
This is a repository copy of Goal-Conditioned Model Simplification for 1-D and 2-D
Deformable Object Manipulation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/227194/

Version: Accepted Version

Article:

Wang, S., Leonetti, M. and Dogar, M. orcid.org/0000-0002-6896-5461 (Accepted: 2025)
Goal-Conditioned Model Simplification for 1-D and 2-D Deformable Object Manipulation.
IEEE Transactions on Robotics. ISSN 1552-3098 (In Press)

This is an author produced version of an article accepted for publication in IEEE
Transactions on Robotics made available under the terms of the Creative Commons
Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction
in any medium, provided the original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Goal-Conditioned Model Simplification for

1-D and 2-D Deformable Object Manipulation
Shengyin Wang, Matteo Leonetti, Mehmet Dogar

Abstract—Motion planning for deformable object manipula-
tion has been a challenge for a long time in robotics due to its high
computational cost. In this work, we propose to mitigate this cost
by limiting the number of picking points on a deformable object
within the action space and simplifying the dynamics model. We
do this first by identifying a minimal geometric model that closely
approximates the original model at the goal state; specifically,
we implement this general approach for 1-D linear deformable
objects (e.g., ropes) using a piece-wise line-fitted model, and for 2-
D surface deformable objects (e.g., cloth) using a mesh-simplified
model. Then a small number of key particles are extracted as
the pickable points in the action space which are sufficient to
represent and reach the given goal. Additionally, a simplified
dynamics model is constructed based on the simplified geometric
model, containing much fewer particles and thus being much
faster to simulate than the original dynamics model, albeit with
some loss of precision. We further refine this model iteratively
by adding more details from the actually achieved final state of
the original model until a satisfactory trajectory is generated.
Extensive simulation experiments are conducted on a set of
representative tasks for ropes and cloth, which show a significant
decrease in time cost while achieving similar or better trajectory
costs. Finally, we establish a closed-loop system of perception,
planning, and control with a real robot for cloth folding, which
validates the effectiveness of our proposed method.

Index Terms—Deformable object manipulation, motion plan-
ning, action space reduction, and model simplification.

I. INTRODUCTION

DEFORMABLE object manipulation (DOM) has received

significant interest from robotic researchers in recent

years [1]–[4] due to the ubiquitous existence of deformable

objects in our daily life and their extensive applications

in both domestic and industrial scenarios [5]–[8], such as

folding laundry or handling surgical materials. DOM tasks

have mostly been studied using model-free learning-based ap-

proaches in the literature, including reinforcement learning [9],

[10], imitation learning [11], and large vision-language-model-

based systems [12]. However, while model-based planning

methods are widely used for rigid object manipulation, and

provide certain advantages such as training-free generalization

to novel tasks and objects, their application to deformable

objects has been limited due to the significant computational

challenges involved. A key challenge in this field is motion

S. Wang and M. Dogar are with the School of Computer Science, University
of Leeds, Leeds, LS2 9JT, UK (e-mail: {scswan,m.r.dogar}@leeds.ac.uk).

M. Leonetti is with the Department of Informatics, King’s College London,
London, WC2R 2LS, UK (e-mail: matteo.leonetti@kcl.ac.uk).

M. Dogar was supported by the UK Engineering and Physical Sciences
Research Council [EP/V052659/1]. For the purpose of open access, the
author(s) has applied a Creative Commons Attribution (CC BY) license to
any Accepted Manuscript version arising.

planning, where the objective is to develop systems that

can autonomously plan trajectories to manipulate deformable

objects into specified shapes, such as side folding a piece of

cloth in half, as illustrated on the left side of Fig. 1. Typically,

a dynamics model is first built in simulation, often utilizing

mass-spring systems [13] for their effectiveness. These models

usually comprise thousands of particles, each representing a

potential picking point, resulting in high-dimensional state rep-

resentations and a vast action space. Simulating such models

is computationally expensive, and motion planners must often

evaluate thousands of trajectories, potentially taking hours to

plan a single trajectory [14]. These challenges—large action

space, high-dimensional state representation, and computa-

tionally expensive dynamics—underscore the complexity of

current approaches to motion planning for deformable object

manipulation and the need for advancements in this area [15].

In this work, we aim to alleviate this computational burden

by reducing the action space and simplifying the dynamics

model.

A straightforward approach to reduce the action space is to

manually limit the pickable points on the deformable object.

For example, controlling the shape of a rope by manipulating

only its two ends [16], folding or unfolding cloth by focusing

on its visible corners [17]–[19], or removing wrinkles from

fabric [20]. However, while effective for specific tasks, these

methods do not generalize well to different goals. To address

this limitation, we propose extracting key picking points

and reducing the action space in a goal-conditioned manner.

This involves first identifying a simplified geometric model

with a minimal number of elements (such as particles or

triangles) that can effectively represent the original object at

the goal state. For instance, as shown in the top image in the

Geometric Model Simplification block of Fig. 1, a minimal

model consisting of six triangles and eight particles provides

a good approximation of the goal shape when folded sideways

in half. By leveraging this minimal model, we extract the key

picking points, significantly reducing the search space and

enabling the planner to generate efficient trajectories across

various tasks/goals.

While action space reduction helps improve efficiency, the

complexity of deformable object motion planning is further

exacerbated by the high-dimensional state representation and

computational expense of existing dynamics models. To miti-

gate these challenges, many researchers have explored approx-

imate dynamics models as alternatives to high-fidelity ones,

typically designed for specific tasks [21], [22]. For particle

based models, a straightforward way to simplify the system is

by using fewer particles. For example, as shown in Fig. 2(c-d),

2

Fig. 1. Overview of the iterative model simplification and motion planning framework for a cloth side folding task, with closed-loop robot execution in the
real world. Initially, a simplified geometric model is identified and used to extract key picking points in the reduced action space. A simplified dynamics
model is then built and utilized to plan a trajectory in a significantly shorter time. The trajectory is executed on the original model, and if the goal is not
reached, the loop iterates, refining the simplified model until a satisfactory trajectory is found. Once a valid trajectory is identified, it is executed on the robot,
with the perception system continuously tracking the deformation during manipulation.

coarse grid models can be used as effective approximations for

certain tasks, instead of having a dense distribution of particles

throughout the cloth. However, a generic grid model is not

goal-informed and is only suitable for specific tasks. The grid

resolution, which needs to be predetermined by humans, also

impacts its effectiveness. To overcome these limitations, we

again take a goal-conditioned approach, and propose building

simplified dynamics models tailored to specific goals. For

instance, the first image in the Simplified Dynamics Model

block of Fig. 1 illustrates an approximation of the original

cloth dynamics model for a side folding task. Compared to

the non-informed grid model, such as Fig. 2(c), the goal-

conditioned simplified model has two distinctive halves, with

the central edge aligned along the folding line whereas the grid

model does not. This model better captures the key dynamics

required for side-folding the cloth, and enables much faster

trajectory rollouts within the planning framework.

Nonetheless, trajectories planned using simplified dynamics

models may not perform well on the original dynamics model

due to significant differences between the two. To address

this challenge, we propose an iterative framework in which

the simplified dynamics model is continuously refined, with

each trajectory planned from the previous model serving as

a warm start for the next iteration. Our intuition is that if a

trajectory planned using a simplified model fails to bring the

original model to the goal state, the actual final state achieved

can provide valuable information to enhance the simplified

model. For example, as shown in the Simplified Dynamics

Model block of Fig. 1, while the trajectory planned based on

the initial simplified model does not bring the original model

to the desired goal state, iteratively refining the model by

extracting features from the achieved state can ultimately lead

to a successful trajectory. By the third iteration, a trajectory

is found that successfully brings the original model to a

satisfactory final state. This iterative framework allows for the

gradual incorporation of details into the simplified models, en-

abling faster trajectory generation while maintaining accuracy

in deformable object manipulation.

To evaluate the proposed methods, we conduct extensive ex-

periments across a range of tasks involving ropes, rectangular

cloths, and complex cloths such as t-shirts. First, in Sec. V-B

we assess two geometric model simplification approaches:

line-fitting for 1-D linear objects and mesh simplification

for 2-D surface objects. Next, in Sec. V-C we compare the

performance of our goal-conditioned action space reduction

methods for motion planning against several baselines, in-

cluding the original action space, random action space, and

grid-based action space. In Sec. IV-D, we then evaluate the

effectiveness of the simplified dynamics models within the

proposed planning framework, comparing them to the original

dynamics model and grid-based models. Following this, in

Sec. V-E, we compare our goal-informed models with a

learned dynamics model. Finally, in Sec.VI we establish a

real-world experimental system integrating perception, motion

planning, and control subsystems, demonstrating the effective-

ness of our proposed methods in performing cloth folding

tasks.

This paper builds upon our previous work [23], where we

introduce methods for simplifying the geometric model and

reducing the action space for motion planning. Specifically,

our contributions in Wang et al. [23] include:

• A general method of goal-conditioned geometric model

simplification for 1-D linear deformable objects (e.g.,

ropes) that uses a piece-wise line fitted model, and for

2-D surface deformable objects (e.g., cloth) that uses a

mesh simplified model (Sec. IV-B);

• An action space reduction scheme integrated into a

manipulation planning pipeline based on the simplified

geometric model of the deformable objects (Sec. IV-C);

• An extension of this approach to multi-step planning with

intermediate goal states, where action space reduction

and model simplification are performed on successive

intermediate goals (Sec. V-A).

In this paper, we further extend our approach by incorpo-

3

rating simplified dynamics models and an iterative planning

framework, and compare these methods against additional

baselines. The contributions that are novel in this paper are

as follows:

• A systematic approach for constructing a simplified dy-

namics model (Sec. IV-D), based on the original dynam-

ics model and the simplified geometric model.

• An iterative model simplification & motion planning

framework that generates manipulation plans faster, ef-

fectively balancing computational cost and trajectory op-

timality (Sec. IV-A).

• An extensive evaluation of the proposed model simpli-

fication and motion planning framework in simulation,

covering a range of representative tasks involving ropes

and cloth, using both search-based and optimization-

based motion planning methods (Sec. V).

• A closed-loop experimental system incorporating percep-

tion, planning, and control for a Franka Panda robot

performing cloth folding in the real world (Sec. VI).

II. RELATED WORK

While impressive progress has been achieved for rigid

object manipulation, the development of deformable object

manipulation methods lags behind, primarily due to two main

challenges: high-dimensional state space and complex dy-

namics. These challenges make both planning and perception

complex problems, particularly for traditional optimization or

search based methods [24]–[26]. Comprehensive surveys of

deformable object modeling, planning, control, and learning

can be found in the works of Zhu et al. [15], Yin et al. [27],

Bhagat et al. [28], and Arriola-Rios et al. [13].

The idea of identifying important points or features on

deformable objects has been studied before. One way of

approaching this problem is to determine particular features

for a specific task. For example, Qiu et al. [20] and Sun et al.

[29] propose to detect and eliminate wrinkles, where the task is

to flatten a deformable object. Other approaches include using

manually input key points [19], or contours [30]. Recently,

learning-based methods for deformable object manipulation

have been widely used [31]–[36]. Some of these approaches

aim to simplify deformable object representations and identify

key features on them. For example, Yan et al. [31] propose

extracting a compact representation of the deformable object

directly from raw sensor inputs for dynamics learning to facili-

tate faster planning. Lips et al. [32] learn key points from RGB

images directly for specific cloth categories using synthetic

data and manipulate deformable objects with scripted motion

primitives. Zhou et al. [33] introduce a latent representation

for soft object manipulation with semantic correlations, while

Arnold et al. [34] estimate mesh representations from voxel

inputs, and perform planning in mesh format internally. Ma

et al. [35] approximate a deformable object as a sparse set of

interacting key points and learn a graph neural network that

captures the geometry abstractly. Additionally, Li et al. [36]

propose learning 3D features using a combined PointNet en-

coder and neural radiance field (NeRF) for various deformable

objects.

In this work, we also exploit the idea of identifying impor-

tant features to reduce the action space. However, our approach

differs from the aforementioned methods in that our method

1) can adapt to different tasks (as opposed to identifying

features for one specific task); 2) identifies the key particles

autonomously; and 3) takes a model-based (as opposed to

learning-based) and goal-conditioned approach.

The idea of using coarse or approximate dynamics models

in deformable object manipulation has gained significant atten-

tion, largely because high-fidelity models are scarce, difficult

to fine-tune, and computationally expensive to simulate [37].

As a result, various simplified models have been proposed

for specific tasks [21], [38]–[40]. Ruan et al. [21] develop

a directional diminishing rigidity model for rope and cloth

dragging without relying on simulating expensive mass-spring

models. McConachie et al. [38] employ a virtual elastic band

model to approximate true dynamics and train a classifier

to decide when to trust the simplified model for rope ma-

nipulation in clutter. Additionally, McConachie et al. [39]

introduce a multi-armed bandit method to adaptively select

from multiple simplified models, avoiding the need for a high-

fidelity deformable model in applications like rope winding

and table covering. Power et al. [40] utilize simple models for

cost-effective data collection, e.g. using a pendulum model

to approximate a tethered rope, thereby enhancing learning

efficiency. Zhou et al. [41] focus on identifying, modeling, and

manipulating structures of interest rather than the entire object

for bimanual bag manipulation, which substantially reduces

computational load compared to full dynamics modeling.

Learning-based methods have also been explored to train a

neural network as the underlying dynamics model for motion

planning [31], [36], [42]. For instance, Hoque et al. [42]

demonstrate a visual dynamics model trained on domain-

randomized RGBD images for fabric folding tasks, while Li

et al. [36] use a recurrent state-space model (RSSM) for

latent dynamics modeling. Other approaches involve using

graph neural networks to learn deformable dynamics based on

key points or mesh representations [35], [43]–[45]. Mitrano

et al. [46] propose adapting a learned dynamics model to

novel domains by focusing on the regions where source and

dynamics are similar. Lee et al. [47] propose an efficient

cloth simulation method using a miniature model with similar

physical properties and an upscaling deep neural network.

Their method focuses on simulating draped cloth scenarios,

such as curtains and flags. Interests in model reduction extend

to related areas in robotics, such as the framework proposed

by Chen et al. [48], which aims to optimize reduced-order

models and trajectories simultaneously for bipedal locomotion,

and the application of model order reduction techniques to

solve optimal control problems for cable-driven soft robots,

significantly improving computational efficiency [49].

Instead of manually constructing simplified models or train-

ing neural network models offline for specific tasks, we base

our dynamic model simplification on the various goals and

tasks provided, allowing it to operate online without the need

for offline training. Furthermore, our method can progressively

refine the simplified model in a consistent way. These proper-

ties enable our method to accept arbitrary goals for the object

4

and to quickly perform model simplification conditioned on

these goals, while gradually reducing the behavioral gap from

the original dynamics models.

Recent advances in end-to-end vision-language-based sys-

tems have shown promise in robotic object manipulation [50],

[51]. A particular strength of these approaches is that they

do not require explicit dynamics modeling or state estimation,

which is especially advantageous for deformable object manip-

ulation. However, they still face challenges such as the need for

large-scale annotated datasets, high computational demands,

slow inference, and sensitivity to noisy sensory inputs. As

a complementary approach, we simplify the dynamics and

reduce the action space in a goal-conditioned manner, thereby

avoiding the need for extensive data collection and model

training.

III. PROBLEM FORMULATION

We consider the motion planning problem of manipulating

a deformable object into a given goal state. While the ma-

nipulation takes place in 3-D space, we focus on objects that

can be represented by 1-D lines (like ropes) or 2-D surfaces

(like cloths). For example, this could involve straightening a

crumpled rope (Fig. 7(a)) or folding a piece of cloth diagonally

into half (Fig. 7(c)).

In this section, we define the state space, action space, state

transition function, and objective function of the manipula-

tion problem. We distinguish between the geometric model

of a deformable object and its state. The geometric model

represents the connections between the particles in the mass-

spring model and is topological, therefore is not affected by

manipulation. The state of the model, on the other hand,

represents the position of all particles, and is affected by

manipulation actions.

For both 1-D linear and 2-D surface deformable objects,

the geometric model can be represented as an undirected and

weighted graph G = (V,E, L), where V = {1, 2, ..., N}
denotes a set of particles indexed from 1 to N = |V |,
E ⊆ {⟨i, j⟩ | i, j ∈ V and i ̸= j} denotes the edges, and

L ∈ R
|E| represents the edge weights, corresponding to the

resting length of the edges.

The state of the deformable object at each time step during

manipulation is defined by the positions of all particles,

denoted as ξt := {pi | ∀i ∈ V }, where pi = (xi, yi, zi) rep-

resents the position of the ith particle.

As for the action space A, we assume the robot is equipped

with a single gripper, which can pick any given particle in the

object, that is, any i ∈ V , and move it by a certain distance

along a direction in 3D space. We also add a ‘None’ action,

corresponding to not holding any particle. The action at time

t can be represented as:

at =

{

⟨i, δx, δy, δz⟩

None
(1)

It is worth noting that the action space can be easily extended

accommodate multiple grippers. Moreover, we constrain the

movement of the gripper at each step to avoid moving the

deformable object drastically: |δx| ≤ ∆x, |δy| ≤ ∆y, |δz| ≤

∆z; ∆x, ∆y and ∆z are motion limits along each axis in

Cartesian space.

The dynamics model of deformable objects considered in

this paper is based on a mass-spring system, which determines

how the object moves and deforms in response to actions. We

define it as D = (G,M,R), of which G denotes the geometric

model as described above,M denotes the dynamics properties

of all particles such as mass, and R denotes various dynamics

relations between different particles such as the springs and

collision constraints.

Based on the dynamics model D, a state transition function

can be defined accordingly:

ξt+1 = fD(ξ
t, at). (2)

which outputs the new state of the object given the current

state ξt and action at.
We formulate the manipulation problem as a finite-horizon

motion planning problem, whose solution is a trajectory, i.e., a

sequence of T actions, τ = ⟨a0, a1, ..., aT−1⟩, that minimizes

the distance between the final state of the particles ξT after

executing τ and their goal state ξG:

min
τ

∥ξG − ξT ∥

s.t. ξt+1 = fD(ξ
t, at), ∀t ∈ [0, T − 1] ,

(3)

where we assume ξ0 is given as the initial state, and the state

transition function fD guarantees the feasibility of states along

the trajectory.

In this planning framework, the size of the action space is

|A| = (N ×R
3+1). The number of pickable particles affects

the size of the action space linearly, which has, in turn, an

exponential effect on the search space through the branching

factor. Therefore, the number of picking points considered

for planning has a significant impact on planning efficiency.

Furthermore, the complexity of the dynamics model used in

Eq. 3 also affects the computational cost greatly, as the motion

planner requires massive amounts of trajectory rollouts.

In the next section, we present a methodology to decrease

the computational cost of motion planning by reducing the

action space and simplifying the dynamics model.

IV. METHODOLOGY

To alleviate the computational complexity of the motion

planning problem for deformable object manipulation, as de-

fined in Eq. 3, we employ two primary strategies: reducing the

action search space A and utilizing faster, simplified dynamics

models D.

Our approach makes these reductions in an informed man-

ner by leveraging goal-specific information to select key

picking points (thereby reducing the action search space) and

to simplify the dynamics model accordingly. We propose an

iterative framework for model simplification and motion plan-

ning that progressively adds detail to the simplified model until

a satisfactory trajectory is identified, ensuring both efficiency

and effectiveness in solving the motion planning problem for

deformable object manipulation.

In Sec. IV-A, we outline the overall iterative approach, while

the subsequent sections detail its core components: Sec. IV-B

5

introduces the geometric model simplification pipeline for

1-D and 2-D objects, which serves as the foundation for

both action space reduction (Sec. IV-C) and dynamics model

simplification (Sec. IV-D); Sec. IV-C presents the action space

reduction process; Sec. IV-D explains how the simplified

dynamics model is constructed; lastly, Sec. IV-E describes the

process of refining and combining the simplified models.

A. Iterative Model Simplification & Motion Planning

The overall process of the proposed action space reduction

and iterative dynamics model simplification for motion plan-

ning is illustrated in Alg. 1.

This framework starts by computing the simplified geomet-

ric model ĜS based on the goal state of the original model

(Line 2), and then uses this simplified geometric model to

reduce the set of picking points V A
O on the original model

(Line 3). Next, a simplified dynamics model DS is constructed

using the simplified geometric model ĜS and the original

dynamics model DO (Line 5). The initial state ξ0O, the goal

state ξGO , and the reduced picking points V A
O are then mapped

to the simplified model based on the correspondence between

the two models (Line 6). A planner is subsequently invoked

to generate a trajectory that moves the simplified model from

the initial state toward the goal within the reduced action

space (Line 7). The planned trajectory is then rolled out on

the original dynamics model (Line 8). During each loop, the

original dynamics model, which is computationally expensive

to simulate, is called only once, while numerous trajectory

rollouts within the planner use coarse but computationally

cheap models. If a satisfying trajectory is found or marginal

improvement is observed for the original dynamics model, the

process terminates (Line 10); otherwise, the geometric model

simplification is invoked again to extract more details from

the actually achieved final state (Line 11). The new simplified

geometric model Ĝ′S is then combined with the previously

simplified model ĜS to ensure that no information is lost from

the previous step (Line 12). The trajectory planned from the

previous simplified model is used as a warm start for the new

iteration of motion planning, based on the updated simplified

model (Line 7).

An example of this iterative framework is shown in Fig. 1

for the task of folding a piece of cloth in half sideways. In

the Geometric Model Simplification block, the original model

at the folded goal state, which consists of a large number

of particles, is reduced to a simplified geometric model with

six triangles and eight particles. The corresponding particles

on the original model are then extracted as potential picking

points in the reduced action space, as shown in the Reduced

Action Space block. A simplified dynamics model is then

constructed based on the simplified geometric model, with

particles and springs placed along the edges (first image in the

Simplified Dynamics Model block of Fig. 1). Furthermore, the

reduced picking points from the original model are mapped

onto the simplified dynamics model, marked by red circles.

Using the reduced action space and simplified dynamics

Algorithm 1: Iterative Model Simplification & Motion

Planning

Input: GO, DO, ξ0O, ξGO
Output: τ

1 τ ← None;

2 ĜS , ξ̂S ← Simplify_Geometry(GO, ξ
G
O);

3 V A
O ← Reduce_Action_Space(GO, ξO, ĜS , ξ̂S);

4 do

5 DS ← Simplify_Dynamics(DO, ĜS);
6 ξ0S , ξ

G
S , V A

S ← Map(DO,DS , ξ
0
O, ξ

G
O , V A

O);
7 τ ← Planner(DS , V

A
S , ξ0S , ξ

G
S , τ);

8 ξO ← Rollout(DO, V
A
O , τ);

9 if ξGO reached or convergent then

10 break;

11 Ĝ′S , ξ̂
′
S ← Simplify_Geometry(GO, ξO);

12 ĜS ← Combine_Geometry(Ĝ′S , ĜS);
13 while True;

model, a planner is invoked to generate a trajectory, which

is then rolled out on the original model. As is shown in the

Final State 1 of Fig. 1, the initially planned trajectory does not

bring the cloth to the goal state. Thus, a new simplified model

is created by incorporating more details from the actually

achieved final state. A new trajectory is then planned based

on this updated simplified dynamics model, which improves

a bit, but still not satisfying. The same model simplification

and planning loop runs another iteration, further refining the

model and trajectory, ultimately bringing the original model

closer to the goal and making it ready for execution on the

real robot.

While our main methodology is goal-informed, as described

above and illustrated in Fig. 1, the framework in Alg. 1 is

general and does not depend on specific algorithms for action

space reduction, dynamics model simplification, or the under-

lying planning methods. A baseline implementation involves

uniformly reducing the action search space and simplifying

the granularity of the dynamics model. For instance, when

manipulating a piece of cloth, this could mean limiting the

picking points to the particles on a coarse grid. As shown

in Fig. 2(a-b), grids of different resolutions are overlaid on a

piece of square cloth, with the intersection particles (denoted

by the red circles) serving as potential picking points in the

action space. Similarly, the original dense dynamics model

could be replaced by grid-based models with coarse dynamics.

As illustrated in Fig. 2(c-d), a set of grid-based dynamics

models is constructed, featuring fewer particles and hollow

interiors. Among these reduced models, a lower-resolution

grid offers faster computation but lower accuracy, while a

higher-resolution grid provides better precision at the cost of

increased computation time.

However, this uniform reduction ignores the task/goal: cer-

tain action opportunities and certain details of the dynamics

that are important for reaching the goal might be lost. In-

stead, our goal-conditioned implementation makes full use of

available information from the goal or final state to improve

6

(a) Grid action 2×2 (b) Grid action 3×3 (c) Grid model 2×2 (d) Grid model 3×3

Fig. 2. Grid-based action space reduction & model simplification. In (a) and
(b), a grid of varying resolutions is overlaid onto the underlying cloth model
(shown in light blue), which consists of thousands of particles. The particles
intersected by the grid on the original model are extracted as potential picking
points, marked by red circles. In (c) and (d), grid-based dynamics models of
different resolutions are shown, featuring particles aligned along the edges in
light blue color with hollow spaces internally. This simplification maintains a
general approximation uninformed by specific goals and tasks.

efficiency and accuracy.

In the following sections, we presents the details of our

implementation, including the geometric model simplification

function (Simplify_Geometry), the action space reduc-

tion function (Reduce_Action_Space), and the dynamics

model simplification function (Simplify_Dynamics).

B. Geometric Model Simplification

The aim of simplifying the geometric model is to create

an approximation of the original model while maintaining

simplicity. A grid model of a certain resolution can only

approximate certain shapes; for example, a grid geometry of

resolution 2 × 2 cannot accurately represent the state of a

side-folded cloth, as shown in Fig. 2(a). We adopt a goal-

conditioned approach to simplify the geometric model so that

it aligns well with the original model at the goal state.

The basic process of our informed geometric model sim-

plification method, Simplify_Geometry, is illustrated in

Alg. 2, where the inputs include the original geometric model

GO and the given state of the original model ξO, which can

either be the goal state or the actually achieved final state, and

the outputs are the simplified geometric model ĜS and the cor-

responding state of the simplified geometric model ξ̂S Firstly,

the algorithm tries to reduce the original geometric model to

its simplest form, in which the number of target simplification

elements is 2 (Line 1). A simplification function (Simplify)

is then called to reduce the original geometric model GO based

on the given state ξO and the target number of elements NS

(Line 3). The distance between the given state of the original

geometric model and the simplified model is calculated as

the error, indicating how good a fit the simplified geometric

model is to the original model, at the given state (Line 4).

Lastly, if the error falls below a user-defined threshold or if

the approximation fails to improve for a certain number of

iterations—indicating convergence—the simplification process

terminates (Line 6); otherwise, the process repeats with a more

complex simplified geometric model (Line 5) by incrementing

NS . Overall, the Simplify_Geometry method adaptively

finds a value of NS that is sufficient to represent the given

state ξO.

The method we use to simplify the geometric model differs

for objects that can be approximated with 1-D models and

Algorithm 2: Geometric Model Simplification

(Simplify_Geometry)

Input: GO, ξO
Output: ĜS , ξ̂S

1 NS = 2;

2 do

3 ĜS , ξ̂S ← Simplify(GO, ξO,NS);

4 error ← Error(ξ̂S , ξO);

5 NS ← NS + 1;

6 while error > threshold and not convergent;

NS = 2 NS = 4 NS = 8 NS = 10

Fig. 3. Linear fitting of the simple model (blue) for a given goal state
of the original model (pink), for different NS values. Blue dots represent
sampled points in the simplified model, and grey dashed lines connect the
corresponding points of both models.

objects that can be approximated with 2-D models, as detailed

below.

Piece-wise Line Fitting for 1-D Linear Models: For 1-D

linear models, we adopt a piece-wise line fitting method to

implement the Simplify function (Alg. 2, Line 3). Given

the number of key particles NS of the target simplification, a

Quadratic Programming (QP) problem is defined and solved to

find the optimal position of the NS particles. The cost function

of the QP problem to be minimized is the distance between the

fitted piece-wise lines and the original shape of the object. To

find such a distance value, we sample a number of, NE , points

on the two models. For example in Fig. 3, the pink dots show

the NE points sampled on the original model, while the blue

dots show the NE points sampled on the simplified model. We

find the mean distance between corresponding particles (grey

dot-dash line in Fig. 3):

distance(ξ̂S , ξO) =
∑NE

i=1

∥q̂iS − qiO∥

NE

, (4)

where qiO represents the position of the ith sampled point on

the original model, and q̂iS represents the position of the ith

point sampled on the simplified model.

After the QP minimization is complete, we use the same

distance formulation above (Eq. 4) to implement the Error

function in Alg. 2 (Line 4) to compute the final distance

between the two models.

An example piece-wise line fitting process for a rope of

random shape is shown in Fig. 3. The first picture shows a

simplified model with two particles and one line segment;

the fit to the original model is quite poor. As the number

of particles in the simplified model, NS , is increased, fits

improve. Depending on the threshold set (Alg. 2, Line 6),

the simplification process can terminate, for example, at the

ten-particle model (NS = 10) in Fig. 3.

7

NS = 2 NS = 4 NS = 6 NS = 10

Fig. 4. Reduced mesh of the simple model (blue) for a reflectively folded state
of the original model (pink), for different NS values. The vertical dimension
in these figures are scaled up for visualization purposes, to make the three
layers of the folded cloth visually separate.

Mesh Simplification for 2-D surface Models: For objects

that can be approximated by surfaces, we use the Quadric

Edge Collapse Decimation (QECD) method as the geometric

model simplification function, Simplify, of Alg. 2, which

can simplify the model towards a given number of elements

NS . The basic element for mesh simplification is a triangle,

which is composed of particles that can be shared between

different triangles. QECD is a surface simplification algorithm

based on the quadric error metrics proposed by Garland

and Heckbert [52]. During simplification, pairs of vertices

(particles) are contracted to one iteratively, until the target

number of triangles, NS , is achieved. We use the QECD

implementation in the mesh processing library Meshlab [53].

We start from simplifying the original mesh to a model with

NS = 2 triangles (four particles, two of which are shared),

and gradually increase the number of triangles until the error

is below the threshold, as in Alg. 2.

To implement the Error function and find the distance

between the simplified mesh and the original one (Alg. 2,

Line 4), we use the Hausdorff distance [54], which is a widely

used similarity metric for mesh and image comparison. The

Hausdorff distance is defined as the maximum distance of a

set to the nearest point in the other set, and in our case, is

found by:

h(ξ̂S , ξO) = max
q̂S∈ξ̂S

{ min
qO∈ξO

∥q̂S − qO∥}. (5)

As shown in Fig. 4, a piece of reflectively-folded cloth (i.e.,

when the cloth is first folded in half, and then the top half

is folded a quarter back onto itself) is initially approximated

by a simple mesh with two triangles, which only covers the

bottom face. This is improved by adding more triangles to

the simplified model. In the last picture, a simplified model

with ten triangles overlaps with the original model, giving us

a satisfying approximation.

C. Action Space Reduction

The action space for manipulating a deformable object, as

defined in Eq. 1, consists of a picking index and a 3-D vector in

Cartesian space. Given the potentially high number of pickable

points on a deformable object, this action space can be very

large. Thus, we propose the Reduce_Action_Space func-

tion to extract specific particles from the deformable object as

the potential picking points based on the simplified geometric

model at the goal state. In this way, the particles that are

relevant to achieving the goal are automatically selected as

picking points in the action space.

To extract these key particles, we first align the reduced

geometric model with the original geometric model at the goal

state and calculate the distances between the vertices of both

models to identify the key particles on the original model:

V A
O ←

⋃

v̂s∈V̂S

argmin
vo∈VO

∥ξ̂S(v̂s)− ξO(vo)∥ , (6)

where V̂S denotes the vertices of the simplified geometric

model ĜS(V̂S , ÊS , L̂S); VO denotes the vertices of the original

geometric model GO(VO, EO, LO); ξ̂S denotes the state of the

simplified geometric model, and ξ̂S(v̂s) denotes the position

of vertex v̂s; ξO denotes the state of the original geometric

model, and ξO(vo) denotes the position of vertex vo.

We then use V A
O as the picking points in the reduced

action space AS , which are subsequently used for motion

planning. Compared to using all particles in the original model

as picking points in the action space, the search space is

significantly reduced by confining the picking points to the

reduced key particles, where |V A
O | ≪ |VO|. We only invoke the

action space reduction function once for the original geometric

model, as the key particles can then be correspondingly

extracted for other models.

An example of this process is illustrated in Fig. 5, where

the original geometric model at the goal state is illustrated

in Fig. 5(a), while a simplified model with four triangles,

obtained using Alg. 2, is depicted in Fig. 5(b). Six particles

on the original geometric model are then identified which are

marked by red circles in Fig. 5(c). These particles are similarly

identified in another simplified model (generated in Sec. IV-D),

demonstrating that this approach maintains a consistent action

space across different but related models.

D. Dynamics Model Simplification

Before we explain how the Simplify_Dynamics func-

tion in Alg. 1 works, we will first explain how the original dy-

namics model DO(GO,MO,RO) and the original geometric

model GO are related. As illustrated in Fig. 6, for each vertex

of the geometric model, a particle with mass and radius is

generated in the dynamics model. All particles in the dynamics

model are assigned the same mass depending on the materials

and properties of the object (giving us the dynamics properties

of particlesMO). Then, for neighboring particles, a stretching

spring is added; for particles that are two steps away, a bending

spring is added; for diagonal neighboring particles, a shearing

spring is added; additional constraints of self-collision and

environmental collision are also considered (giving us the

dynamics relations of particles RO).

We build the simplified dynamics model DS similarly, as

detailed in Alg. 3, given the reduced geometric model ĜS
and the original dynamics model DO. However, the reduced

geometric model ĜS can include edges that are significantly

long; e.g., the nine edges in Fig. 5(b). To express the de-

formation capability of these edges in the dynamics model,

we construct a model with interpolated particles along these

edges (blue points in Fig. 5(d)). Thus, given each edge ê(u, v)

8

(a) Original geometric model (b) Simplified geometric model (c) Reduced action space (d) Simplified dynamics model

Fig. 5. Model simplification for cloth side folding. The original geometric model at the folded state is shown in (a); we simplify it using the proposed Alg. 2
and get a simplified geometric model in (b); by extracting the nearest particle on the original model, six particles on the original model are identified as
picking points in the reduced action space, as shown in (c); a simplified dynamics model is built based on the simplified geometric model, with particles and
springs along the edges, and the corresponding particles for picking are extracted accordingly, as illustrated in (d).

Fig. 6. Original geometric model and dynamics model. The geometric model is composed of particles and edges with weights assigned to each edge representing
the resting length, while the dynamics model builds on this structure by assigning mass to each particle and establishing various spring connections between
these particles.

Algorithm 3: Dynamics Model Simplification

(Simplify_Dynamics)

Input: DO(GO,MO,RO), ĜS(V̂S , ÊS , L̂S)
Output: DS(GS ,MS ,RS)

1 VS ← V̂S ; ES , LS ,MS ,RS ← None;

2 for ê(u, v) in ÊS do

3 V ê
S ← None; unew, vnew ← u;

4 do

5 wnew ← unew, unew ← vnew;

6 vnew ← New_Vertice(unew, radius);
7 VS ← VS ∪ {vnew}, V ê

S ← V ê
S ∪ {vnew};

8 ES ← ES ∪ {(unew, vnew)};
9 LS ← LS ∪ {radius};

10 RS ← RS ∪ Add_Strech(unew, vnew) ∪
Add_Bend(wnew, vnew);

11 while L̂S(u, v)− LS(u, vnew) > radius;

12 Mê
S ← Mass_Aggregate(MO, ê);

13 MS ←MS ∪ Mass_Average(M
ê
S , V

ê
S);

14 GS ← (VS , ES , LS), DS ← (GS ,MS ,RS);

(Line 2) from the reduced geometric model ĜS , we gradually

add vertices along the edge from the starting vertex u to

the end vertex v given a preset radius (Line 5-6). This

process results in a more detailed set of vertices VS , as

well as corresponding edges ES and rest lengths LS (Line

7-9). Each newly added vertex corresponds to a particle,

to which we apply stretching constraints (black springs in

Fig. 5(d)) for neighboring particles and bending constraints

(green connections in Fig. 5(d)) for particles two steps apart

(Line 10). Next, we align the simplified geometric model with

the original dynamics model at the flattened state, as shown in

Fig. 5(c), and aggregate the masses of the particles from the

original dynamics model, DO, that are closest to the current

edge ê(u, v) (Line 12):

V ê
O ← {vo ∈ VO| argmin

ê′∈ÊS

dis(vo, ê
′) = ê} (7)

Mê
S ←

∑

vo∈V ê

O

Mvo

O (8)

where V ê
O denote the vertices from the original model that

are closest to edge ê, Mvo

O denotes the mass of vo, and Mê
S

denotes the mass of edge ê. Then we distribute this mass

equally among the particles added to the current edge (Line

13):

Mv
S ←

Mê
S

|V ê
S |

, for v ∈ V ê
S , (9)

where V ê
S denotes the set of vertices expanded along the edge

ê of the simplified geometric model. We avoid redistribut-

ing mass for each particle separately based on the distance

between particles in the original and simplified models, as

this can lead to uneven mass distribution and degrade the

performance of the simplified dynamics model. At this point,

we have the complete simplified geometric model GS , the mass

distribution MS , and the dynamics relations RS , which give

us the simplified dynamics model DS for the target task (Line

15). As shown in Fig. 5(d) a simplified mass-spring model with

only the particles along the edges is built, which, compared

to the original model, has a much smaller number of particles

and constraints, thereby allowing for faster simulation.

9

Algorithm 4: Geometric Model Combination

(Combine_Geometry)

Input: Ĝ′S(V̂
′
S , Ê

′
S , L̂

′
S), ĜS(V̂S , ÊS , L̂S)

Output: Updated ĜS
1 for v′S ∈ V̂ ′

S do

2 if v′S /∈ V̂S then

3 V̂S ← V̂S ∪ {v
′
S};

4 for e′S(u, v) ∈ Ê′
S do

5 if u ∈ V̂S && v ∈ V̂S then

6 ÊS ← ÊS ∪ {e
′
S};

7 for (u, v) ∈ V̂S × V̂S do

8 if (u, v) /∈ ÊS && not Intersect(u, v, ÊS) then

9 ÊS ← ÊS ∪ {(u, v)};

E. Model Refinement and Combination

A key component of the iterative model simplification

framework is model refinement and combination. When the

planned trajectory leads the original model to a final state

that is not sufficiently close to the goal, we reapply the

geometric model simplification process, this time using the

actually achieved final state as input (line 11 in Alg. 1).

To ensure consistency in the simplified model through-

out the planning process, we retain the initially simpli-

fied geometric model while integrating additional details

from the newly simplified model, as shown on line 12

(Combine_Geometry) in Alg. 1. The process follows three

main steps, which correspond to the key operations in Algo-

rithm 4 explained below.

Particle Integration (Lines 1–3): We first identify and in-

corporate new particles from the newly simplified geometric

model, Ĝ′S , that do not exist in the initially simplified model,

ĜS . This ensures that the refined model includes all relevant

structural elements while retaining the original simplified

representation.

Edge Retention (Lines 4-6): Once the particle set is updated,

we retain edges from Ĝ′S where both end particles exist

in the combined particle set. This step ensures that exist-

ing connections between incorporated particles are preserved,

maintaining structural consistency.

Edge Completion and Consistency Check (Lines 7-9): After

merging edges from both models, the new graph may con-

tain incomplete triangular structures where necessary edges

are missing. To address this, we add missing edges while

ensuring that newly introduced edges do not intersect with

existing ones. This step preserves the geometric integrity of

the simplified model.

Through these steps, the refined geometric model retains

all information from the initial model while incorporating

additional structural details from the newly simplified version.

This enhances the accuracy of subsequent planning iterations

by better representing the actually achieved state.

V. SIMULATION EXPERIMENTS

To validate the effectiveness of the proposed framework,

extensive experiments and ablation studies with various base-

lines are conducted in simulation on a range of representative

deformable object manipulation tasks for ropes and cloths. All

simulation experiments are performed in SoftGym [49] on a

workstation equipped with Intel(R) Core(TM) i9-11900 CPU

@2.50GHz, 32 GB of RAM, and Nvidia GeForce GTX 4090

GPU.

In Sec. V-A, we briefly introduce the different tasks; in

Sec. V-B, we present the results of the proposed geomet-

ric model simplification methods; in Sec. V-C we compare

the performance of planning with our goal-conditioned ac-

tion space against the uninformed baseline action spaces; in

Sec. V-D, we evaluate the effectiveness of the entire framework

with our proposed model simplification methods and the

baseline methods; in Sec. V-E, we compare our simplified

models with learned dynamics models.

A. Tasks

Seven representative tasks are considered, comprising two

for ropes, four for square cloths, and one for a single-layer

t-shirt. Among these tasks, Rope Straightening and Cloth

Side Folding are borrowed directly from SoftGym, while the

remaining tasks are created based on SoftGym.

1) Rope Straightening: Manipulating a rope from a ran-

domized initial state to a straightened goal state (Fig. 7(a)).

Performance (i.e., cost) is measured by the error between the

distance of the two endpoints and the original length of the

rope.

2) Rope Folding: Manipulating a rope into a crossed tri-

angle (Fig. 7(b)), from an initially straightened state. Perfor-

mance (i.e., cost) is measured based on the bipartite matching

distance between the final and goal positions of all particles.

3) Cloth Diagonal Folding: Folding a flattened cloth into

half diagonally (Fig. 7(c)). Performance (i.e., cost) is measured

based on the distance between corresponding particles of the

two triangular halves of the cloth, with an additional penalty

for any drift of the bottom-side particles from the cloth’s

initial position, as similarly described in [55]. To compute

the overall cost, we used a weight of 1.0 for the averaged

distance between corresponding particles and a weight of 1.2

for the averaged drift penalty from the initial position. For all

the other tasks below, we used these same weights.

4) Cloth Side Folding: Folding the flattened cloth on the

table into half sideways (Fig. 7(d)). The cost function is similar

to that of Cloth Diagonal Folding, comprising the distance

between corresponding particles of the two rectangular halves

of the cloth and a penalty for any displacement of the cloth

from its initial position [55].

5) Cloth Reflective Folding: Reflective folding is borrowed

from origami folding where two consecutive folds are in

opposite directions [56]. This task follows the goal state of

the previous task (i.e., the side folding goal), with the final

goal being to fold a quarter of the cloth back, as shown in

Fig. 7(e). The cost is evaluated based on the distance between

corresponding particles across the three folded layers, along

10

with a penalty for dragging the cloth away from its initial

position.

6) Cloth Underneath Folding: Underneath folding (e.g.,

Fig. 7(f)) refers to folding a quarter of the cloth under the

rest of it, contrary to placing it on the top. This task builds

upon the final state of the previous task (i.e., Cloth Reflective

Folding) and showcases multi-step planning with intermediate

goals. The cost function considers the distance between the

underneath folded part and the ground, the alignment with

corresponding particles on the top layer, and a penalty for any

displacement from the initial pose.

7) Single Layer T-shirt Side Folding: This task involves

manipulating a single-layer t-shirt, which has an irregular

shape compared to the previous tasks. The goal is to fold the

left-hand half of the flattened t-shirt on top of the right-hand

half (Fig. 7(g)). The cost function follows the same structure

as the Cloth Side Folding task.

In the above tasks, Cloth Side Folding, followed by Cloth

Reflective Folding, followed by Cloth Underneath Folding can

be interpreted as a sequence of sub-goals that combine into

a long-horizon task. While these sub-goals are currently pro-

vided by us, the development of high-level sub-goal planners

is a promising research direction.

B. Geometric Model Simplification

Geometric model simplification serves as the foundation for

both action space reduction and dynamics model simplifica-

tion. In this section, we aim to demonstrate quantitatively and

qualitatively how good a fit the proposed geometric methods

can give for various goals and tasks. Additionally, the time

cost associated with these simplifications will be assessed to

determine their significance relative to the time required for

motion planning.

As the parameters of our method, we set the error threshold

in Alg. 2 to a small value (0.001). Moreover, if the error in

Alg. 2 does not improve (i.e., converges) for a certain number

of steps (5 for 1-D linear objects, and 10 for 2-D surface

objects), Alg. 2 also stops. These values can also be observed

in the second column of Fig. 7.

The results of geometric model simplification given the goal

states of different tasks are shown in Fig. 7. For the rope

straightening task, as expected, only the two ends are enough

to represent and reach the goal, as shown in Fig. 7(a). For

the rope folding task, as depicted in Fig. 7(b), a simplified

model of four particles and three line segments is acquired,

identifying four corners on the original model as key particles.

As for cloth manipulation tasks, our method finds much

simpler geometric models than the original model for each

task, which is illustrated in Fig. 7(c-f). In Fig. 7(c), the

Hausdorff distance curve flattens at four triangles, which

provides a fine approximation of the original mesh model

for the diagonal folding task. Corresponding key particles are

extracted and marked with red circles in the figure. Similarly,

for the rest of the cloth folding tasks, a set of simplified

geometric models with six, ten, and ten triangles are acquired

to approximate the original models respectively.

For the t-shirt which has a more complex shape than cloth,

our method finds a simplified model consisting of eighteen

triangles, which fits well to the original geometric model both

at the goal state and the flat state.

The average geometric model simplification time costs for

line-fitting and mesh simplification are 0.125 s and 0.730

s respectively, which are negligible compared to the time

required for motion planning.

(a) Rope straightening

(b) Rope folding

(c) Cloth diagonal folding

(d) Cloth side folding

(e) Cloth reflective folding

(f) Cloth underneath folding

(g) T-shirt folding

Fig. 7. Geometric model simplification. The figure displays the goal images
in SoftGym (left), the approximation error curve (middle left), the simplified
geometric model at the goal state (middle right), and the simplified geometric
model at the flattened state (right).

C. Action Space Reduction for Motion Planning

In this section, we conduct motion planning experiments

to examine how the size and structure of the action space

11

influence planning efficiency and success across various tasks.

We also compare the effectiveness of goal-informed and un-

informed action space reduction methods to determine which

approach yields better performance.

For a fair comparison across all action spaces and tasks,

the experiments utilize the same underlying dynamics models

and motion planners. Specifically, we employ the high-fidelity

original dynamics model within the planner. And as our

method is independent of the planners used, we implement two

widely used algorithms, Cross-Entropy Method (CEM [57])

and Rapidly-exploring Random Tree (RRT [58]), of which the

former is optimization-based and the latter is search-based.

Implementation & Baselines: For each planner, we compare

our goal-informed action space with various baseline action

spaces, as listed below.

• Reduced Action Space (Ours): it refers to picking only

the key particles, which are extracted by simplifying the

geometric model at the goal state. For each task, the key

particles are marked by red circles in the last column of

Fig. 7.

• Original Action Space: this is the baseline where the

gripper can pick any particle on the object.

• Random Action Space: in this baseline, we uniformly

randomly sample the same number of picking points as

the reduced action space, using it as a random compari-

son.

• Grid Action Space: instead of choosing picking points

randomly, we overlay a grid of different resolutions on the

original geometric model and select the particles nearest

to the intersections as picking points. Three grid baselines

are considered in this paper, including Grid Action Space

(2×2), Grid Action Space (3×3), and Grid Action Space

(4×4). Example picking points of grid action space are

shown in Fig. 2(a-b) which are marked by red circles.

Furthermore, to demonstrate the effectiveness of the planned

trajectory, we manually script a manipulation strategy based

on the Reduced Action Space and denote it as Scripted Policy,

in which the gripper picks each key particle, moves above its

target position, and releases it.

Results: Since CEM and RRT are stochastic methods, the

experiments are repeated ten times for each planner on each

task. We first show the results using CEM, which we run for

30 iterations, with a population size of 400 for all experiments,

and later discuss the results with RRT. The planned trajectory

costs versus time for CEM with different action spaces are

shown in Fig. 8 (a-g).

For rope straightening, Reduced Action Space finds a better

plan than Original Action Space using much less time, which

is shown in Fig. 8(a). The random action space does not

converge to an acceptable solution; the Original Action Space

converges but takes much longer time; the Grid Action Spaces

converge at different speeds depending on the grid resolution.

The Scripted Policy finds a slightly worse solution because it

keeps disrupting previously achieved states.

For the rope folding task, Reduced Action Space still

achieves a smaller cost. The Original Action Space converges

to a similar cost as the Grid Action Space (4×4), whereas

the Grid Action Space (2×2) yields the worst solution, which

reflects that a limited number of picking points are insufficient

for handling complex folding tasks with ropes.

For the rope object, the size difference between the Original

Action Space, (NO = 40), and the Reduced Action Space

(N̂O = 2 for the straightening task, and N̂O = 4 for the

folding task), is not significant. Therefore we see a modest

gain between the two methods. For the cloth object however,

the original model has NO = 10000 particles, which is much

larger than the number of extracted key particles N̂O, as shown

in Sec. V-B. Therefore, from Fig. 8(c-f), we can see that

Reduced Action Space achieves a better solution than Original

Action Space consistently across all four cloth manipulation

tasks. For instance, as shown in Fig. 8(c), the planning cost

of Reduced Action Space converges to an optimal plan in

forty minutes, successfully folding the cloth to match the goal

state. In contrast, Original Action Space converges to a plan

with a much higher cost which results in an incorrect final

state. As the difficulty increases from side folding to reflective

folding and underneath folding tasks, the gap between the cost

curve of Reduced Action Space and Original Action Space

widens. Furthermore, in these more complex folding tasks, the

advantage of our method over the simple scripted behavior is

also increasingly evident.

In all cloth folding tasks, Random Action Space achieves

slightly better results than Original Action Space, which

further demonstrates that not every particle on the original

model is equally relevant to achieving the goal. For different

tasks, the resolution of the Grid Action Space has significantly

different influences: for cloth diagonal and reflective folding,

the Grid Action Space (2×2) provides a better solution; for

side folding, Grid Action Space (3×3) is more effective; for

underneath folding, Grid Action Space (4×4) achieves better

results.

For t-shirt folding tasks, Reduced Action Space converges

to a similar cost as the Grid Action Space of resolution 4× 4,

but faster. The Original Action Space results in the worst cost.

We also run experiments with RRT, a classic search-

based planning method, to demonstrate that our method is

independent of the underlying algorithms of the planner. We

implement RRT from Open Motion Planning Library [59]

(OMPL), and set the goal bias and error threshold to 0.5 and

1e−6 respectively. For each task and different action spaces,

we run the planner from one minute to twenty minutes. The

results of various action spaces for RRT are consistent with

those from CEM-based planners, with Reduced Action Space

consistently achieving the best cost across all tasks.

D. Iterative Model Simplification and Motion Planning

Based on the reduced action space, we conduct further

experiments with the iterative model simplification and motion

planning framework proposed in this paper.

The aims of these experiments include: 1) evaluate to

what extent can the simplified dynamics models accelerate

the motion planning compared to more complex, high-fidelity

models; 2) the quality and effectiveness of the trajectories gen-

erated using simplified models; 3) compare the performance

of different model simplification strategies—specifically, goal-

12

(a) Rope straightening (b) Rope folding (c) Cloth diagonal folding (d) Cloth side folding

(e) Cloth reflective folding (f) Cloth underneath folding (g) T-shirt side folding

Action Spaces

Reduced Action Space (Pop: 400)

Original Action Space (Pop: 400)

Random Action Space (Pop: 400)

Scripted Policy (Reduced Action Space)

Grid Action Space (2x2) (Pop: 400)

Grid Action Space (3x3) (Pop: 400)

Grid Action Space (4x4) (Pop: 400)

Fig. 8. Planner (CEM) performance over time for different tasks using different action spaces.

informed versus uninformed dynamics model simplifica-

tion—to identify which approach yields better plans for vari-

ous tasks.

Implementation & Baselines: For the designed framework,

we can change the dynamics model and motion planner

flexibly depending on various requirements. Specifically, for

dynamics models, we have the goal-informed simplified dy-

namics model, the original dynamics model, and the grid

dynamics model of different resolutions and orientations. We

conducted all experiments using both CEM and RRT. To

ensure a fair comparison, all planners use the same action

space, which is the Reduced Action Space. Details of

our methods and baselines are listed below.

• Simplified Model: This is the implementation of the pro-

posed framework, where the simplified dynamics model

is iteratively improved and used for motion planning as in

Alg. 1. To terminate, we use a small cost threshold (0.02)

to determine whether the trajectory found is satisfactory.

In addition to this threshold, the iterative method will

also stop if it “converges” (i.e., the method stops if there

are no improvements in the achieved cost for successive

iterations (currently set to 5), even if the cost is not under

the threshold).

• Simplified & Original Model: This is a variation of

the proposed framework, where we only simplify the

dynamics model once, use the planned trajectory based

on the simplified model as a warm start, and continue

optimizing it on the original dynamics model.

• Original Model: In this baseline, the original high-

fidelity but time-consuming dynamics model is used for

motion planning.

• Grid Model: For this baseline, instead of using simplified

dynamics models informed by the goal, we use grid-based

models, and gradually increase the granularity in the

iterative planning framework. For example, a set of grid-

based dynamics models of various resolutions is shown in

Fig. 2(c-d). (We also implemented a triangular version of

this method. However, since its performance was similar

to the Grid Model, we do not include it in our results due

to space constraints.)

For model parameters such as mass and spring coefficients,

we use the default values in SoftGym for both the original

model and the reduced models (including our goal-informed

simplified models and the grid simplified models). The default

settings assign each particle a mass of 1.0, set the stretching

coefficient to 0.8, the bending coefficient to 1.0, and the shear

coefficient to 0.9.

Results: For all cloth folding and t-shirt folding tasks, we

run the motion planning experiments with both CEM and

RRT separately. We repeat the experiment using the proposed

methods and the baseline methods for ten times.

The results of motion planning based on CEM are shown in

Fig. 9. We reduce the population size of CEM to 100 to plan

faster, while keeping a large population-sized Original Model

baseline for better comparison.

From the results we can see that, for Original Model, CEM

with a small population converges faster but results in a higher

cost compared to CEM with a large population for all cloth

folding and t-shirt folding tasks. Simplified & Original Model

achieves the best cost for all tasks and converges more quickly

than Original Model, demonstrating that using the simplified

model as a warm start helps guide the planner to find better

trajectories more efficiently on the original model. Simplified

Model converges the fastest among all model selections for all

tasks and achieves similar or better costs than Original Model

with the same population size. Grid Model achieves acceptable

cost for all tasks, however, it is not as efficient as the goal-

conditioned simplified dynamics model, which demonstrates

that simplifying the dynamics model in an informed way is

more effective than universally simplified models.

The motion plans generated by our method are shown in

Fig. 10 and Fig. 11 for cloth side folding and t-shirt side

13

(a) Cloth diagonal folding (b) Cloth side folding

(c) Cloth reflective folding (d) Cloth underneath folding

(e) T-shirt side folding

Dynamics Models

Simplified Model (Pop: 100)

Original Model (Pop: 100)

Original Model (Pop: 400)

Grid Model (Pop: 100)

Simplified & Original Model (Pop: 100)

Fig. 9. Planner (CEM) performance over time for different tasks using
different dynamics models.

folding respectively. Take the t-shirt folding for an example,

as shown in Fig. 11(a), the first trajectory is planned using

the most simplified dynamics model, and brings the simplified

model close to the goal. When it is executed on the original

model, the left half of the t-shirt does not fully cover the

right half, which demonstrates the discrepancy between the

simplified and original models. After one more iteration, a

new simplified model is created with a small adjustment on

the left side. A new trajectory is then planned, successfully

manipulating the original model to the desired goal, which is

displayed in Fig. 11(b).

We also conduct experiments using RRT as the underlying

planning algorithm with different dynamics models. A major

difference between RRT and CEM implementations is that

OMPL does not support a warm start. Therefore, we use the

models in a manner similar to model predictive control: the

state achieved by the previous plan serves as the initial state

for the next planning loop, continuing until convergence.

From the results, the Simplified Model drops fastest for

all tasks as well, and converges to better cost than Original

Model and Grid Model, demonstrating the effectiveness of the

proposed model simplification scheme. However, Simplified

& Original Model with RRT behaves worse than CEM,

which converges to worse cost than Simplified Model on cloth

underneath folding task while obtaining similar costs for the

other tasks. This reflects the defects of the altered warm start

scheme, of which the latter planning loop is highly dependent

(a) First simplified model

(b) Second simplified model

Fig. 10. Cloth side folding with simplified models. In image (a), a trajectory
is initially planned using the simplified model, depicted in the first row. This
trajectory is then rolled out on the original model, shown in the second row,
but it fails to achieve the desired goal. Consequently, a new round of model
simplification is conducted based on the actual final state observed in the last
image of the second row in (a). This results in a more detailed simplified
model. Using this refined model, a new trajectory is successfully planned and
executed, effectively bringing the cloth to the goal, as illustrated in image (b)

TABLE I
COMPARISON OF SINGLE SIMPLIFIED MODEL AND ITERATIVE SIMPLIFIED

MODELS. RESULTS SHOW: FINAL TRAJECTORY COST ACHIEVED (NUMBER

OF MODEL ITERATIONS REQUIRED).

Task Diag. Side Reflec. Undern. T-shirt

Single 6.24 5.9 5.0 7.5 3.9
Iterative 1.76 (2.3) 3.8 (3.6) 3.8 (3.1) 5.3 (4.1) 2.5 (3.4)

on the former trajectory. The Grid Model gets the worst

cost among all models, further underscoring the drawbacks

of the modified warm start approach and indicating a lack

of consistency in the planned trajectories for grid models of

varying sizes. Original Model achieves acceptable results only

for the cloth diagonal folding task, and converges to worse

costs for other tasks due to the fact that the original model is

more expensive and the state space is much larger compared

to the simplified models.

Regarding the iterative framework itself, we provide addi-

tional results on the average number of iterations required to

achieve the best result. We also compare the trajectory cost

obtained using the first single simplified model against the one

found through the iterative framework, as shown in Tab. I.

It is observed that while the first simplified model already

yields near-satisfactory results, the iterative framework is still

able to further optimize the trajectory, leading to improved

performance.

E. Comparison with a Learned Model

To further verify the effectiveness of our proposed method,

we compare it with a learning-based dynamics model origi-

nally developed by Lin et al. [44], called Visible Connectivity

Dynamics (VCD). VCD employs a graph neural network

14

(a) First simplified model

(b) Second simplified model

Fig. 11. T-shirt side folding with simplified models. In image (a), a trajectory
is planned using the initial simplified model, depicted in the first row, and
then rolled out on the original model, shown in the second row. However,
this does not achieve the intended goal, necessitating a new round of model
simplification and motion planning. As demonstrated in image (b), these
subsequent efforts successfully bring the cloth to the desired goal.

(GNN) trained to infer both the connections and the dynamics

of the visible part of the deformable object. For training the

GNN, they collect 2000 trajectories, each containing a single

pick-and-place action, but decompose each trajectory into 100

smaller steps. The picking point is biased toward the highest

point, while the placing location is selected randomly, making

it more suitable for flattening tasks. After training, a single-

step Random Shooting planner is used to iteratively generate

pick-and-place actions towards a goal.

Besides, to measure the performance, they also introduced a

metric named Normalized Improvement (NI), which quantifies

the increase in the covered area relative to the maximum

possible improvement. It is defined as NI = s−s0
smax−s0

, where

s0, s, smax represent the initial, achieved, and maximum

possible covered areas of the cloth, respectively.

We used the official implementation of VCD1. The original

implementation uses visible point cloud data, which we call

VCD(PC) here. Additionally, to ensure a fair comparison, we

implemented a different version of VCD, where we made two

key modifications. First, instead of using point cloud data, we

directly used the ground-truth positions of the particles from

the original model of the object. Second, we provided the

actual edges explicitly, eliminating the need for the trained

neural network to infer them. These modifications were made

both to ensure fairness in comparison and to facilitate the

precise specification of goal states for subsequent folding

tasks. We call this modified version that uses ground truth

particles and edges, VCD(GT).

For comparing our method against VCD, we used the

validation set from Lin et al., which includes sampled cloth

pieces with different sizes and initial configurations.

First, we attempted to compare our method and VCD, by

using the same CEM planner that we used over the learned

dynamics model. However, the VCD performed very poorly

1https://github.com/Xingyu-Lin/VCD

with CEM, because CEM tries to generate multi-action plans,

which required running the VCD predictions over the outputs

of itself, which resulted in accumulation of drastic drifts in

the predicted states, already showing the limits of learned

dynamics models.

Next, we compared our method to VCD, using the single-

step Random Shooting planner used in their original imple-

mentation. To do this, we had to modify our method such

that, after extracting a simplified model for the overall goal of

the task, we used Random Shooting to plan an action. After

the next state was reached with the execution of this action, we

used this new state to extract a new simplified model (similar

to line 11 in Alg. 1) and we combined this with the first

simplified model extracted from the goal (similar to line 12 in

Alg. 1).

The results for the cloth flattening task are shown in

Fig. 12(a) using the NI metric. VCD(PC) and VCD(GT)

achieve similar results, which are also very similar to the

results reported in Lin et al., confirming VCD(GT)’s effec-

tiveness. Our goal-informed simplified model achieves slightly

better performance, despite requiring no training.

For the remaining folding tasks, we extended the definition

of Normalized Improvement (NI) by replacing the coverage

metric with the reward function (negative of the cost) spe-

cific to each task. Each task was evaluated for up to 20

pick-and-place steps, as further improvements beyond this

were minimal. The results in Fig. 12 show that for diagonal

folding, VCD achieves around 50% improvement. As task

complexity increases, its performance degrades slightly for

side folding and drops significantly for reflective folding. For

cloth-underneath folding and T-shirt folding, the VCD fails to

generate any feasible plans.

We hypothesize that for cloth-underneath folding, the model

fails because it has not encountered similar state transitions

during training. For T-shirt folding, the problem dimensional-

ity is significantly higher than that of the training dataset, the

shape is different, and the folding task was not specifically

trained in the learned model.

The average planning time for each pick-and-place action

is reported in Table II. For cloth folding tasks, the average

planning time using VCD is approximately 70 seconds, which

is consistent with the findings of Huang et al. [45], who

reported a planning time of 100 seconds. In contrast, with

our simplified dynamics model, the planner requires only 27

seconds per action, demonstrating a significant speed-up. For

the T-shirt folding task, the increased number of particles leads

to a substantial increase in the inference time of the learned

dynamics model. This is further exacerbated by the fact that

we did not apply downsampling to the particles or edge

connections, preserving the original topology. However, our

simplified model remains computationally efficient, requiring

only a fraction of the time needed by the learned model.

VI. REAL-WORLD EXPERIMENTS

To verify the effectiveness of our proposed method in the

real world and enhance the robustness of the execution, we

build a closed-loop robotic experiment system composed of

15

TABLE II
PLANNING TIME (S) FOR EACH PICK AND PLACE ACTION

Flatten Diagonal fold Side fold Reflective fold Underneath fold T-shirt fold

No. of particles 1720 1600 1849 1849 2025 3812
Time (VCD(GT)) 70.6 70.2 70.8 70.4 71.0 608

Time (Ours) 27.4 27.3 27.4 27.3 27.5 28.2

(a) Cloth flattening (b) Cloth diagonal folding

(c) Cloth side folding (d) Cloth reflective folding

(e) Cloth underneath folding (f) T-shirt side folding

Fig. 12. Planner (Random Shooting) performance over number of actions
(pick and place) executed for different tasks using VCD and our goal-
simplified models.

perception, planning, and control subsystems. The basic setup

for the experiment includes a Franka Panda robot mounted on

a stationary table, a flattened cloth (30 cm × 30 cm) randomly

placed in front of it in various initial poses, a Realsense depth

camera fixed in front of the robot. We also used an OptiTrack

system to only calibrate the camera pose with respect to the

robot, at the beginning of experiments.

For perception, we use a RealSense camera (extrinsically

calibrated to the robot base) to track the shape of the cloth

during manipulation. Specifically, we use CDCPD [60], [61]

as the shape tracking method, but modify it in two ways to

improve its performance for our tasks: 1) we explicitly reason

about self-occlusions by comparing the distance between the

current and previous point cloud, and combine them accord-

ingly, the process of which is shown in Fig. 13; 2) instead

of updating the positions of all tracking points at each time

step, we retain the tracking point from previous time step if

the point cloud around that area has not changed, while only

optimizing the tracking points in areas where the point cloud

has changed significantly.

Fig. 13. The first image displays the initial point cloud in green. The second
image shows the current point cloud in yellow, overlapping with the initial one,
suggesting potential occlusion of some cloth points beneath the yellow surface.
The third image presents the combined point cloud, which appears thicker
due to this overlap. This augmentation of the point cloud aids the tracking
algorithm in more accurately measuring the state of the cloth, especially given
the penalization of movement in the underlying layers.

For the dynamics model, two options are evaluated: one is

to plan a coarse trajectory based on the simplified dynamics

model and fine-tune it with the original dynamics model,

which takes significant time but yields trajectories with lower

cost; the second is to plan solely based on the most simplified

dynamics model, which is much faster but gives slightly

higher-cost trajectories.

For the control scheme, we first convert the motion plan to

several pick-and-place motions according to the defined action

space. When picking a particular point on the cloth, we use

Moveit [62] to plan a valid trajectory to a certain height above

the target using a position controller. After that, an impedance

controller is switched on to gradually lower the gripper until

it contacts the cloth. The use of impedance control is crucial,

as it allows the gripper to apply a certain amount of pressure

before grasping the cloth, preventing potential damage that

could occur with a position-based controller.

Based on the established experiment system, we conduct

experiments with cloth diagonal folding and side folding. We

test both CEM and RRT based planners, and run each experi-

ment with different dynamics models for 5 times, and calculate

the success rate. The results are summarized in Table III,

in which we achieve 100% success for the cloth diagonal

folding task with various planner and model combinations.

An experiment is considered successful if the robot completes

all the actions in the planned trajectory and achieves a goal

configuration of the cloth that meets user-defined criteria. For

cloth side folding, which requires more alternations between

different picking points, only CEM achieves 80% success with

the Simplified & Original Model, and 60% success with the

Simplified Model. RRT fails to accomplish the task, because

the planned trajectories involve a much higher number of re-

grasps. Among all the failure cases in real-world experiments,

the main reasons include: 1) failure of the tracking system due

16

TABLE III
REAL-WORLD EXPERIMENT RESULTS

Task Planner Dynamics model Planning time (min) Success Rate Average picks

Cloth Diagonal Folding
CEM

Simplified & Original 15.08 5/5 4.20
Simplified 2.07 5/5 4.80

RRT
Simplified & Original 10.00 5/5 7.00
Simplified 1.00 5/5 8.00

Cloth Side Folding
CEM

Simplified & Original 21.26 4/5 5.60
Simplified 3.01 3/5 6.40

RRT
Simplified & Original 10.00 0/5 18.20
Simplified 1.00 0/5 18.60

Fig. 14. Real-world experiment for cloth side folding with fine models. The first row displays the planned trajectory on the original model. The second row
captures the robot executing this trajectory. The third row shows the tracking results.

Fig. 15. Real-world experiment for cloth side folding with simplified models. The first row illustrates the planned trajectory using the simplified model. The
second row demonstrates the trajectory rollout on the original model. The third row captures the robot executing this trajectory, and the fourth row displays
the tracking results.

17

to severe occlusion by the robot arm; 2) the gripper picking an

incorrect position due to tracking errors; 3) the gripper picking

multiple layers of the cloth; and 4) the picking position being

out of the robot’s workspace, causing joint limit violations.

We also evaluate the performance of the real robot experi-

ments by reconstructing the cloth’s final state (as reported by

our CDCPD-based shape tracking method) in simulation and

assessing its similarity to the goal state using two metrics:

NI and Intersection over Union (IoU). We considered an

experiment as successful if either NI or IoU exceeds 70.

For the diagonal folding tasks, the average successful NI is

0.85 with standard deviation 0.07, and the IoU is 0.92 with

standard deviation 0.04. For the side folding tasks, the average

successful NI is 0.69 with standard deviation 0.12, and the IoU

is 0.87 with standard deviation 0.06.

Images of the real robot folding the cloth sideways with

CEM as the underlying motion planner are shown in Fig. 14

and Fig. 15. Please refer to the attached video to view the

entire manipulation process for both diagonal folding and side

folding tasks. The Panda robot successfully achieves both

tasks. Within each task, the gripper can re-grasp the cloth

showing that our proposed controlling scheme for executing

the plan is effective and the planned trajectory in simulation

can be executed successfully to achieve the desired cloth

folding. During execution, if the behavior of the cloth diverges

from the predictions made during simulation, the robot can

adaptively modify its actions based on the real-time perceived

state of the cloth. This adaptability demonstrates significantly

improved robustness compared to open-loop execution, where

adjustments to unforeseen changes are not possible.

VII. CONCLUSION

We have proposed a framework of reducing the action

space and iteratively simplifying the dynamics model given

a desired goal state for deformable object manipulation. Two

workflows of geometric model simplification are developed

for 1-D linear and 2-D surface objects respectively. We

further reduce the action space and simplify the dynamics

model to accelerate motion planning for deformable object

manipulation. Extensive simulation and real robot experiments

are conducted, which demonstrate that our proposed method

can improve the efficiency and performance of a motion

planner. Besides, our approach allows for faster trajectory

planning for various deformable manipulation tasks and can

adaptively refine the model to achieve better results. However,

our method has certain limitations. One notable limitation is

the assumption that the initial state of the deformable object

is flattened, which may not always hold in practical scenarios.

Additionally, we recognize the importance of tracking sys-

tems for precise manipulation, state estimation, and bridging

the gap between simulation and reality. Another challenge

is that not all goal states can be explicitly specified—for

instance, vision-based or language-based goal specifications

may be difficult to interpret using our approach. While our

framework significantly boosts efficiency, the computational

cost of motion planning remains relatively high, limiting its

applicability in time-critical or highly dynamic environments.

An exciting avenue for future research involves incorporating

the efficient simplified dynamics model for deformable object

shape tracking. Moreover, we can also generate a batch of

simplified models simultaneously, whether goal-conditioned or

non-goal-conditioned, to predict which model offers the most

improvement for a specific task, and intelligently utilize these

models until a satisfactory trajectory is found or the process

times out.

REFERENCES

[1] Z. Huang, X. Lin, and D. Held, “Self-supervised cloth reconstruction
via action-conditioned cloth tracking,” in 2023 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2023, pp.
7111–7118.

[2] H. Ha and S. Song, “Flingbot: The unreasonable effectiveness of
dynamic manipulation for cloth unfolding,” in Conference on Robot

Learning. PMLR, 2022, pp. 24–33.
[3] Y. Avigal, L. Berscheid, T. Asfour, T. Kröger, and K. Goldberg,

“Speedfolding: Learning efficient bimanual folding of garments,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2022, pp. 1–8.
[4] L. Yang, L. Yang, H. Sun, Z. Zhang, H. He, F. Wan, C. Song, and J. Pan,

“One fling to goal: Environment-aware dynamics for goal-conditioned
fabric flinging,” arXiv preprint arXiv:2406.14136, 2024.

[5] D. Seita, N. Jamali, M. Laskey, A. K. Tanwani, R. Berenstein,
P. Baskaran, S. Iba, J. Canny, and K. Goldberg, “Deep transfer learning
of pick points on fabric for robot bed-making,” in The International

Symposium of Robotics Research. Springer, 2019, pp. 275–290.
[6] X. Li, X. Su, and Y.-H. Liu, “Vision-based robotic manipulation of

flexible pcbs,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 6,
pp. 2739–2749, 2018.

[7] E. Torgerson and F. W. Paul, “Vision-guided robotic fabric manipulation
for apparel manufacturing,” IEEE Control Systems Magazine, vol. 8,
no. 1, pp. 14–20, 1988.

[8] A. Longhini, Y. Wang, I. Garcia-Camacho, D. Blanco-Mulero, M. Mo-
letta, M. Welle, G. Alenyà, H. Yin, Z. Erickson, D. Held et al.,
“Unfolding the literature: A review of robotic cloth manipulation,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 8,
2024.

[9] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement
learning for deformable object manipulation,” in Conference on Robot

Learning. PMLR, 2018, pp. 734–743.
[10] Y. Deng, C. Xia, X. Wang, and L. Chen, “Deep reinforcement learning

based on local gnn for goal-conditioned deformable object rearranging,”
in 2022 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2022, pp. 1131–1138.
[11] G. Salhotra, I.-C. A. Liu, M. Dominguez-Kuhne, and G. S. Sukhatme,

“Learning deformable object manipulation from expert demonstrations,”
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 8775–8782,
2022.

[12] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choroman-
ski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “Rt-2: Vision-language-
action models transfer web knowledge to robotic control,” arXiv preprint

arXiv:2307.15818, 2023.
[13] V. E. Arriola-Rios, P. Guler, F. Ficuciello, D. Kragic, B. Siciliano, and

J. L. Wyatt, “Modeling of deformable objects for robotic manipulation:
A tutorial and review,” Frontiers in Robotics and AI, vol. 7, p. 82, 2020.

[14] Y. Bai, W. Yu, and C. K. Liu, “Dexterous manipulation of cloth,” in
Computer Graphics Forum. Wiley Online Library, 2016, pp. 523–532.

[15] J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi,
D. Berenson, F. Ficuciello, K. Harada, J. Kober, X. Li et al., “Challenges
and outlook in robotic manipulation of deformable objects,” IEEE

Robotics & Automation Magazine, vol. 29, no. 3, pp. 67–77, 2022.
[16] F. Liu, E. Su, J. Lu, M. Li, and M. C. Yip, “Robotic manipulation

of deformable rope-like objects using differentiable compliant position-
based dynamics,” IEEE Robotics and Automation Letters, vol. 8, no. 7,
pp. 3964–3971, 2023.

[17] A. Doumanoglou, J. Stria, G. Peleka, I. Mariolis, V. Petrik, A. Kargakos,
L. Wagner, V. Hlaváč, T.-K. Kim, and S. Malassiotis, “Folding clothes
autonomously: A complete pipeline,” IEEE Transactions on Robotics,
vol. 32, no. 6, pp. 1461–1478, 2016.

[18] J. Borras, G. Alenya, and C. Torras, “A grasping-centered analysis for
cloth manipulation,” IEEE Transactions on Robotics, vol. 36, no. 3, pp.
924–936, 2020.

18

[19] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with appli-
cation to robotic towel folding,” in 2010 IEEE International Conference

on Robotics and Automation. IEEE, 2010, pp. 2308–2315.
[20] Y. Qiu, J. Zhu, C. Della Santina, M. Gienger, and J. Kober, “Robotic

fabric flattening with wrinkle direction detection,” in International

Symposium on Experimental Robotics. Springer, 2023, pp. 339–350.
[21] M. Ruan, D. McConachie, and D. Berenson, “Accounting for directional

rigidity and constraints in control for manipulation of deformable
objects without physical simulation,” in 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp.
512–519.

[22] D. McConachie, A. Dobson, M. Ruan, and D. Berenson, “Manipulating
deformable objects by interleaving prediction, planning, and control,”
The International Journal of Robotics Research, vol. 39, no. 8, pp. 957–
982, 2020.

[23] S. Wang, R. Papallas, M. Leonetti, and M. Dogar, “Goal-conditioned
action space reduction for deformable object manipulation,” in 2023

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 3623–3630.

[24] P. Jiménez, “Survey on model-based manipulation planning of de-
formable objects,” Robotics and computer-integrated manufacturing,
vol. 28, no. 2, pp. 154–163, 2012.

[25] A. Doumanoglou, A. Kargakos, T.-K. Kim, and S. Malassiotis, “Au-
tonomous active recognition and unfolding of clothes using random
decision forests and probabilistic planning,” in 2014 IEEE international

conference on robotics and automation (ICRA). IEEE, 2014, pp. 987–
993.

[26] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen, “Folding deformable
objects using predictive simulation and trajectory optimization,” in 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2015, pp. 6000–6006.
[27] H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception, and

control methods for deformable object manipulation,” Science Robotics,
vol. 6, no. 54, p. eabd8803, 2021.

[28] S. Bhagat, H. Banerjee, Z. T. Ho Tse, and H. Ren, “Deep reinforce-
ment learning for soft, flexible robots: Brief review with impending
challenges,” Robotics, vol. 8, no. 1, p. 4, 2019.

[29] L. Sun, G. Aragon-Camarasa, P. Cockshott, S. Rogers, and J. P. Siebert,
“A heuristic-based approach for flattening wrinkled clothes,” in Towards

Autonomous Robotic Systems: 14th Annual Conference, TAROS 2013,

Oxford, UK, August 28–30, 2013, Revised Selected Papers 14. Springer
Berlin Heidelberg, 2014, pp. 148–160.

[30] S. Miller, J. Van Den Berg, M. Fritz, T. Darrell, K. Goldberg, and
P. Abbeel, “A geometric approach to robotic laundry folding,” The

International Journal of Robotics Research, vol. 31, no. 2, pp. 249–
267, 2012.

[31] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,” in
Conference on Robot Learning. PMLR, 2021, pp. 564–574.

[32] T. Lips, V.-L. De Gusseme et al., “Learning keypoints for robotic
cloth manipulation using synthetic data,” IEEE Robotics and Automation

Letters, 2024.
[33] P. Zhou, J. Zhu, S. Huo, and D. Navarro-Alarcon, “Lasesom: A latent

and semantic representation framework for soft object manipulation,”
IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5381–5388,
2021.

[34] S. Arnold, D. Tanaka, and K. Yamazaki, “Cloth manipulation planning
on basis of mesh representations with incomplete domain knowledge
and voxel-to-mesh estimation,” Frontiers in Neurorobotics, vol. 16, p.
1045747, 2023.

[35] X. Ma, D. Hsu, and W. S. Lee, “Learning latent graph dynamics
for deformable object manipulation,” arXiv preprint arXiv:2104.12149,
vol. 2, 2021.

[36] C. Li, Z. Ai, T. Wu, X. Li, W. Ding, and H. Xu, “Deformnet:
Latent space modeling and dynamics prediction for deformable object
manipulation,” arXiv preprint arXiv:2402.07648, 2024.

[37] N. Lv, J. Liu, and Y. Jia, “Dynamic modeling and control of deformable
linear objects for single-arm and dual-arm robot manipulations,” IEEE

Transactions on Robotics, vol. 38, no. 4, pp. 2341–2353, 2022.
[38] D. McConachie, T. Power, P. Mitrano, and D. Berenson, “Learning when

to trust a dynamics model for planning in reduced state spaces,” IEEE

Robotics and Automation Letters, vol. 5, no. 2, pp. 3540–3547, 2020.
[39] D. McConachie and D. Berenson, “Bandit-based model selection for de-

formable object manipulation,” in Algorithmic Foundations of Robotics

XII: Proceedings of the Twelfth Workshop on the Algorithmic Founda-

tions of Robotics. Springer International Publishing, 2020, pp. 704–719.

[40] T. Power and D. Berenson, “Keep it simple: Data-efficient learning for
controlling complex systems with simple models,” IEEE Robotics and

Automation Letters, vol. 6, no. 2, pp. 1184–1191, 2021.
[41] P. Zhou, P. Zheng, J. Qi, C. Li, C. Yang, D. Navarro-Alarcon, and J. Pan,

“Bimanual deformable bag manipulation using a structure-of-interest
based latent dynamics model,” arXiv preprint arXiv:2401.11432, 2024.

[42] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. K. Tanwani,
N. Jamali, K. Yamane, S. Iba, and K. Goldberg, “Visuospatial fore-
sight for multi-step, multi-task fabric manipulation,” arXiv preprint

arXiv:2003.09044, 2020.
[43] Z. Weng, F. Paus, A. Varava, H. Yin, T. Asfour, and D. Kragic,

“Graph-based task-specific prediction models for interactions between
deformable and rigid objects,” in 2021 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp.
5741–5748.

[44] X. Lin, Y. Wang, Z. Huang, and D. Held, “Learning visible connectivity
dynamics for cloth smoothing,” in Conference on Robot Learning.
PMLR, 2022, pp. 256–266.

[45] Z. Huang, X. Lin, and D. Held, “Mesh-based dynamics with occlusion
reasoning for cloth manipulation,” arXiv preprint arXiv:2206.02881,
2022.

[46] P. Mitrano, A. LaGrassa, O. Kroemer, and D. Berenson, “Focused
adaptation of dynamics models for deformable object manipulation,”
in 2023 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2023, pp. 5931–5937.
[47] T. M. Lee, Y. J. Oh, and I.-K. Lee, “Efficient cloth simulation using

miniature cloth and upscaling deep neural networks,” arXiv preprint

arXiv:1907.03953, 2019.
[48] Y.-M. Chen and M. Posa, “Optimal reduced-order modeling of bipedal

locomotion,” in 2020 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2020, pp. 8753–8760.
[49] S. Tonkens, J. Lorenzetti, and M. Pavone, “Soft robot optimal control

via reduced order finite element models,” in 2021 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
12 010–12 016.

[50] J. Duan, W. Yuan, W. Pumacay, Y. R. Wang, K. Ehsani, D. Fox, and
R. Krishna, “Manipulate-anything: Automating real-world robots using
vision-language models,” arXiv preprint arXiv:2406.18915, 2024.

[51] J. Wen, Y. Zhu, J. Li, M. Zhu, Z. Tang, K. Wu, Z. Xu, N. Liu, R. Cheng,
C. Shen et al., “Tinyvla: Towards fast, data-efficient vision-language-
action models for robotic manipulation,” IEEE Robotics and Automation

Letters, 2025.
[52] M. Garland and P. S. Heckbert, “Surface simplification using quadric er-

ror metrics,” in Proceedings of the 24th annual conference on Computer

graphics and interactive techniques, 1997, pp. 209–216.
[53] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli,

G. Ranzuglia et al., “Meshlab: an open-source mesh processing tool.”
in Eurographics Italian chapter conference, vol. 2008. Salerno, Italy,
2008, pp. 129–136.

[54] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh: Measuring errors
between surfaces using the hausdorff distance,” in Proceedings. IEEE

international conference on multimedia and expo, vol. 1. IEEE, 2002,
pp. 705–708.

[55] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking
deep reinforcement learning for deformable object manipulation,” in
Conference on Robot Learning. PMLR, 2021, pp. 432–448.

[56] D. J. Balkcom and M. T. Mason, “Robotic origami folding,” The

International Journal of Robotics Research, vol. 27, no. 5, pp. 613–
627, 2008.

[57] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial
on the cross-entropy method,” Annals of operations research, vol. 134,
pp. 19–67, 2005.

[58] I. Noreen, A. Khan, and Z. Habib, “Optimal path planning using rrt*
based approaches: a survey and future directions,” International Journal

of Advanced Computer Science and Applications, vol. 7, no. 11, 2016.
[59] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning

library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[60] Y. Wang, D. McConachie, and D. Berenson, “Tracking partially-
occluded deformable objects while enforcing geometric constraints,”
in 2021 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2021, pp. 14 199–14 205.
[61] C. Chi and D. Berenson, “Occlusion-robust deformable object tracking

without physics simulation,” in 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 6443–6450.
[62] S. Chitta, “Moveit!: an introduction,” Robot Operating System (ROS)

The Complete Reference (Volume 1), pp. 3–27, 2016.

19

Shengyin Wang received his Ph.D. in Robotics from
the University of Leeds in 2025. He obtained his
B.Eng. and M.Eng. degrees in Aeronautics and As-
tronautics from the Beijing Institute of Technology
in 2017 and 2020, respectively. His research inter-
ests lie at the intersection of robotic manipulation,
motion planning, and deformable object handling.
His work focuses on developing efficient algorithms
for complex robotic tasks, particularly model-based
planning, dynamics learning, and manipulation of
non-rigid materials.

Matteo Leonetti received his PhD from Sapienza
University of Rome in 2011. He is currently a
Senior Lecturer in Computer Science at King’s Col-
lege London. He was a Lecturer at the University
of Leeds between 2016-2021, a post-doctoral re-
searcher at the University of Texas at Austin be-
tween 2013-2015, and a post-doctoral researcher at
the Italian Institute of Technology between 2012-
2013. He is a member of the editorial board of the
Artificial Intelligence Journal. His research focuses
on reinforcement learning and autonomous service

robots.

Mehmet Dogar received his PhD from the Robotics
Institute at the Carnegie Mellon University in 2013.
He is currently a Professor in Robotics and AI at the
School of Computer Science, University of Leeds,
UK. He was a Visiting Professor at ETH Zurich in
2023 and a post-doctoral researcher at CSAIL, MIT
between 2013-2015. Prof. Dogar is an Associate
Editor for IEEE Transactions on Robotics and also
for the International Journal of Robotics Research.
His research focuses on robotic object manipulation.

