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A B S T R A C T

This article addresses criticisms asserting that reflective construct measurement and its associated evaluation 
criteria are unsuitable for partial least squares structural equation modeling (PLS-SEM). More specifically, critics 
contend that reflective measurement models correspond exclusively to common factor models, a premise that is 
both inaccurate and misleading. Reflective measurement models represent theoretically grounded and concep-
tualized constructs. Statistical methods such as common factor model estimation, composite model estimation, 
and sum score regression enable researchers to estimate method-specific proxies that serve as approximations for 
theoretically established conceptual constructs in empirical research. These proxies vary depending on the sta-
tistical models and assumptions inherent to each method. In this context, it is important to highlight that the use 
of reflective evaluation criteria is not restricted to common factor models. When applied to composite model 
estimation, it does not compromise the validity of the results. Moreover, this article advocates for embracing the 
complementary strengths of diverse SEM methods within a multimethod approach, rather than positioning one 
method in opposition to another. We believe that this contribution provides critical insights and guidance, 
fostering advancements in SEM methodology, and its practical applications.

1. Introduction

We thank the editors-in-chief of Industrial Marketing Management 
(IMM), Anthony Di Benedetto and Adam Lindgreen, for accepting and 
publishing our article titled “Improving PLS-SEM use for business mar-
keting research” (Guenther et al., 2023). Our article provides business 
marketing researchers with practical, up-to-date guidance on when and 
how to use the partial least squares structural equation modeling (PLS- 
SEM; Lohmöller, 1989; Wold, 1982) approach while also addressing 
common errors observed in previous applications. Additionally, it 

explores advanced analytical techniques that researchers and practi-
tioners can employ to gain deeper insights, thereby enhancing the con-
tributions of their research projects. The article’s rapid emergence as one 
of the most cited IMM publications underscores its relevance and the 
critical issues it addresses in a widely used research methodology. The 
recently published IMM article by Cabanelas et al. (2025) indicates, for 
instance, that “particularly Partial Least Squares (PLS-SEM or variance- 
based SEM) are among the most applied techniques in B2B marketing” 
(p. 72).1

We also thank the IMM editors for inviting us to respond to the 

* Corresponding author.
E-mail address: Peter.Guenther@liverpool.ac.uk (P. Guenther). 

1 We thank an anonymous reviewer for highlighting the adoption of PLS-SEM in research methods courses for doctoral students over the past two decades. See also 
the reviews of PLS-SEM use in marketing research (e.g., Guenther et al., 2023; Hair, Sarstedt, Ringle, & Mena, 2012; Henseler et al., 2009; Sarstedt et al., 2022) and 
across a wide range of disciplines (e.g., management, medicine, engineering, psychology, political and environmental sciences); for an overview of PLS-SEM review 
studies across different disciplines, see Table 1 in Cepeda-Carrión et al. (2022); also see Table 1.1 in Hair et al. (2021). In this context, it is noteworthy that re-
searchers have made significant progress in improving and extending the capabilities of the PLS-SEM method, and in overcoming its limitations, as called for in 
earlier publications (e.g., McIntosh et al., 2014). For instance, Table 1 in Gudergan et al. (2025) provides an overview of methodological advancements in PLS-SEM. 
These advancements have significantly expanded the method’s capabilities and strengthened its role as a key method for multivariate analyses across business 
research and various other disciplines.
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commentary by Henseler et al. (2025) to foster a constructive dialogue 
in their journal.2 Henseler et al. (2025) present two main arguments: 1) 
PLS-SEM is unsuitable for estimating reflectively measured constructs 
because it produces biased parameter estimates, and 2) the assessment 
criteria for evaluating reflective measurement models are also biased. 
Based on these claims, the critics argue that our guidance on using PLS- 
SEM for reflective measurement models is misguided. In the following, 
we explain why their concerns are unwarranted.

2. Reflective measurement does not equal common factor 
models

Henseler et al.’s (2025) critique is based on the assumption that 
reflective measurement models are equivalent to common factor 
models. They therefore conclude that estimating reflectively specified 
measurement models inevitably needs to draw on the covariance-based 
structural equation modeling (CB-SEM; Jöreskog, 1978) approach with 
its different estimators (e.g., Boomsma & Hoogland, 2001; Shi & 
Maydeu-Olivares, 2020),3 or on composite-based SEM methods that are 
adjusted to mimic outcomes under the assumption that the data stem 
from a common factor model, such as PLSe-SEM (Huang, 2013), 
consistent PLS-SEM (PLSc-SEM; Dijkstra, 2014), the GSCAM (Hwang 
et al., 2017) version of the generalized structured component analysis 
(GSCA; Hwang & Takane, 2004), and integrated GSCA (IGSCA; Hwang 
et al., 2021).4 As plausible as this argument may seem at first, this 
assumption and all the resulting conclusions are built on quicksand.

Over the last few decades, researchers have gone to considerable 
lengths to distinguish between model design and model estimation (e.g., 
Cook & Forzani, 2023; Rhemtulla et al., 2020; Rigdon, 2012). Building 
on Bagozzi and Phillips (1982) holistic construal (see also Bagozzi, 
1984, 2011; Bagozzi & Phillips, 1982; Bagozzi & Yi, 2012), Rigdon 
(2012) developed the concept of a proxy framework, which differenti-
ates between conceptual variables—that is, the proxies representing 
these conceptual variables in statistical models (i.e., the constructs)— 
and the indicators, which are linked to the proxies through mathemat-
ical operations (Fig. 1). Rigdon (2012) uses this framework to highlight 
the validity gap between the proxy and the concept, a notion that other 
researchers also raised (Rossiter, 2002, 2011a, 2011b). 

Recognizing the distinction between concept and proxy means 
recognizing the actual steps and the actual difficulties in measuring 
theoretical concepts. The theoretical concept remains idealized and 
out of reach … the question of measurement validity is not about the 
links between indicators and proxies – these are mere mathematical 
operations, with no causal significance. Instead, measurement val-
idity questions center on the similarity in behavior between each 
proxy and the theoretical concept for which it stands.
Rigdon (2012, p. 348).

Follow-up research has identified this validity gap as metrological 
uncertainty (e.g., Rigdon et al., 2020; Rigdon & Sarstedt, 2022), which is 
a quantifiable parameter that characterizes the range within which a 
measured quantity’s true value is assumed to lie, as based on the mea-
surement process, the instruments used, and the environmental condi-
tions (JCGM, 2012). This uncertainty impacts all of the research 

process’s elements (i.e., the concept, the proxy, and the observed vari-
ables; Rigdon & Sarstedt, 2022), thereby underlining the notion that any 
measurement is just an approximation of the underlying concept (Cliff, 
1983; Rossiter, 2002; Stanley & Spence, 2024). Rigdon et al. (2019a)
have shown that this notion even holds under a perfect model fit when 
uncertainty causes a misalignment between the conceptual variable and 
the common factor.

Drawing on a proxy framework, Sarstedt et al. (2016) differentiate 
the measurement models’ conceptualization and operationalization 
from the data-generation process. These authors emphasize that the 
decision to operationalize a construct reflectively or formatively is solely 
and exclusively a conceptual one grounded in measurement theory. This 
is also reflected in the manifold guidelines that facilitate identifying how 
to specify a measurement model, which usually build on conceptual 
arguments related to the indicator correlations (e.g., Jarvis et al., 2003). 
This measurement-theoretic layer needs to be distinguished from the 
data-generation process underlying the model, which could follow 
common factor logic or composite model logic. The data-generation 
process can differ from measurement-theoretical assumptions. For 
example, measurement-theoretic arguments might favor a reflective 
specification, which highly correlated indicators that meet common 
reliability and validity standards support, although the underlying data 
might stem from a composite model—as in Hair et al.’s (2017)
comparative evaluation of composite-based SEM estimators.

Indicators in a measurement model might be conceptually (and 
empirically) highly correlated, giving rise to a reflective specification, 
even if the mental model underlying the respondents’ answering 
behavior might follow a composite logic. The latter is due to any attitude 

Fig. 1. Concept proxy framework (adapted from Rigdon, 2012, p. 347).

2 Note: In their IMM commentary, Henseler et al. (2025) repeat some of the 
key arguments that Henseler et al. (2024) previously published in Electronic 
Commerce Research. This response can therefore also be regarded as a partial 
response to that earlier article.

3 Different CB-SEM estimation methods include, for example, maximum 
likelihood (ML), generalized least squares (GLS), the asymptotically 
distribution-free (ADF) estimator, unweighted least squares (ULS), weighted 
least squares (WLS), and diagonally weighted least squares (DWLS).

4 In line with, for instance, Hwang et al. (2020) and Sarstedt et al. (2024), we 
use the terms composites and components interchangeably in this research.
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expressed at a particular point in time being the result of a constructive 
process (Zaller & Feldman, 1992). Rather than reflecting a single, fixed 
attitude toward an object or issue, attitudes are flexible, real-time con-
structs based on accessible information, current emotional states, and 
contextual cues (e.g., Fazio et al., 1984; Regan & Fazio, 1977; Stern 
et al., 1995). Hence, there is no compelling argument for composites not 
representing concepts, although they still yield highly correlated in-
dicators that adhere to reflective measurement model standards.

The difference between a measurement theory and a data-generating 
process also becomes evident when using formative measurement 
models in CB-SEM (e.g., Bollen & Diamantopoulos, 2017; Dia-
mantopoulos & Winklhofer, 2001; Rigdon et al., 2014; Treiblmaier 
et al., 2011). These models’ estimation follows a common factor model 
logic, regardless of whether the researcher assumes causal or composite 
indicators, thereby underscoring the notion that theory-based model 
specification (i.e., formative) and model estimation (common factor 
estimation) are two distinct research process elements.

Unlike this notion, Henseler et al.’s (2025) perspective encompasses 
that high indicator correlations imply the presence of a common factor 
model, while weakly correlated indicators suggest the presence of a 
composite model if the corresponding model holds in the population. In 
other words, Henseler et al. (2025) view SEM use as a purely statistical 
practice that essentially lacks all measurement-theoretic conceptual 
considerations. However, determining the best way of measuring a 
concept and choosing an estimator are two distinct tasks that, while 
conceptually related, need to be treated separately.

Metrology—the scientific study of measurement—acknowledges 
that measurement cannot capture the data-generating process perfectly, 
and that measurement is, to some extent, inherently subjective (Rigdon 
et al., 2020; Rigdon & Sarstedt, 2022). In the context of psychometrics, 
this distinction underscores that determining the best way of measuring 
a concept and of choosing an estimator are two distinct tasks. Rigdon, 
Sarstedt, and Ringle (2017, p. 7) explore the reasons for this confusion 
by noting, 

“researchers’ functional background and adherence to a specific 
position in philosophy of science contribute to the confusion over 
which method is ‘right’ and which one is ‘wrong.’”

While we acknowledge that researchers with a strong background in 
statistics are influenced by their beliefs, the world is more complex than 
the simulation studies they rely on, and which shape their specific 
worldview (e.g., Koivisto, 2017; Pawel et al., 2024). Furthermore, we 
recognize that researchers like Henseler et al. (2025) might be uncom-
fortable with the notion that the underlying data-generating process, 
which remains unknown in SEM methods’ real-world applications, 
cannot be straightforwardly linked to the measurement model 
specification.

Given these complexities, the more pressing question is: What hap-
pens if my assumptions about the data-generating process are wrong? 
Sarstedt et al. (2016) explore this issue and find that when PLS-SEM is 
incorrect about how the world really works (i.e., the data-generating 
process), the resulting consequences are less severe than those arising 
from a similar incorrectness in CB-SEM.5 Specifically, these authors find 
that, on average, the bias, which factor-based SEM produces, can be 11 
times higher than the bias that PLS-SEM produces when each method is 

applied to models inconsistent with their underlying assumptions (i.e., 
factor-based SEM applied to composite models, and PLS-SEM to com-
mon factor models). Cho, Sarstedt, and Hwang (2022) confirmed these 
findings by using a more comprehensive model design. Their results 
show that the mean absolute error in path coefficient estimates is nearly 
twice as high when using CB-SEM to estimate composite models than 
when using PLS-SEM to estimate common factor models. Based on this 
evidence, we concur with Sarstedt et al. (2016, p. 263) that, 

“PLS-SEM seems to be the safer choice … when the underlying model 
type [i.e., the data-generating process] is unknown.”

In this context, it is also worth mentioning the finding of Deng and 
Yuan (2023, p. 1475) who conclude that. 

“the estimates of the path coefficients under CB-SEM may contain 
sizable sampling errors due to simultaneously estimating many pa-
rameters. In practice, the substantive interests are often prediction 
and/or classification of individuals. Then path analysis with com-
posite scores has the advantage of directly estimating the relation-
ship of the observed scores.”

3. On the assessment of reflectively measured constructs

We have already elaborated that Henseler et al.’s (2025) assumption 
that reflective measures are equivalent to common factor models is 
conceptually hard to defend. However, for the sake of the argument, let 
us assume that their critique might actually be valid. What would the 
consequences for measurement model results be? Further, what would 
the consequences for measurement model validation be?

In PLS-SEM, assessing reflectively measured constructs typically in-
cludes the indicator reliability (i.e., based on the squared standardized 
loadings), the internal consistency reliability (i.e., using Cronbach’s α, 
composite reliability ρC, reliability coefficient ρA), the convergent reli-
ability (i.e., based on the average variance extracted, AVE), and 
discriminant validity (i.e., using the HTMT criterion)—see, for example, 
Chin (1998); Hair, Hult, Ringle, and Sarstedt (2022, Chapter 4); Ringle 
et al. (2023). Which of these criteria would actually be adversely 
affected by the alleged ‘inflated’ loadings resulting from ‘erroneously’ 
estimating reflective measurement models with PLS-SEM?

The HTMT criterion’s computation does not use the loadings, and is, 
therefore, identical for both CB-SEM and PLS-SEM. In order to assess the 
internal consistency reliability, the PLS-SEM literature recognizes that 
Cronbach’s α, which does not rely on loadings for its computation (and 
thus yields identical results for CB-SEM and PLS-SEM), is too conser-
vative, while the composite reliability ρC metric, which incorporates the 
loadings in its computation, is too liberal (e.g., Dijkstra & Henseler, 
2015b; Guenther et al., 2023; Sarstedt et al., 2021). The reliability co-
efficient ρA (Dijkstra & Henseler, 2015b) serves as the preferred metric 
between the previous two internal consistency reliability measures (e.g., 
Hair et al., 2022, Chapter 4; Sarstedt et al., 2021). Since ρA does not rely 
on indicator loadings, the alleged mismatch between PLS-SEM and the 
reflective measurement model estimation likewise does not affect it. In 
fact, the only metrics affected by loadings, which are assumed to be 
somewhat inflated, are the indicator reliability (i.e., the squared stan-
dardized PLS-SEM loadings) and the AVE, which averages each con-
struct’s indicator reliabilities. ‘Inflated’ means that PLS-SEM provides 
slightly higher loadings than CB-SEM when assuming data from a 
common factor model population, because PLS-SEM, unlike CB-SEM, 
does not divide the variance into common and unique variance 
(Guenther et al., 2023; Sarstedt et al., 2016). PLS-SEM might therefore 
also return higher AVE results.

According to common guidelines, the AVE should exceed 0.50, 
suggesting that, on average, the construct explains more than 50 % of its 
indicators. If the indicator loadings are indeed inflated due to the 
application of PLS-SEM to common factor models, there is a concern that 
researchers might interpret estimates from models that actually lack 

5 We thank an anonymous reviewer, and adopt the suggestion to include the 
following clarification: The discussion of the data-generating process is closely 
tied to the treatment of proxies and conceptual definitions, as explained by 
Rigdon (2012) and illustrated in Figure 1. To make this connection more 
explicit–particularly (e.g., when referring to Sarstedt et al., 2016 and mea-
surement and model estimation framework as displayed in their Figure 3)–it is 
important to emphasize that, in the context of establishing reflective constructs, 
“conceptual” indeed refers to the theoretical layer. This is consistent with the 
notion of a measurement-theoretic layer.
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convergent validity, as the true AVE values might fall below the 0.50 
threshold.

Prior studies that estimated common factor models using PLS-SEM 
help to assess the extent and severity of inflated loadings. For 
instance, Cho, Sarstedt, and Hwang (2022) analyzed common factor- 
and composite-based SEM methods’ performance, reporting an average 
mean absolute error of 0.074 in the loadings when using PLS-SEM to 
estimate common factor models.6 The error is higher (> 0.1) for mea-
surement models with three indicators, but decreases notably when the 
sample size increases. Further, Schuberth, Hubona, et al. (2023) present 
the results of a similar analysis with less complexity. Their results par-
allel those of Cho et al. (2022), showing that in common factor models, 
PLS-SEM-based loadings are approximately 0.1 units higher when the 
measurement model has three indicators. This is a relatively small 
number of indicators, and the difference diminishes as the number of 
indicators and sample size increase, due to PLS-SEM’s consistency at 
large characteristic (Hui & Wold, 1982; Schneeweiß, 1993)—see, for 
example, Reinartz et al. (2009); Sarstedt et al. (2016). In an empirical 
case study involving constructs with three to five indicators, Dash and 
Paul (2021) compared CB-SEM and PLS-SEM estimates, reporting 
loadings differences ranging from 0.00 to 0.08, with an average differ-
ence of 0.05. These results suggest that even under the inadmissible 
assumption that reflective measurement models are equivalent to 
common factor models, the extent to which PLS-SEM inflates loading 
estimates is not substantial. Nevertheless, in the following, we explore 
what such inflation would mean for published PLS-SEM studies.

We tackled the issue by revisiting Sarstedt et al.’s (2022) review of 
PLS-SEM use in the top-30 marketing journals between 2011 and 2020. In 
total, these authors identified 239 articles applying PLS-SEM to estimate 
and analyze 486 models (i.e., 38.91 % of the articles report two or more 
alternative models or different datasets). The authors of the correspond-
ing articles reported an average of 3.85 indicators per reflective construct 
and documented 1825 AVE values. The analysis reveals that the average 
AVE value across all the models is 0.722, with a minimum value of 0.330, 
and a maximum value of 0.995. The distribution depicted in Fig. 2 shows 
that the vast majority of AVE values are substantially larger than 0.5. 
Fig. 2 also presents the percentiles of all AVE values extracted from Sar-
stedt et al. (2022). A detailed examination indicates that, when assuming 
an average loading inflation of 0.05 units, as in Dash and Paul (2021), 87 
% of all constructs would still achieve convergent validity if the AVE 
threshold is adjusted to 0.573, reflecting a correction factor of 0.05 added 
to the common loading threshold of 0.707.

Jointly, these results suggest that the claim that PLS-SEM is unsuit-
able for reflective measurement model validation is vastly exaggerated. 
This holds particularly because it is well-known that the differences 
between PLS-SEM and CB-SEM estimates diminish as the number of 
indicators and the sample size increase, when the data-generating pro-
cess adheres to the statistical common factor model (consistency at large 
characteristic; Hui & Wold, 1982; Schneeweiß, 1993). Also, 

“simulation studies show that the differences between PLS-SEM and 
CB-SEM estimates when assuming the latter as a standard of com-
parison are very small, provided that measurement models meet 
minimum recommended standards in terms of measurement quality 
(i.e., reliability and validity). Specifically, when the measurement 
models have four or more indicators and indicator loadings meet the 
common standards (≥0.70), there is practically no difference be-
tween the two methods in terms of parameter accuracy …”.
(Hair et al., 2022, p. 23).

Consequently, measurement model validation based on metrics that 
build on indicator loadings, is unlikely to yield different conclusions in 

situations commonly encountered in the methods’ real-world 
applications.

The extant literature has long documented all of this; it is therefore 
particularly surprising that Henseler et al. (2025) raise this issue again, 
given that Hair et al. (2024a) recently refuted similar criticism by 
Rönkkö et al. (2023). Based on a series of empirical studies, Rönkkö et al. 
(2023) argued that the AVE is unsuitable for detecting measurement 
model misspecification. Hair et al. (2024a), however, demonstrated that 
this critique is based on the selective reporting of statistics, and on 
reliance on outdated guidelines to validate PLS-SEM-based measure-
ment models. Using the full range of metrics identifies model mis-
specification in practically all instances. Given these results, Hair et al. 
(2024a, p. 94) conclude that, 

“[n]ot surprisingly, if one searches hard enough, one will always find 
model misspecifications that do not raise a red flag and likely leaves 
any substantiation based on measurement theory considerations 
aside.”

4. Key takeaways

4.1. Measurement theoretical model ∕= statistical estimation

Researchers of various scientific disciplines have recognized that 
common factor models are often not an ideal approach for measuring 
concepts (e.g., Cho, Sarstedt, & Hwang, 2022; Rhemtulla et al., 2020; 
Rigdon et al., 2019a; Rigdon et al., 2019b), and argue that they rarely 
hold in applied research (e.g., Atinc et al., 2012; Schönemann & Wang, 
1972). In addition, research has shown that common factor models 
could be subject to considerable degrees of metrological uncertainty, 
which has serious consequences for their validity (Rigdon et al., 2020; 
Rigdon & Sarstedt, 2022). Substantial doubt about the common factor 
model’s universal appropriateness and applicability raises the question 
of why researchers consider common factors the gold standard for 
estimating constructs (Hair & Sarstedt, 2019; Sarstedt et al., 2023). In 
keeping with Hair, Sarstedt, and Ringle (2019, p. 571), we argue that 
they should not. 

“In fact, numerous researchers have warned against reflex-like 
adherence to the common factor model … with recent research 

Fig. 2. Average variance extracted (AVE) value distribution. 
Note: The figure shows the AVE value distribution, the density function, the 
mean value (dashed vertical line), and the 2.5 % / 97.5 % percentiles (solid 
vertical lines).

6 Note that the MAE in loadings that CB-SEM produces when used to estimate 
composite models is 0.101, thus 36 % higher than when using PLS-SEM to es-
timate common factor models.
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suggesting that composites may actually capture a conceptual vari-
able more accurately than a common factor can.”

And as Yuan and Zhang (2024, p. 8) highlight: 

“But we admit that there always exist differences between theoretical 
constructs and the latent variables in practice. Although the setup 
implicitly favors latent variable models, as was typically done in the 
field, we will discuss the rationale and provide the evidence that 
regression analysis with weighted composites yields different but 
more efficient parameter estimates than SEM instead of biased 
estimates.”

Most importantly, a construct’s theoretically conceptualized reflective 
measurement does not equal estimating a common factor model by means 
of empirical data. Henseler et al. (2025) believe the opposite, thereby 
imposing critical and widely limiting assumptions on SEM, which the 
literature has repeatedly challenged and refuted (e.g., Cook & Forzani, 
2023; Rhemtulla et al., 2020; Rigdon, 2012; Rigdon et al., 2017). This is 
also reflected in Reinartz et al. (2009, p. 334), who note that, 

“CBSEM and PLS analysis are essentially two different approaches to 
the same problem. Both start from the same set of theoretical and 
measurement equations but differ in how they approach the 
parameter estimation problem.”

SEM is by far not the only field in which researchers distinguish 
between a theoretically established conceptual model and a statistical 
one (e.g., Collins, 2006; Lubell et al., 2012; McCullagh, 2002). An 
example of this is a moderator of a standard regression analysis 
assuming that a third variable impacts the strength or even the direction 
of two variables’ relationship (e.g., Aguinis et al., 2017; Dawson, 2014). 
In a conceptual model, an arrow pointing at the relationship between 
two variables represents this assumed relationship. To translate this 
conceptual model into a statistical model, researchers need to include an 
auxiliary variable that takes the moderator and the independent vari-
ables’ interaction into account (i.e., to facilitate an analysis of the 
interaction effects). In regression models with moderation, researchers 
therefore need to clearly distinguish between a theoretically established 
conceptual model and a statistical one (e.g., Fairchild & MacKinnon, 
2009; Helm & Mark, 2012); the same applies to PLS-SEM’s moderator 
analysis (e.g., Becker et al., 2023; Henseler, 2021, Chapter 11). Simi-
larly, researchers distinguish between conceptual and statistical models 
in their mediation analysis and in their moderated mediation analysis (e. 
g., Liu et al., 2022). Consequently, conceptual and statistical models are 
two different elements of the research process.

4.2. SEM is a toolkit of methods, none of which is inherently invalid

We also emphasize that model estimation by means of empirical data 
and a specific method with its underlying statistical model and re-
quirements, which are often not perfectly met in empirical studies, ul-
timately produces proxies. There is, however, a validity gap between the 
proxies and the conceptual variables (e.g., Rigdon, 2012; Sarstedt et al., 
2016). Quantifying the validity gap is a highly challenging task (Rigdon 
et al., 2020). Researchers never know with absolute certainty whether 
the data stem from a common factor model or a composite model pop-
ulation. They cannot therefore determine with certainty, which model 
estimation method (e.g., common factor, composite model, equal 
weights or sumscores) has the lowest validity gap. Researchers have, 
however, repeatedly demonstrated that the bias resulting from using 
PLS-SEM when estimating common factor models (i.e., in simulation 
studies with artificially generated data for common factor models) is 
generally trivial (e.g., Reinartz et al., 2009; Sarstedt et al., 2016), and 
substantially smaller than the bias produced when using CB-SEM to 
estimate composite models (Cho et al., 2023; Sarstedt et al., 2016). 
Consequently, PLS-SEM seems to be the safer choice when the under-
lying model type is unknown. Rigdon’s (2024) findings substantiate this 

conclusion further by demonstrating that regression component analysis 
(RCA) and regression-weighted forms of PLS-SEM and GSCA are all 
consistent approaches for modeling data that conform to a factor model 
(see also McDonald, 1996).7

“While these methods—RCA, PLS path modeling and GSCA—do 
model relations between composites, one can better think of them as 
quasi-factor methods. RCA, in particular, starts with a factor model 
… an updated method for constructing data sets consistent with the 
GSCA model [that] relies on factor model-like covariance structures. 
The label ‘quasi-factor methods’ better captures this relationship.”
Rigdon (2023, p. 30).

Accordingly, researchers could use alternative methods to estimate 
reflectively operationalized conceptual variables. These methods 
include, for instance, CB-SEM with its large variety of alternative model 
estimation methods (e.g., ML, GLS, ADF, ULS), PLS-SEM, PLSc-SEM/ 
PLSe-SEM, GSCA, IGSCA, factor score regression offering various tech-
niques to compute the factor scores, and sum score regression (based, e. 
g., on unstandardized or standardized indicator data). To some extent, 
these approaches consider different statistical models, different model 
estimation algorithms as well as their specific requirements. They 
therefore produce different statistical results that adhere to the same 
conceptual model. In their multimethod SEM example, Sarstedt et al. 
(2024) do not only demonstrate the differences in the statistical results 
obtained from five different SEM methods for the same conceptual 
model, but also highlight the impact of the researchers’ analytical de-
cisions on these outcomes.

5. A constructive path forward

Given the inherent uncertainty in real-life data settings about the 
data-generating process and the optimal methodology, adopting a 
complementary perspective (methods A and B) rather than a mutually 
exclusive stance (A or B) seems more prudent. Suggestions that one 
method should always be preferred over the other are likely to be ill- 
advised, as such preferences rely on assumptions about unknown ele-
ments of the model and the data (Rigdon et al., 2017). Instead, re-
searchers should just acknowledge this methodological uncertainty 
(Sarstedt et al., 2024, p. 1109).

As a constructive way forward when using SEM in studies, we 
recommend that business marketing researchers consider the different 
methods as tools within a methodological toolbox, and adopt a multi-
method SEM approach. From this perspective, any potential sensitivity 
to method choices is an inherent part of the academic discourse on a 
given phenomenon across studies (e.g., Campa & Kedia, 2002; Whited, 
2001). Robustness tests could also be used to examine sensitivities 
within a single study. Researchers using a composite-based SEM 
approach could confirm their findings’ robustness by also estimating the 
model with a common factor-based method, and vice versa. 

“One has room to appreciate regression component analysis, gener-
alized structured component analysis, and PLS path modeling as 
valuable analytical methods. Not being common factor methods does 
not make them flawed—rather, it enables them to avoid an impor-
tant shortcoming of the factor analytic approach. The dominance of 

7 It is worth noting that a comparison with common factor results could also 
be achieved by using PLS-SEM approaches that mimic common factor model 
estimation and/or outcomes. For instance, Dijkstra (2014) introduced consis-
tent PLS-SEM (see also Dijkstra & Henseler, 2015b; Dijkstra & Schermelleh- 
Engel, 2014). Similarly, Huang (2013) provided an approach that mimics CB- 
SEM outcomes by using PLS-SEM results (see also Bentler & Huang, 2014). In 
addition, when using GSCA (Hwang & Takane, 2004) for composite model 
estimations, researchers could use IGSCA (Hwang et al., 2021) to mimic CB- 
SEM outcomes (Cho, Schlägel, Hwang, Choi, Sarstedt, & Ringle, 2022c; 
Hwang et al., 2021; Hwang et al., 2023).
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common factor-based SEM can make it hard to appreciate the merits, 
and even the exact nature, of alternative procedures, but effective 
researchers will keep an open mind.”
Rigdon (2023, p. 31).

When adopting a multimethod approach to SEM, we advise business 
marketing researchers to focus on the robustness of the inferences rather 
than the differences in estimation results across methods. Such differ-
ences are to be expected when estimating models with empirical data, for 
the following three main reasons: (1) Alternative methods, such as CB- 
SEM with its various estimators (e.g., ML, GLS, ADF, ULS) and PLS- 
SEM, employ different statistical models to estimate SEM’s theoretically 
conceptualized models; (2) empirical data often contain imperfections 
and, to some extent, violate methodological requirements, which poten-
tially biases the results; (3) each method’s application involves numerous 
decisions during the analysis process, each of which could influence the 
final results to varying degrees. Even though the results are not identical 
across the various methods, we also expect to see notable differences 
between the different CB-SEM estimators (e.g., Boomsma & Hoogland, 
2001; Shi & Maydeu-Olivares, 2020) or when using sum score regression 
(Hair et al., 2024b), but not between ML-CBSEM, PLS-SEM, PLSc-SEM/ 
PLSe-SEM, GSCA, and IGSCA when considering reflectively measured 
constructs (Cho, Sarstedt, & Hwang, 2022; Dijkstra & Henseler, 2015b; 
Reinartz et al., 2009; Sarstedt et al., 2016). The situation changes, how-
ever, when formatively measured constructs from a composite population 
are assumed. In this case, researchers are advised to use PLS-SEM or GSCA 
(Cho et al., 2023; Hair et al., 2017; Sarstedt et al., 2016).

A multimethod approach to SEM allows researchers to assess 
whether their findings and conclusions are consistent across methods (e. 
g., both CB-SEM and PLS-SEM identify the same coefficient as the 
strongest compared to the others). Alternatively, differences in the 
outcomes across methods prompt researchers to investigate and deter-
mine whether (1) the theoretical model requires refinement, (2) there 
are issues and problems with the data used, or (3) whether certain of the 
employed statistical methods’ technical specifics lead to unexpected 
outcomes or are violated requirements—or even whether a combination 
of these three considerations is responsible for the differences.

Furthermore, a multimethod approach allows researchers to address 
alternative SEM objectives by employing specific techniques. CB-SEM, 
for instance, allows the model to be assessed as a whole (e.g., by 
applying model fit criteria; Hayduk et al., 2007; Zhang et al., 2021). A 
high model fit ensures that the theoretical model and real-world ob-
servations are aligned (e.g., Bentler, 1990; Browne & Cudeck, 1992; Hu 
& Bentler, 1999; McNeish & Wolf, 2023; Niemand & Mai, 2018).8 In 
contrast, PLS-SEM facilitates the evaluation of a model’s out-of-sample 
predictive capabilities (e.g., by using PLSpredict and CVPAT; Lien-
gaard et al., 2021; Sharma et al., 2023; Shmueli et al., 2016; Shmueli 
et al., 2019).9 Given the predictive nature of results on which 

managerial recommendations are based, demonstrating a theoretically 
established model’s predictive power is highly critical from a practical 
viewpoint (Hair, 2021; Hair & Sarstedt, 2021). Similarly, Deng and Yuan 
(2023) recommend that researchers should begin their model analysis 
by using CB-SEM, followed by PLS-SEM (or related methods). This al-
lows researchers to take advantage of important measurement and 
modeling features that CB-SEM offers (e.g., the reliability of individual 
items and the overall model structure’s goodness of fit), while benefit-
ting from the advantages of PLS-SEM, which, as Deng and Yuan (2023)
show, offers a higher signal-to-noise ratio and superior performance in 
prediction, classification and individual-level diagnosis (see also Yuan & 
Zhang, 2024).

In conclusion, combining both methods in a multimethod approach 
to SEM enables PLS-SEM researchers to benefit, for instance, from CB- 
SEM-based model fit assessment, thereby ensuring that the theoretical 
model aligns well with real-world observations based on empirical data. 
Conversely, CB-SEM researchers can leverage PLS-SEM’s capabilities to 
demonstrate the model’s predictive power. This is essential for sup-
porting management recommendations drawn from research findings, 
which are inherently forward-looking. Moreover, CB-SEM researchers 
can use the PLS-SEM results, which are often more robust due to the 
method’s less restrictive requirements, to identify issues in their model 
specification and estimation (i.e., when the results differ widely), 
especially when they arise from violations of CB-SEM requirements and 
assumptions.10 Finally, a multimethod approach to SEM might reduce 
the methodological, model estimation, and interpretational 
uncertainty—as outlined by Sarstedt et al. (2024)—by mitigating the 
risks associated with relying on a single method throughout the model 
estimation process.

A multimethod approach to SEM would also open new avenues for 
future research, offering opportunities to overcome past conflicts be-
tween method-specific viewpoints; for example, by integrating both 
exploratory and confirmatory research approaches within a unified 
framework and addressing methodological uncertainties through a 
multimethod approach (Sharma et al., 2024). Key areas for future 
research include distinguishing between conceptual and statistical 
models, defining and estimating the constructs (e.g., reflective, causal, 
formative, and others), evaluating them with appropriate criteria and 
flexible cut-off values, combining model fit and predictive power 
assessment, and assessing the validity gap between theoretically estab-
lished conceptual constructs and their statistically derived proxies (i.e., 
as obtained through different SEM methods). To facilitate advancements 
that build on empirical research, researchers should be aware of and 
adapt open science initiatives (Deer, Adler, Datta, Mizik, & Sarstedt, 
2024; Wagenmakers et al., 2021) that aim to foster research (Adler et al., 
2023; Sharma et al., 2024).

6. Conclusion

In conclusion, we reject Henseler et al.’s (2025) criticism because 
their fundamental assumption—that the theoretically conceptualized 
reflective measurement of constructs is equivalent to common factor 
model estimation using empirical data—is incorrect. This perspective 
has been repeatedly challenged and refuted in the literature (e.g., Cook 

8 Note: Before PLS-SEM is applied to perform other analyses that require PLS- 
SEM construct scores (and/or that are not possible in CB-SEM) and to determine 
the predictive power of the model, CB-SEM can be used to ensure model fit, 
among other things. To properly execute CB-SEM, researchers usually employ a 
relatively large data set to meet the CB-SEM requirements. At the same time, a 
high model fit is often associated with high indicator loadings (i.e., usually 
notably higher then 0.7). In this case, the CB-SEM results are very similar to the 
PLS-SEM results due to the consistency at large condition, and not much re-
mains of the problems that Henseler et al. (2025) describe.

9 Note that, to some extent, PLS-SEM and PLSc-SEM/PLSe-SEM support the 
assessment of both model fit (Dijkstra & Henseler, 2015a; Henseler, Dijkstra, 
Sarstedt, Ringle, Diamantopoulos, Straub, Ketchen, Hair, Hult, & Calantone, 
2014; Schuberth, Rademaker, & Henseler, 2023) and predictive power (Sharma 
et al., 2023; Shmueli et al., 2016; Shmueli et al., 2019). GSCA and IGSCA 
similarly support the assessment of both model fit (e.g., Cho et al., 2020; Cho 
et al., 2022c) and predictive power (Cho et al., 2019; Cho et al., 2023; Cho, 
Hwang, Sarstedt, & Ringle, 2022a).

10 We thank an anonymous reviewer for suggesting the inclusion of this 
important aspect concerning model estimation, particularly when different 
methods are involved. Although the consistency–robustness trade-off in PLS- 
SEM has been extensively debated in the literature, it is worthwhile to revisit 
this issue. For example, Cassel et al. (1999) emphasize a practical perspective 
by examining the effects of skewness, multicollinearity, and model mis-
specification across various data-generating processes. Their findings suggest 
that while extreme skewness can introduce bias, PLS-SEM generally remains 
both robust and consistent under typical conditions (see also, for example, Hair 
et al., 2017; Sarstedt et al., 2016).
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& Forzani, 2023; Rhemtulla et al., 2020; Rigdon, 2012; Rigdon et al., 
2017), and common factor models are not the undisputed gold standard 
for estimating constructs (Hair & Sarstedt, 2019; Sarstedt et al., 2023). 
Even if one were to accept that Henseler et al.’s (2025) assumption is 
reasonable, the consequences of its violation are trivial.

We also conclude that the methodological debate should not devolve 
into an “either-or” dichotomy, but instead embrace a “both-and” per-
spective—supporting recent calls for a multimethod approach to SEM (e. 
g., Sarstedt et al., 2024; Sharma et al., 2024)—and advocate for the 
combined use of SEM methods, including CB-SEM (with its different 
estimators, e.g., ML, GLS, ADF, ULS), PLS-SEM, PLSc-SEM/PLSe-SEM, 
GSCA, and IGSCA. This practice transcends superficial pro-and-con 
method debates, reinforces the original complementary perspective of 
SEM methods as envisioned by their originators (Jöreskog & Wold, 
1982), and aligns with recent PLS-SEM literature emphasizing this view 
(e.g., Binz Astrachan et al., 2014; Dash & Paul, 2021; Hair, Sarstedt, 
Pieper, & Ringle, 2012; Richter et al., 2022; Riou et al., 2015). All SEM- 
based research will benefit from these suggestions, since a multimethod 
approach to SEM not only allows researchers to confirm their results’ 
robustness across different methods, to eliminate methodological un-
certainties, but also ensures their results’ quality across different criteria 
(e.g., model fit and the model’s predictive relevance) and helps re-
searchers pursue a combination of different research objectives (e.g., in 
both exploratory and confirmatory research).

In conclusion, we reject the premise that PLS-SEM is inherently 
flawed for use with reflective measurement models. Instead, we advo-
cate for methodological pluralism and encourage researchers to priori-
tize the substantive contributions of their models over pedantic critiques 
of estimation methods. The true test of any research methodology lies in 
its ability to generate meaningful, actionable insights—an objective that 
PLS-SEM has consistently achieved. Let us channel our collective efforts 
toward refining and applying SEM methods to tackle the pressing 
methodological challenges faced across disciplines. The way forward is 
not in entrenching ourselves in rigid methodological positions, but in 
collaborating to advance methodological innovation and scientific rigor.
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& H. Wold (Eds.), Systems under indirect observations: Part II (pp. 1–54). Amsterdam: 
North-Holland. 

Yuan, K.-H., & Zhang, Z. (2024). Modeling data with measurement errors but without 
predefined metrics: Fact versus fallacy. Journal of Behavioral Data Science, 4(2), 1–28.

Zaller, J., & Feldman, S. (1992). A simple theory of the survey response: Answering 
questions versus revealing preferences. American Journal of Political Science, 35(3), 
579–616.

Zhang, M. F., Dawson, J. F., & Kline, R. B. (2021). Evaluating the use of covariance-based 
structural equation modelling with reflective measurement in organizational and 
management research: A review and recommendations for best practice. British 
Journal of Management, 32(2), 257–272.

P. Guenther et al.                                                                                                                                                                                                                               Industrial Marketing Management 128 (2025) 1–9 

9 

http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0500
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0500
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0500
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0505
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0505
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0510
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0510
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0510
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0510
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0515
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0515
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0515
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0520
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0520
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0520
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0525
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0525
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0525
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0530
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0530
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0530
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0535
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0535
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0535
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0540
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0540
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0545
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0545
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0545
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0545
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0550
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0550
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0550
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0555
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0555
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0555
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0555
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0560
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0560
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0560
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0560
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0565
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0565
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0570
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0570
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0570
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0575
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0575
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0575
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0580
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0580
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0580
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0585
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0585
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0585
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0590
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0590
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0590
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0595
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0595
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0595
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0600
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0600
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0605
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0605
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0605
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0610
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0610
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0615
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0615
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0615
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0620
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0620
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0620
http://refhub.elsevier.com/S0019-8501(25)00074-4/rf0620

	PLS-SEM and reflective constructs: A response to recent criticism and a constructive path forward
	1 Introduction
	2 Reflective measurement does not equal common factor models
	3 On the assessment of reflectively measured constructs
	4 Key takeaways
	4.1 Measurement theoretical model ≠ statistical estimation
	4.2 SEM is a toolkit of methods, none of which is inherently invalid

	5 A constructive path forward
	6 Conclusion
	CRediT authorship contribution statement
	Acknowledgement
	Data availability
	References


