatments; 𝑜 are the observed covariates.

Mathematically, the calculation of the bias for omitting multiple unmeasured covariates extends

naturally. VanderWeele and Arch (2011) used the causal inference counterfactual framework to derive

a general class of bias formulas for sensitivity analysis for causal effects when considering unmeasured

confounding variables.19 The bias formulas generalise many of the existing sensitivity analysis results

in the bias-modelling literature. The formulas were also very flexible in the sense that it does not

presuppose a particular functional form relating the outcome and the observed covariates and treatment.

VanderWeele and Arch proved that under some stronger assumptions their proposed bias formulas can

be reduced to the product of 𝛽3𝛾̂1 (Equation (3)) when 𝑈 is binary in their analysis.19

3. Quantitative bias analysis (QBA) for unmeasured confounding

QBA is an umbrella term for the methods used to model systematic errors that may distort the results.

This approach has a long history of development in the field of epidemiology, linking back to the study

published by Cornfield et al. (1959).20 investigating the causal effect between smoking and lung cancer.

The aim of the QBA is to quantitatively measure the direction, magnitude, and uncertainty associated

with systematic errors on study results. The analyses can be broadly categorised to assess the impact of

violations to the following assumptions21,22:

(i) no unmeasured confounders;

(ii) selection, participation, and missing data are random within levels of adjusted covariates;

(iii) no measurement error (including misclassification).

Details of the implementation of the QBA methods can be found in Fox et al. (2022) and good

practices for applying QBA to epidemiological data can be found in Lash et al. (2014).23,24 In this

article, we are only interested in the QBA methods used for unmeasured confounding. Leahy et al.

(2022) summarised the methods available in this situation and grouped the methods based on the

analytic approaches used.25 The basic idea behind the QBA methods is described below following

Kawabata et al. (2023).26

A QBA requires a model (also known as a bias model) for the observed data (an outcome 𝑌 , an

exposure/treatment 𝐴, and observed covariates 𝑶) and unmeasured covariates (𝑼). The bias model

includes one or more sensitivity/bias parameters, where the values of these parameters cannot be

estimated from the data alone as it involves analysing unmeasured data𝑼. An example of the sensitivity

parameters is the strength of the association between unmeasured covariates and an exposure given

measured covariates. When conducting the QBA, these sensitivity parameters need to be pre-specified,

which leads to either deterministic or probabilistic QBA. In a deterministic QBA, some fixed values for

the sensitivity parameters are specified and used in the analysis to obtain a range of results showing the

impact of changing the sensitivity parameters. In a probabilistic QBA, a probability distribution for the

sensitivity parameters would be specified and the results is obtained by average over this distribution to

take into account uncertainty in the sensitivity parameters. However, this relies on the distribution being

correctly specified, which is often challenging to achieve. Finally, a QBA could also be performed as a

tipping point analysis with an aim to identify the values for the sensitivity parameters that would change

the study conclusion. This is a similar approach to the threshold analysis in health economics, which

answers the question ‘to what extent would the evidence need to change to alter the recommendation’.27

4. Sensitivity analysis for population-adjusted indirect comparisons (PAICs)

One of the major criticisms of unanchored MAIC and STC approach is that it relies on the strong

assumption that both potential prognostic factors and effect modifiers are adjusted for. In practice,

what could be adjusted for in the analysis depends on what were reported as baseline characteristics in

both the company’s study and the comparator study. It is often that this information is limited in the

comparator study and does not include all the important variables, which should be adjusted for.
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We propose to apply QBA for PAICs where we only have IPD for one of the group and aggregate

data for the other group. In theory, the general class of bias formulas proposed for mean difference,

risk ratio and odds ratio by VanderWeele and Arch (2011)19 can be applied directly to the estimate

from MAIC/STC as a sensitivity analysis for unmeasured confounding. This is because the general

bias formulae do not depend on the method use for obtaining the estimate (a method of moments

for MAIC or maximum likelihood method for STC), are applicable regardless of how the adjusted

estimates are obtained (MAIC/STC); and also no assumptions are pre-specified for the interactions

between treatment and covariates. However, as the dimension of the unmeasured confounders increases

the implementation of the general bias formulas becomes more complex and less feasible due to the

need to obtain multiple summations, integrations or a combination of both.

Below we describe an alternative sensitivity analysis approach for unmeasured confounding based

on simulating potential confounder(s) for PAICs. Our approach allows for sensitivity analysis for

important covariate(s) that were not reported by the comparator study when conducting unanchored

STC. No additional assumptions are required for our approach. Moreover, our approach is easy to

implement regardless of the dimension and data type of unmeasured confounders.

4.1. Principle of the QBA for PAICs

Let us assume the company’s study (Study B) has IPD available for the outcome of interest 𝑌 and 𝐽

covariates 𝑶 = (𝑂1, . . . , 𝑂𝐽 ) as well as 𝐿 covariates 𝑼 = (𝑈1, . . . ,𝑈𝐿); the comparator study (Study

A) report the treatment effect for patients receiving treatment A, 𝑑𝐴(𝐴) , and the summary statistics

in terms of marginal mean [𝑶 = (𝑂1, . . . , 𝑂𝐽 )] for 𝐽 observed covariates 𝑶 = (𝑂1, . . . , 𝑂𝐽 ). The

summary statistics [𝑼 = (𝑈1, . . . ,𝑈𝐿)] for 𝐿 covariates 𝑼 = (𝑈1, . . . ,𝑈𝐿) are not reported for Study

A. Note the description of the method below refers to multiple unmeasured covariates. For a single

unmeasured covariate, 𝐿 = 1.

In a standard STC or MAIC approach, we can only adjust for the differences in the observed

covariates 𝑶 between Study A and Study B, and confounding bias will be present unless unmeasured

covariates 𝑼 are balanced between the populations in the two studies. We can treat [𝑼 = (𝑈1, . . . ,𝑈𝐿)]

in Study A as sensitivity parameters and conduct QBA to assess the impact on not controlling 𝑼 in the

analysis. A graphical illustration of the available data from each study is presented in Figure 1.

QBA is technically feasible for both MAIC and STC. However, the sensitivity analysis should assess

the impact of the full spectrum of possible values for 𝑼 and this would include the cases where there

would be very limited overlap on 𝑼 between the two studies. MAIC approach would suffer an extreme

reduction of the effect sample size and may even fail to produce feasible weights. Hence, we will only

present the QBA for the STC approach. A flow diagram and graphical illustration of the method is

presented in Figure 1.

Ren et al. (2024) developed a novel way to implement unanchored STC by incorporating marginali-

sation and the NORmal To Anything (NORTA) algorithm (also is known as a Gaussian copula method)

for sampling covariates, and demonstrated that the proposed approach is asymptotically unbiased in a

simulation study.28 Our proposed QBA will follow this suggested implementation for unanchored STC.

We briefly describe the unanchored STC approach here.

We assume that we have IPD from a single-arm study for treatment B (Study B) and aggregate

data from another single-arm study for treatment A (Study A), and we are interested in estimating the

relative treatment effect of treatment B versus treatment A using an unanchored STC analysis. STC is

an outcome regression-based approach and has three main steps.

(1) Build the regression model based on the IPD from Study B: 𝑔
(
𝜃𝑖 (𝐵) (𝑿𝒊)

)
= 𝛽0 + 𝜷𝑻1 𝑿𝒊 .

(2) Predict the treatment effect for the Study A population via marginalisation/standardisation: 𝑑𝐵 (𝐴) =

𝑔(𝜃̂𝐵 (𝐴) ).

(3) Obtain the relative treatment effect using the prediction from Step 2 and reported aggregate data

for Study A: 𝑑𝐴𝐵 (𝐴) = 𝑑𝐵 (𝐴) − 𝑑𝐴(𝐴) .
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Figure 1. Illustration of the sensitivity analysis for unmeasured confounding for the unanchored STC

analysis.

𝜃𝑖 (𝐵) (𝑿𝒊) is the expected outcome for individual 𝑖 with covariate values 𝑿𝒊 in Study B (e.g., the

probability for binary outcomes); the subscript (B) indicates the population; 𝑔 () is an appropriate link

function (e.g., the logit function for binary outcomes); 𝛽0 is the intercept; 𝜷1 is a vector of coefficients

for prognostic factors and effect modifiers; and 𝑿𝒊 is the full covariate vector including prognostic

factors and effect modifiers for individual 𝑖.
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𝑑𝐵 (𝐴) is the predicted average effect of treatment B in the Study A population and is obtained by

marginalisation/standardisation of the predicted conditional estimates for the sampled individuals in

Study A; 𝑑𝐴(𝐴) is the reported treatment effect of treatment A in the Study A population; and 𝑑𝐴𝐵 (𝐴)

is the estimated relative treatment effect of B versus A in the Study A population.

When performing QBA for sensitivity analysis, we distinguish observed covariates 𝑶 and unmea-

sured covariates 𝑼 for the notation used in the regression models (Step 1). The equation in Step 1

becomes

𝑔
(
𝜃𝑖 (𝐵) (𝑶𝒊 ,𝑼𝒊)

)
= 𝛽0 + 𝜷𝑻1 𝑶𝒊 + 𝜷𝑻2 𝑼𝒊. (4)

The marginal mean of 𝑼, (𝑼 = 𝐸 [𝑼]) used in Step 2 (predicting the treatment effect in the Study A

population) are treated as sensitivity parameters.

4.2. Sensitivity analysis algorithm

In QBA, we assume fixed values for 𝑼. For linear regression models with an identity link function for

continuous outcome, 𝑑𝐵 (𝐴) can be obtained using the ‘plugging-in’ mean covariates approach because

of the linear relationship between the outcome and the predictors. The prediction can be obtained by

plugging in the reported mean values for 𝑶, 𝑶 and fixed values for 𝑼, 𝑼. The estimate of the treatment

effect of B versus A in the comparator trial population is given by

𝑑𝐴𝐵 (𝐴) = 𝑑𝐵 (𝐴) − 𝑑𝐴(𝐴)

= 𝑔
(
𝛽0 + 𝜷̂

𝑻

1 𝑶 (𝐴) + 𝜷̂
𝑻

2 𝑼 (𝐴)

)
− 𝑑𝐴(𝐴) . (5)

For regression models with non-identity link function, the ‘plugging-in’ approach would lead to

aggregation bias.29,30 To deal with non-linearity, the adjusted absolute effect can be obtained by

averaging the predictions of the sampled individuals. These covariates can be sampled using the

NORTA algorithm based on the reported summary statistics for observed covariates from Study A, the

assumed fixed values for the marginal mean of the unmeasured covariates, and the correlation structure

from Study B (the study with IPD).28 The NORTA algorithm is summarised in Appendix 1 of the

Supplementary Material.

We now describe the prediction procedure step-by-step in the unanchored STC using a binary out-

come as an example. Let us assume 𝑿 = 𝑐 (𝑶,𝑼) is the full covariate vector. For a binary outcome 𝑌 ,

𝑑𝐵 (𝐴) = 𝑔
(
𝜃̂𝐵 (𝐴)

)
= 𝑔

(
𝑃𝐵 (𝐴) (𝑌 = 1)

)

= 𝑔

(∫
𝑃 (𝑌 = 1|𝑿) 𝑓𝑿 (𝑿) 𝑑𝑿

)

= 𝑔

(
1

𝑁

𝑁∑
𝑖=1

𝑃
(
𝑌 = 1|𝑿𝒊 (𝐴)

))

= log


�����

1
𝑁

𝑁∑
𝑖=1

𝑃
(
𝑌 = 1|𝑿𝒊 (𝐴)

)
1 − 1

𝑁

𝑁∑
𝑖=1

𝑃
(
𝑌 = 1|𝑿𝒊 (𝐴)

)
������
, (6)

where 𝑓𝑿 (𝑿) is the joint probability density function for 𝑿 representing the Study A population if 𝑿

contains all continuous covariates; 𝑓𝑿 (𝑿) is the joint probability mass function if 𝑓𝑿 (𝑿) contains all

discrete covariates; and is a joint density function with respect to an appropriate dominating measure
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if 𝑿 is a mixture of continuous and discrete covariates. Note that the integral is estimated using Monte

Carlo.31

In the deterministic QBA, 𝑿 𝒋 are random samples from 𝑓𝑿 (𝑿) using the NORTA algorithm based

on the marginal distribution of 𝑂𝑖 and 𝑈𝑙 and the correlation structure from Study B, where the input

for the marginal distribution of 𝑂𝑖 is based on the reported mean for 𝑂𝑖 (𝑂 𝑗 ) from Study A and the

input for the marginal distribution of 𝑈𝑙 is based on the assumed fixed values for the mean of 𝑈𝑙 (𝑈𝑙).

The general formula for the estimator 𝑑𝐵 (𝐴) is

𝑑𝐵 (𝐴) = 𝑔

(
1

𝑁

𝑁∑
𝑖=1

𝑔−1
(
𝛽0 + 𝜷̂

𝑻

1 𝑶𝒊 (𝐴) + 𝜷̂
𝑻

2 𝑼𝒊 (𝐴)

))
, (7)

where we firstly obtain the predicted outcome on the natural scale for all 𝑁 simulation

samples for covariates (𝑂1, . . . 𝑂𝐽 ,𝑈1, . . . ,𝑈𝐿) sampled from the joint covariate distribution,

𝑔−1
(
𝛽0 + 𝜷̂

𝑻

1 𝑶𝒊 (𝐴) + 𝜷̂
𝑻

2 𝑼𝒊 (𝐴)

)
, (e.g., the probability for binary outcomes); then we obtain the average

predicted outcome on the natural scale (e.g., the average probability for binary outcomes); finally we

transform the predicted outcome to the linear predictor scale using 𝑔 () (e.g., the log odds for binary

outcomes).

The estimate of the treatment effect of B versus A in the Study A population is given by

𝑑𝐴𝐵 (𝐴) = 𝑑𝐵 (𝐴) − 𝑑𝐴(𝐴)

= 𝑔

(
1

𝑁

𝑁∑
𝑖=1

𝑔−1
(
𝛽0 + 𝜷̂

𝑻

1 𝑶𝒊 (𝐴) + 𝜷̂
𝑻

2 𝑼𝒊 (𝐴)

))
− 𝑑𝐴(𝐴) . (8)

Because of the lack of a closed-form expression for this variance, the variance of 𝑑𝐴𝐵 (𝐴) is computed

using the non-parametric bootstrap method.32

This deterministic QBA allows us to perform sensitivity analysis to quantify the impact of the

unmeasured prognostic variables and/or effect modifiers on the estimated treatment effect by varying

the fixed values for 𝑼. It provides an assessment of the robustness of the STC results to assumptions

about the unmeasured confounders. However, it does not capture the uncertainty in the marginal mean

for the unmeasured confounders.

A probabilistic QBA can be conducted if a distribution for the marginal means for unmeasured

confounders 𝑼 could be specified. However, obtaining this distribution in practice may be challenging,

and it may require to perform a structured expert elicitation exercise33 or analysing the relationship

between the observed and unmeasured covariates based on external data where data are available for

all covariates and predicting the distribution for the marginal mean for the unmeasured confounders.

We provide some initial suggestions in the discussion section.

5. Example: Metastatic colorectal cancer

We re-analysed the data from a randomised Phase III trial of panitumumab with infusional fluorouracil,

leucovorin and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with

previously untreated metastatic colorectal cancer (the PRIME study: NCT00364013)34 to demonstrate

the application of both deterministic and probability QBA for population adjustment methods to a

real-world example. We obtained the IPD for this RCT from the Project Data Sphere® platform.35

The anonymous patient-level data contains 79% of the subjects randomly selected from the original

trial dataset in each arm. In this example, we re-analysed one of the secondary outcome measures:

objective response. We dropped the control arm (FOLFOX4) and treated the data in the intervention

arm (panitumumab with FOLFOX4) as if the data were from a single-arm trial. We obtained summary

https://doi.org/10.1017/rsm.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.13


Research Synthesis Methods 9

statistics for the FOLFOX4 arm from an external source and applied the unanchored STC and

deterministic sensitivity analysis to explore the impact of unmeasured confounding.

To illustrate the methods, we identified a study with aggregate data for the comparator FOLFOX4,

which differed from the PRIME study in patient characteristics. Because the purpose of this example is

to demonstrate the use of the QBA approach for PAICs, not to guide selection of the most appropriate

studies for the comparator using external sources, we did not conduct a systematic literature review

to obtain the summary data reported for the FOLFOX4 arm externally. Instead, Google scholar was

used to perform the search using key words ‘FOLFOX4’ and ‘metastatic colorectal cancer’. We

use the following criteria to select an appropriate study for this analysis: (i) the patient population

was previously untreated metastatic colorectal cancer, (ii) a sufficient large number of baseline

characteristics have been reported, and (iii) the reported baseline characteristics are not too similar to

the PRIME study. There was no restriction on the type of study.

The most appropriate study that we identified was Cunningham et al. (2009)36 This study is a Phase

III RCT comparing two different first-line 5-fluorouracil (5-FU) regimens with or without oxaliplatin in

patients with previously untreated metastatic colorectal cancer. The treatment arm suitable to be used in

our analysis is the oxaliplatin, 5-FU, and leucovorin (LV) arm, because continuous intravenous infusion

(CIV) of 5-FU without LV was a common regimen used in the UK at the time this trial was conducted.

The oxaliplatin, 5-FU and LV arm is divided into two subgroups: oxaliplatin plus 5-FU CIV group

(n = 58) and FOLFOX4 group (n = 304). However, data are not available for the FOLFOX4 arm alone.

The baseline characteristics and objective response rate are reported for the combined oxaliplatin,

5-FU and LV arm. In this example, we assume the treatment of oxaliplatin plus 5FU CIV is the same as

FOLFOX4. Because the sample size in the oxaliplatin plus 5-FU CIV arm is relatively small compared

to the FOLFOX4 arm (58 vs. 304), we do not anticipate a large bias associated with this assumption.

We call the oxaliplatin, 5-FU, and LV arm in Cunningham et al.,36 the FOLFOX4 arm for the rest of

the analysis.

The commonly reported clinical baseline characteristics and objective response data from the

PRIME study and the FOLFOX4 arm from Cunningham et al. (2009)36 are presented in Table 1. There

are some imbalances in the baseline characteristics between the panitumumab with FOLFOX4 arm in

the PRIME study and the FOLFOX4 arm in Cunningham et al.36 The panitumumab + FOLFOX4 arm

in the PRIME study has more patients younger than 65 years old, and slightly more patients with ECOG

status 0/1, which indicate potentially heathier cohort than patients in the FOLFOX4 arm in Cunningham

et al.36 However, it also has more patients with colon as the primary tumour site, more patients with

more than two metastatic sites, less patients had prior adjuvant chemotherapy and more patients had

prior surgery, which indicate potential worse prognosis for this cohort than the cohort in the FOLFOX4

arm in Cunningham et al.36

The odds ratio (OR) for the objective response for panitumumab + FOLFOX4 versus FOLFOX4

alone in the PRIME study is 1.20 (95% CI: 0.93 to 1.56) based on the IPD obtained from the Project

Data Sphere® platform. The OR from the naïve indirect treatment comparison (ITC) without adjusting

for the imbalance in the baseline characteristics is 1.17 (95% CI: 0.88 to 1.54). Both results indicate

panitumumab + FOLFOX4 is more beneficial than FOLFOX4 alone for the objective response, but not

statistically significant.

For this re-analysis, we assume that Table 1 contains all the potential prognostic factors and effect

modifiers. Because metastatic site liver alone is highly correlated with number of metastatic sites, we

only include number of metastatic sites in all the subsequent analyses. We assume that once adjusting

for the following seven covariates: sex, age, ECOG performance status, primary tumour site, number of

metastatic sites, prior adjuvant chemotherapy, and prior surgery, there is no unmeasured confounding.

To demonstrate the use of QBA, we consider analysing the data for the following scenarios where we

assume certain covariate(s) were not reported in Cunningham et al. (2009)36:

• Assuming number of metastatic sites is not reported in Cunningham et al.36

• Assuming sex is not reported in Cunningham et al.36

• Assuming sex and number of metastatic sites are not reported in Cunningham et al.36

• Assuming primary site colon and prior adjuvant therapy are not reported in Cunningham et al.36
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Table 1. Baseline patient and tumour characteristics, and summary of object response.

The PRIME study Cunningham et al. (2009) 36

Panitumumab + FOLFOX4FOLFOX4 FOLFOX4

Characteristic (n = 468)a (n = 467)a (n = 362)

Male (%) 66 61 65

Age, years (%)

≤65 60 62 67

65 40 38 33

ECOG performance status (%)

0/1 95 95 93

≥2 5 5 7

Primary tumour type (%)

Colon 67 69 56

Rectal and other 33 31 44

Number of metastatic sites (%)

0/1 20 20 45

≥2 80 80 55

Metastatic site (%)

Liver alone 18 16 33

Prior adjuvant chemotherapy (%) 15 12 27

Prior surgery (%) 91 91 87

Objective response rate (%) 57.9 53.3 54.1

a Results were calculated based on the individual patient-level data obtained from the Project Data Sphere® platform, which have 79% of the

subjects randomly selected from the original trial dataset in each arm.

For each of the scenarios listed above, a standard unanchored STC is conducted by firstly fitting a

logistic regression to the IPD from the panitumumab + FOLFOX4 arm in the PRIME study adjusting

for the observed covariates where appropriate. The average treatment effect for the population in the

FOLFOX4 arm in Cunningham et al.36 when treating with panitumumab + FOLFOX4 was predicted

using the fitted logistic regression from the first step and simulated covariates for the FOLFOX4 arm

in Cunningham et al.36 using the NORTA algorithm. The predicted effect for Cunningham et al.36

FOLFOX4 arm population was based on the natural scale, that is, predicting the probability of having

object response for the simulated individuals. The average absolute treatment was obtained by taking

the expectation of the predicted probabilities, and then transformed to the log odds scale for the indirect

comparison step.

The standard unanchored STC is then followed by deterministic sensitivity analysis to investigate

the impact of unmeasured confounding. The mean of the unmeasured covariates was assumed to

be some fixed values, varying from the minimum to the maximum possible value for the mean

of that covariates. For all the analyses, bootstrap (with 10,000 replications) is used to derive the

appropriate standard error for the adjusted OR. All analyses were performed using R software version

4.3. The program code file and a simulated dataset can be found at https://github.com/SRenScharr/

QBA-UM-STC. The data used in the case study can be requested for downloading from the Project

Data Sphere’s Data Sharing Platform at the following URL: https://data.projectdatasphere.org/.

5.1. Assuming number of metastatic sites is not reported in Cunningham et al.36

Because the number of metastatic sites is identified as a potential confounder but not reported in

Cunningham et al.,36 the population-adjusted OR when adjusting for the other six observed covariates

(OR: 1.18 with 95% CI: 0.96 to 1.44) is confounded by the number of metastatic sites, hence is biased.
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Figure 2. Sensitivity analysis assuming the number of metastatic sites 0/1 is not reported in Cun-

ningham et al.36 Black curve is the estimated treatment effect of panitumumab + FOLFOX4 versus

FOLFOX4 alone for the objective response (value above 1 indicating panitumumab + FOLFOX4 is in

favour of FOLFOX4 alone). Grey shades indicate the 95% confidence intervals for the estimated odds

ratio. Blue dashed line is the odds ratio only adjusting for the observed covariates. Red dot-dash line

is the odds ratio derived from a naïve indirect comparison.

Although we do not observe the number of metastatic sites in Cunningham et al.,36 the deterministic

QBA approach allows us to obtain the unbiased OR by assuming a fixed value for the proportion that

the number of metastatic sites is 0/1. We assume a range of values for this proportion as we do not know

the truth. This sensitivity analysis quantifies how sensitive the conclusion is to the potential unmeasured

confounder, which is the number of metastatic sites in this analysis.

Figure 2 illustrates the output of this sensitivity analysis. The black curve is the OR adjusting for

all seven covariates, where the unmeasured confounder (number of metastatic sites) is assumed to vary

from 5% to 95%. The adjusted OR increases as the proportion of the number of metastatic sites 0/1

increases. The point estimate suggests that panitumumab + FOLFOX4 would be always more beneficial

than FOLFOX4 alone regardless of the value for the proportion of the number of metastatic sites 0/1

observed in Cunningham et al.36 If the proportion is greater than 28%, then the treatment effect becomes

statistically significant.

Figure 2 also shows the treatment effect when the proportion of the number of metastatic sites 0/1

in Cunningham et al.36 is the same as the PRIME study (black circle), which is roughly the same as the

OR obtained by only adjusting for the observed covariates. This is as what we expected because when

the value for the unmeasured confounder is the same between the two studies, the adjustment including

this covariate should not make a difference.

For illustration purposes, we also indicate what the treatment effect would be if the proportion of

the number of metastatic sites 0/1 in Cunningham et al.36 is equal to the reported value in Cunningham

et al.36 (black triangular). In this example, unmeasured confounding associated with the number of

metastatic sites would not suffice to explain away the treatment effect estimated only adjusting for the

observed covariates.
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Figure 3. Sensitivity analysis assuming sex is not reported in Cunningham et al.36 Black curve is

the estimated treatment effect of panitumumab + FOLFOX4 versus FOLFOX4 alone for the objective

response (value above 1 indicating panitumumab + FOLFOX4 is in favour of FOLFOX4 alone). Grey

shades indicate the 95% confidence intervals for the estimated odds ratio. Blue dashed line is the odds

ratio only adjusting for the observed covariates. Red dot-dash line is the odds ratio derived from a

naïve indirect comparison.

5.2. Assuming sex is not reported in Cunningham et al.36

The estimated OR of panitumumab + FOLFOX4 versus FOLFOX4 alone for the objective response

when adjusting for six observed covariates is 1.35 (95% CI: 1.07 to 1.71). Figure 3 shows the

deterministic sensitivity analysis output for also adjusting for the unmeasured confounder sex, varying

values for the proportion of male from 5% to 95%. Regardless of the value for this proportion, the

point estimate of the OR is always greater than 1 indicating panitumumab + FOLFOX4 would be

more beneficial than FOLFOX4 alone. If there is more than 41% male in Cunningham et al.,36 the

estimated treatment effect would be statistically significant. This sensitivity analysis demonstrates that

unmeasured confounding associated with sex would not suffice to explain away the treatment effect

estimated only adjusting for the observed covariates.

5.3. Assuming sex and number of metastatic sites are not reported in Cunningham et al.36

Figure 4 shows the two-way deterministic sensitivity analysis output for adjusting for the unmeasured

confounder sex (U1) and the number of metastatic sites 0/1 (U2), varying values for the proportion of

male from 5% to 95% and varying values for the proportion of the number of metastatic sites 0/1 from

5% to 95%. The x-axis provides the estimate of the OR adjusting for both unmeasured confounders.

The y-axis indicates the assumed proportion of male in Cunningham et al.36

The estimated OR of panitumumab + FOLFOX4 versus FOLFOX4 for the objective response when

adjusting for five observed covariates is 1.19 (95% CI: 0.97 to 1.45) (blue dashed line). The estimate

for the naïve OR without adjusting for the imbalance in baseline covariates is 1.17 (95% CI: 0.88 to

1.54) (red dot-dash line).
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Figure 4. Sensitivity analysis assuming sex (U1) and number of metastatic sites (U2) are not reported

in Cunningham et al.36 The vertical line on the left-hand side of the box is the adjusted OR when

assuming the proportion of U2 is 5% in Cunningham et al.36 for a given proportion of U1 in

Cunningham et al.36 The vertical line on the right-hand side of the box is the adjusted OR when

assuming the proportion of U2 is 95% for a given proportion of U1 in Cunningham et al.36 The thick

black line inside of the box shows the adjusted OR when the proportion of U2 in Cunningham et al.36

is the same as in the PRIME study. The grey box shows the range of the OR when adjusting for U2

assuming the proportion of U1 in Cunningham et al.36 is the same as in the PRIME study, 66%. The

left-hand side whisker of a box shows the lowest possible value for the lower limit of a 95% confidence

interval when varying the proportion of U2 in Cunningham et al.36 given a fixed proportion of U1 in

Cunningham et al.36 The right-hand whisker of a box shows the highest possible value for the upper

limit of a 95% confidence interval when varying the proportion U2 in Cunningham et al.36 given a fixed

proportion of U1 in Cunningham et al.36

The vertical line on the left-hand side of the box is the adjusted OR when assuming the proportion

of U2 is 5% in Cunningham et al.36 for a given proportion of U1 in Cunningham et al.36 according to

the value in the y-axis. Similarly, the vertical line on the right-hand side of the box is the adjusted OR

when assuming the proportion of U2 is 95% for a given proportion of U1 in Cunningham et al.36 The

thick black line inside of the box shows the adjusted OR when the proportion of U2 in Cunningham

et al.36 is the same as in the PRIME study. The grey box shows the range of the OR assuming the

proportion of U1 in Cunningham et al.36 is the same as in the PRIME study, 66%, and varying U2 from

5% to 95%. The left-hand side whisker of a box shows the lowest possible value for the lower limit of

a 95% CI when varying the proportion of U2 in Cunningham et al.36 given a fixed proportion of U1

in Cunningham et al.36 according to the value on the y-axis. Similarly, the right-hand whisker of a box

shows the highest possible value for the upper limit of a 95% CI when varying the proportion of U2 in

Cunningham et al.36 given a fixed proportion of U1 in Cunningham et al.36

For example, in the top box, the vertical line on the left-hand side of the box is the adjusted OR

when assuming the proportion of number of metastatic sites 0/1 is 5% and the proportion of male is

95% in Cunningham et al.36 The vertical line on the right-hand side of the box is the adjusted OR
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when assuming the proportion of number of metastatic sites 0/1 is 95% and the proportion of male is

95% in Cunningham et al.36 The thick black line inside of the box shows the adjusted OR when the

proportion of metastatic sites 0/1 in Cunningham et al.36 is the same as in the PRIME study, 20%, and

the proportion of male is 95% in Cunningham et al.36

The two-way deterministic sensitivity analysis plot in Figure 4 shows that regardless the value of the

unmeasured confounder sex and number of metastatic sites 0/1, the point estimate of the adjusted OR is

always greater than 1 indicating panitumumab + FOLFOX4 would be more beneficial than FOLFOX4

alone, however, the treatment effect could not be statistically significant.

5.4. Assuming prior tumour site and prior adjuvant chemotherapy are not reported in Cunningham

et al.36

Figure 5 shows the two-way deterministic sensitivity analysis output for adjusting for the unmeasured

confounder prior tumour site (U1) and prior adjuvant chemotherapy (U2), varying values for the

proportion of prior tumour site colon from 5% to 95% and varying values for the proportion of prior

Figure 5. Sensitivity analysis assuming prior tumour site (U1) and prior adjuvant chemotherapy (U2)

are not reported in Cunningham et al.36 The vertical line on the left-hand side of the box is the adjusted

OR when assuming the proportion of U2 is 5% in Cunningham et al.36 for a given proportion of U1

in Cunningham et al.36 The vertical line on the right-hand side of the box is the adjusted OR when

assuming the proportion of U2 is 95% for a given proportion of U1 in Cunningham et al.36 The thick

black line inside of the box shows the adjusted OR when the proportion of U2 in Cunningham et al.36

is the same as in the PRIME study. The grey box shows the range of the OR when adjusting for U2

assuming the proportion of U1 in Cunningham et al.36 is the same as in the PRIME study, 66%. The

left-hand side whisker of a box shows the lowest possible value for the lower limit of a 95% confidence

interval when varying the proportion of U2 in Cunningham et al.36 given a fixed proportion of U1 in

Cunningham et al.36 The right-hand whisker of a box shows the highest possible value for the upper

limit of a 95% confidence interval when varying the proportion U2 in Cunningham et al.36 given a fixed

proportion of U1 in Cunningham et al.36
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adjuvant chemotherapy from 5% to 95%. The estimated OR of panitumumab + FOLFOX4 versus

FOLFOX4 alone for the objective response when adjusting for five observed confounders is 1.35 (95%

CI: 1.08 to 1.67) (blue dashed line). The estimate for the naïve OR without adjusting for the imbalance

in baseline covariates is 1.17 (95% CI: 0.88 to 1.54) (red dot-dash line).

It shows that regardless the value of the unmeasured confounder prior tumour site and prior

adjuvant chemotherapy, the point estimate of the adjusted OR is always greater than 1 indicating

panitumumab + FOLFOX4 would be more beneficial than FOLFOX4 alone. When the proportion of

prior tumour site colon is greater than 35%, the treatment effect would also be statistically significant

regardless of the proportion of prior adjuvant chemotherapy in the study population.

6. Discussion

A major limitation of the PAIC methods such as MAIC and STC in an unanchored case is that these

adjustment methods rely on the strong assumption that all prognostic factors and effect modifiers

are accounted for in the analysis and there is no residual confounding. This assumption is largely

considered impossible to meet in practice, especially given the selection of the covariates is often

constrained by what baseline characteristics are reported in the comparator study. As a result, the

robustness of these methods is often criticised by decision makers and, in turn, may lead to an

unfavourable recommendation of the new intervention. Our proposed QBA approach provides a way

of conducting both deterministic and probabilistic sensitivity analysis for unmeasured confounder(s)

in the unanchored ITC analysis. It allows for formally quantifying the impact of the unmeasured

confounder(s) on estimating the relative treatment effect to aid decision-making.

The NICE Decision Support Unit (DSU) Technical Support Document (TSD) 18 advises that

sensitivity analyses are performed ‘to assess how decisions are affected by a range of plausible biases in

the effect estimates’ when performing MAIC/STC.8 A recent methodological systematic review found

that nearly 50% of the studies did not conduct sensitivity analysis to assess the robustness of PAIC

results, and the sensitivity analyses conducted in the literature include adjusting for different set of

covariates, applying additional inclusion/exclusion criteria to the IPD study, using different outcome

definitions, using different follow-up time.16 Although conducting a sensitivity analysis is not new in

PAIC methods, there is clear evidence that sensitivity analyses conducted currently are only restricted

to observable confounding.

When analysing non-randomised data, observable confounding consists of a fraction of the total

error and potential biases due to unmeasured confounder(s), classification errors, and selection bias also

need to be addressed to allow for any meaningful interpretation of the results. Greenland discussed basic

methods for sensitivity analysis of biases and concluded that ‘sensitivity analysis is helpful in obtaining

a realistic picture of the potential impact of biases’.21 Our proposed QBA approach is inspired by the

sensitivity analysis used in observational epidemiology with an aim of providing formal quantitative

assessments of bias associated with unmeasured confounding to help decision makers better assess

the uncertainty of the ITC results where data were not randomised. Our proposed sensitivity analysis

only considers the bias associated with unmeasured covariates. However, there may be other source of

heterogeneity between studies such as the study design and conduct, which could bias the treatment

effects. We refer the reader to the NICE DSU TSD 188 for some initial suggestions on how to quantify

residual systematic error.

We illustrated the use of the QBA approach using a real-world example, and demonstrated how the

results of the sensitivity analysis could be presented to aid decision-making. In our case study, we know

the unbiased results of the PRIME study as it was an RCT. It is not appropriate to compare the RCT

results with the results from the sensitivity analysis because these two results were based on different

estimands. The treatment effect derived from the unanchored STC, and the associated sensitivity

analyses were the marginal treatment effect in the comparator trial population, which is different from

the marginal treatment effect in the RCT population. Analyst needs to determine whether the treatment

effect in the comparator trial population is the appropriate measure for the decision problem. The multi-

level network meta-regression (ML-NMR) approach for population-adjusted treatment comparisons
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in anchored cases allows to derive the treatment effect in any target population of interest.30 Further

research is required for the unanchored case to enable the estimation of the treatment effect in any target

population of interest, rather than the comparator study population.

In this article, we only presented sensitivity analyses for unmeasured confounders in the unanchored

STC. In theory, the same extension could be applied to other adjustment methods to allow for formal

quantitative assessment of uncertainty associated with model assumptions. However, an extension of

the MAIC approach would lead to a large reduction of the effective sample size when the overlap in the

unmeasured covariates between the studies is small.

Our proposed approach extends the standard unanchored STC by demonstrating how sensitivity

analysis can be conducted for unmeasured confounders. Like the original STC approach, our method

also relies on the correct specification of the outcome regression model and sufficient population over-

lap to provide unbiased estimates. The performance of our approach aligns with the properties identified

in simulations for the standard unanchored STC that adjusts only for observed covariates.9,28,37 Once

the sensitivity parameters are specified, the proposed approach effectively reduces to the standard STC

method.

We highlight the key factors that most influence the size of the bias here and encourage readers to

refer to Ren et al. (2024)28 for a more comprehensive discussion on the performance of the unanchored

STC approach. The simulation study for unanchored STC shows that sparse data bias together with the

degree of covariate overlap between the two studies, are the primary drivers of bias.28 When overlap

is large or the sample size is big, a large imbalances within covariate strata have little impact on

the performance of the unanchored STC method.28 Our proposed sensitivity analysis may be biased,

particularly when the sample size is small, if the assumed mean values for the unmeasured confounders

differ significantly from the observed values in the IPD study.

Two earlier simulation studies on the anchored STC approach assessed the method’s performance

when key covariates were missing from the outcome regression model, which represents a form

of model misspecification.9,37 Both studies concluded that proper covariate selection is critical, and

the adjustment method can introduce bias if all necessary covariates are not included in the model.

Similarly, our proposed approach would be subject to bias if the outcome regression model is

misspecified, resulting in inaccurate predictions and biased estimates of the indirect treatment effect.

In the deterministic sensitivity analysis approach, all possible values for the sensitivity parameters

(i.e., the marginal mean of the unmeasured covariates) are treated equally likely, which may not be

realistic in practice. An extension of the method is to conduct a probabilistic sensitivity analysis, by

constructing a distribution for the sensitivity parameters to reflect the uncertainty for these parameters

and obtain the overall results by averaging over this distribution. The area on how to obtain such

distributions for the marginal means of the unmeasured confounders requires further research. We

provide some initial suggestions here.

The distribution could be elicited using expert’s opinion. It may be easier to elicit a distribution

for each 𝑈𝑖 separately. However, this would ignore the correlation structure between the uncertain

quantities 𝑈𝑖 . The method for eliciting a multivariate distribution can be found in Daneshkhah and

Oakley.38 The distribution could also be estimated using relevant external data via a regression

modelling approach based on the observed data. This is to firstly fit a regression model with the

unmeasured covariates as outcome and observed covariates as predictors using IPD from the company

study or other relevant observational studies that has both the observed and unmeasured covariates

of interest reported. The predictions can then be generated by using the observed covariates from

the comparator study as predictors. The marginal mean of unmeasured covariates can be predicted

separately using a single-output method or jointly using a multi-output regression method that considers

the dependency between multiple outcomes.39 In addition, machine learning methods could also be

used to obtain accurate predictions for the unobserved covariates.40

When making funding decisions where the clinical evidence is based on single-arm trials, we face

the challenge of implausible model assumptions with the existing analysis methods. Currently, the

robustness of the results with regard to model assumptions is often only qualitatively discussed. When
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analysing data collected without randomisation, it is important to quantitatively assess the uncertainty

associated with model assumptions if the intention is to make a causal statement. Our proposed QBA

approach using sensitivity analysis relies on the important covariates being measured in the company’s

own trial. If any important covariates were not measured in both studies, it would limit what the

sensitivity analysis could achieve. We believe when conducting a clinical trial, it is often the case

that the important covariates were collected but may not be reported in a publication. The QBA

approach makes an attempt to explore if the unmeasured confounder(s) is influential when estimating

the treatment effect and, in turn, makes the ITC results more credible.

Finally, we provide guidance on interpreting sensitivity analysis results and practical recommenda-

tions for integrating these findings into the decision-making process. Recognising that certain important

covariates may not be measured/reported and that their true values remain uncertain, our proposed

sensitivity analysis quantifies the impact of unmeasured confounders by quantifying how the results

vary with a range of possible mean values for unmeasured confounders. This approach allows for a

comprehensive assessment of both the point estimate and its associated uncertainty in the ITC results.

In the case study, the unmeasured confounders did not significantly influence the ITC estimates. All

sensitivity analyses indicated a beneficial treatment effect for the new intervention, with some scenarios

demonstrating statistical significance depending on the assumed values of the unmeasured confounders.

These sensitivity analysis results can be incorporated into scenario analyses within economic

models, explicitly assessing their impact on the incremental cost-effectiveness ratio (ICER). If all

scenarios yield ICERs below the threshold, this indicates the robustness of the results, reassuring

decision-makers that unmeasured confounding is not a concern in the unanchored analysis. Conversely,

if all scenarios produce ICERs above the threshold, this suggests that the treatment is not cost-effective,

irrespective of the values of the unmeasured confounders. In cases where decision-making is sensitive

to the assumed values of the unmeasured confounders, it is crucial to focus on identifying the most

plausible range for these values. This ensures that decisions are well-informed and grounded in realistic

assumptions.
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