
This is a repository copy of Learning rheological parameters of non-Newtonian fluids from 
velocimetry data.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/227186/

Version: Published Version

Article:

Kontogiannis, A. orcid.org/0000-0001-6353-3427, Hodgkinson, R., Reynolds, S. 
orcid.org/0000-0002-6463-8471 et al. (1 more author) (2025) Learning rheological 
parameters of non-Newtonian fluids from velocimetry data. Journal of Fluid Mechanics, 
1011. R3. ISSN 0022-1120

https://doi.org/10.1017/jfm.2025.92

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1017/jfm.2025.92
https://eprints.whiterose.ac.uk/id/eprint/227186/
https://eprints.whiterose.ac.uk/


J. Fluid Mech. (2025), vol. 1011, R3, doi:10.1017/jfm.2025.92

Learning rheological parameters of
non-Newtonian fluids from velocimetry data

Alexandros Kontogiannis
1

, Richard Hodgkinson
2
, Steven Reynolds

3
and

Emily L. Manchester
4

1Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
2Materials Science and Engineering Department, University of Sheffield, Sheffield S1 3JD, UK
3School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield
S10 2RX, UK
4Mechanical & Aerospace Engineering Department, University of Manchester, Manchester M13 9PL, UK

Corresponding author: Alexandros Kontogiannis, ak2239@cam.ac.uk

(Received 21 August 2024; revised 24 December 2024; accepted 9 January 2025)

We solve a Bayesian inverse Navier–Stokes (N–S) problem that assimilates velocimetry
data by jointly reconstructing a flow field and learning its unknown N–S parameters.
We devise an algorithm that learns the most likely parameters of a Carreau shear-
thinning viscosity model, and estimates their uncertainties, from velocimetry data of a
shear-thinning fluid. We conduct a magnetic resonance velocimetry experiment to obtain
velocimetry data of an axisymmetric laminar jet in an idealised medical device (US
Food and Drug Administration’s benchmark nozzle) for a blood analogue fluid. The
algorithm successfully reconstructs the flow field and learns the most likely Carreau
parameters. Predictions from the learned model agree well with rheometry measurements.
The algorithm accepts any differentiable algebraic viscosity model, and can be extended
to more complicated non-Newtonian fluids (e.g. Oldroyd-B fluid if a viscoelastic model is
incorporated).

Key words: rheology, machine learning, variational methods

1. Introduction

Magnetic resonance velocimetry (flow-MRI) is an experimental technique that measures
fluid velocities in time and three-dimensional space. Flow-MRI is most commonly known
for in vivo clinical settings but is gaining popularity within the wider scientific community
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for in vitro applications (Elkins & Alley 2007). Whilst flow-MRI can provide reliable
velocity measurements, it does not directly provide information about fluid properties
such as rheology or pressure. These currently require additional experiments to measure a
fluid’s shear-stress–strain curve. Acquiring this non-invasively is challenging as it requires
knowledge about both the stress and strain, and some control of either. Common exper-
imental techniques to measure fluid viscosity include rotational and capillary rheometry,
which involve passing a fluid sample through a precise geometry and measuring shear
rate, torque or pressure drop. Other techniques are available such as industrial ‘in-line’ and
‘on-line’ rheometry, or ultrasound velocity profiling (UVP). However, these methods are
either highly invasive (Konigsberg et al. 2013) or may require pressure drop measurements
(Shwetank et al. 2022). Due to the additional costs and complexities of rheometry
experiments, it is not always feasible to acquire rheological data. A non-intrusive in-line
UVP rheometry method that does not require pressure drop measurements is presented in
Tasaka et al. (2021). More recent techniques include ultrasonic (Ohie et al. 2022; Yoshida
et al. 2022) and optical (Noto et al. 2023) spinning rheometry.

For computational fluid dynamic (CFD) simulations of non-Newtonian fluids,
rheological behaviour is expressed through viscosity models with adjustable parameters.
Model parameters are typically taken from the literature. In biomedical engineering, flow-
MRI data can inform patient-specific cardiovascular models. Without patient-specific
blood rheology, CFD models lack accuracy. Ranftl et al. (2023) performed uncertainty
quantification to investigate the impact of non-Newtonian and Newtonian CFD models
on haemodynamic outputs. They found that patient rheological properties are necessary
for accurate wall shear stress predictions, particularly for diseases where blood properties
differ from those in healthy populations, and in small arteries where non-Newtonian
effects dominate.

Bayesian inference is a data-driven technique that can estimate unknown physical
or model parameters and their uncertainties from experimental data combined with
some prior knowledge. Worthen et al. (2014) inferred two unknown parameters of a
constitutive equation for viscosity in mantle flow with this approach. The forward problem
was governed by a nonlinear Stokes problem and experimental data was of surface
velocity measurements. Their method recovered constant and spatially varying parameters
reasonably well. Our conceptual approach is similar although the application and technical
details differ.

In this study we infer the rheological parameters of a shear-thinning blood analogue
from flow-MRI-measured velocity fields alone. We select the Carreau model to represent
the non-Newtonian fluid behaviour (Sequeira & Janela 2007) because it is differentiable
and bounded. Experiments are performed on the US Food and Drug Administration’s
(FDA) benchmark nozzle, and data are assimilated using a Bayesian inverse Navier–Stokes
(N–S) problem that jointly reconstructs the flow field and learns the Carreau parameters.
Our inversion algorithm differs from the aforementioned rheometry methods by inferring
rheological properties of non-Newtonian fluids from general velocity fields alone (as long
as information on the viscous stress tensor can be retrieved from the field). It relies solely
on velocity field measurements, which can be acquired using any velocimetry technique
(e.g. flow-MRI, Doppler, or particle image velocimetry). This is the first time flow-MRI
has been used for a non-invasive measurement of rheological parameters.

2. Bayesian inversion of the Navier–Stokes problem

We learn the rheology of a non-Newtonian fluid from velocimetry data by solving a
Bayesian inverse N–S problem. We first assume that there is a N–S problem with a Carreau

1011 R3-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.92


Journal of Fluid Mechanics

fluid model that can explain the velocimetry data, u⋆. Therefore, N–S parameters, x◦, exist
such that

u⋆ −Zx◦ = ε ∼N (0, Cu⋆), (2.1)

where Z is the nonlinear operator that maps N–S parameters to N–S solutions projected
into the data space, and ε is Gaussian noise with zero mean and covariance operator Cu⋆ .
We do not know x◦, but we assume that its prior probability distribution is N (x̄, Cx̄),
where x̄ is the prior mean, and Cx̄ is the prior covariance operator. Using Bayes’ theorem
we then find that the posterior probability density function (p.d.f.) of x, given the data u⋆,
is given by

π
(
x
∣∣u⋆

)
∝ π

(
u⋆

∣∣x
)
π(x) = exp

(
− 1

2‖u⋆ −Zx‖2
Cu⋆

− 1
2‖x − x̄‖2

Cx̄

)
, (2.2)

where π(u⋆
∣∣x) is the data likelihood, π(x) is the prior p.d.f. of x, and ‖·, ·‖2

C
:=

〈
·, C−1 ·

〉

is the covariance-weighted L2-norm. The most likely parameters, x◦, maximise the
posterior p.d.f. (maximum a posteriori probability, or MAP estimator), and are given
implicitly as the solution of the nonlinear optimisation problem

x◦ ≡ argmin
x

J, where J := 1
2‖u⋆ −Zx‖2

Cu⋆
+ 1

2‖x − x̄‖2
Cx̄

. (2.3)

Using a first-order Taylor expansion of Z around xk , given by

Zx ≃Zxk + Gk

(
x − xk

)
, (2.4)

the optimality conditions of problem (2.3) lead to the following iteration (Tarantola 2005,
chap. 6.22.6):

xk+1 ←| xk − τk Cxk

(
DxJ

)
k
, (2.5)

where
(
DxJ

)
k
:= −G∗

k C−1
u⋆

(
u⋆ −Zxk

)
+ C−1

x̄

(
xk − x̄

)
, (2.6)

R ∋ τk > 0 is the step size at iteration k, which is determined by a line-search algorithm,
G∗

k is the adjoint of Gk , and Cxk
is the posterior covariance operator at iteration k, which is

given by

Cxk
:=

(
G∗

k C−1
u⋆ Gk + C−1

x̄

)−1
. (2.7)

The posterior covariance operator around the MAP estimate, Cx◦ , can then be used to
approximate the posterior p.d.f. such that

π
(
x
∣∣u⋆

)
≃ exp

(
−1

2‖x − x◦‖2
Cx◦ − const.

)
, (2.8)

which is known as the Laplace approximation (MacKay 2003, chap. 27). For linear models,
the approximation is exact when both π(u⋆

∣∣x) and π(x) are normal. For nonlinear models,
the accuracy of the approximation depends on the behaviour of the operator Z around the
critical point x◦ (Kontogiannis et al. 2024a, § 2.2).

2.1. The N–S problem and the operators Z , G

In order to solve the inverse problem (2.3) using (2.5)–(2.7), we need to define Z and G.
We start from the N–S boundary value problem in Ω ⊂R

3 :
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u · ∇u − ∇ ·

(
2νe∇s u

)
+ ∇ p = 0 and ∇ · u = 0 in Ω,

u = 0 on Γ, u = gi on Γi , −2νe∇s u · ν + pν = go on Γo, (2.9)

where u is the velocity, p ←|p/ρ is the reduced pressure, ρ is the density, νe is the
effective kinematic viscosity, (∇s u)i j := (1/2)(∂ j ui + ∂i u j ) is the strain-rate tensor, gi

is the Dirichlet boundary condition (b.c.) at the inlet Γi , go is the natural b.c. at the
outlet Γo, and ν is the unit normal vector on the boundary ∂Ω = Γ ∪ Γi ∪ Γo, where Γ

is the no-slip boundary (wall). The construction of the operators Z, G of the generalised
inverse N–S problem, whose unknown parameters are the shape of the domain Ω , the
boundary conditions gi , go, and the viscosity field νe, is treated in Kontogiannis et al.

(2022); Kontogiannis & Juniper (2023); Kontogiannis et al. (2024a). Here, we fix the
geometry, Ω , and the outlet b.c., go, and infer only the inlet b.c., gi , and the effective
viscosity field, νe. We further introduce the Carreau model for the effective viscosity field,
which is given by

µe(γ̇ ; pµ) := µ∞ + δµ
(
1 + (λγ̇ )2)(n−1)/2

, (2.10)

where µe := νeρ, γ̇ (u) :=
√

2∇s u : ∇s u is the magnitude of the strain-rate tensor, and
pµ := (µ∞, δµ, λ, n) are the Carreau fluid parameters. In order to infer the most likely
viscosity field, µ◦

e , we therefore need to infer the most likely Carreau fluid parameters,
p◦

µ.
After linearising problem (2.9) around uk , we obtain u(x) ≃ uk +Ak(x − xk), where

Ak ≡ ((DM
u )−1 DM

x )k , with Ak being a linear, invertible operator, which encapsulates
the inverse Jacobian of the N–S problem, (DM

u )−1, and the generalised gradient of the
velocity field with respect to the parameters x, DM

x . Observing that Z, G map from the
N–S parameter space to the (velocimetry) data space, we define Z := SQ and Gk := SAk ,
where S : M → D is a projection from the model space, M, to the data space, D, and Q
is the operator that maps x to u, i.e. that solves the N–S problem. (The operators S,Q,A
are derived in Kontogiannis et al. (2024a) from the weak form of the N–S problem (2.9),
M.)

Based on the above definitions, and due to (2.6), we observe that the model contribution
to the objective’s steepest descent direction, for the Carreau parameters, pµ, is

(
δ pµ

)
k
:= G∗

k C−1
u⋆

(
u⋆ −Zxk

)
=

(
DM

pµ

)∗
k

(
(DM

u )∗
)−1

k︸ ︷︷ ︸
D

pµ
u

S∗ C−1
u⋆

(
u⋆ − Suk

)
︸ ︷︷ ︸

data-model discrepancy δu∈M

. (2.11)

Even though DM
u is invertible, for large-scale problems (such as those in fluid dynamics)

its inverse, (DM
u )−1, cannot be stored in computer memory because its discrete form

produces a dense matrix. The discrete form of DM
u , however, produces a sparse matrix.

Consequently, instead of using the explicit formula (2.11), the steepest descent directions
are given by

(
δ pµ

)
k
:=

(
DM

pµ

)∗
k
vk = 2

∫

Ω

(
D pµ

µe

)
k

(
∇s uk : ∇s

vk

)
, (2.12)

where (D pµ
µe)k

≡ D pµ
µe(γ̇ (uk); ( pµ)k) consists of the derivatives of the Carreau model

with respect to its parameters, and vk is the adjoint velocity field, which is obtained by
solving the following linear operator equation:

Avk = b, where A ≡
(
DM

u

)∗
k

and b ≡ S∗C−1
u⋆

(
u⋆ − Suk

)
. (2.13)
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Algorithm 1. Learning rheological parameters from velocimetry data.

The steepest descent directions for the inlet b.c., gi , are derived in Kontogiannis et al.

(2024a).
Instead of explicitly computing Cxk

at every iteration using (2.7), we approximate Cxk

using the damped Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton method
(Goldfarb et al. 2020), which ensures that Cxk

remains positive definite, and its
approximation remains numerically stable.

2.1.1. Note on effective viscosity model selection

In this study, although we fix the effective viscosity model to the Carreau fluid model,
which is given by (2.10), the present Bayesian inversion framework is already set up
for model selection (Yoko & Juniper 2024a, § 4.3). The velocimetry data, u⋆, can be
assimilated into the N–S boundary value problem with as many different viscosity models
as the user likes. The model parameter uncertainties are then estimated, and the marginal
likelihood of each model is calculated. The marginal likelihood is the likelihood of each
model, given the experimental data, which is also known as the evidence for each model.
The models are then ranked by their evidence, and the most accurate model is chosen.
Bayesian rheological model ranking using rheometry data has been addressed in Freund
& Ewoldt (2015). Note that, here we infer the rheology of the fluid from velocimetry data
(instead of rheometry data), which is a more difficult problem. Bayesian rheological model
ranking from velocimetry data are a natural extension of the present Bayesian inversion
framework, and provides scope for future work. (Another extension that follows naturally is
optimal experiment design (Yoko & Juniper 2024b, § 4.3, § 4.1), i.e. strategically planning
experiments to maximise information gain in parameter estimation.)

3. Flow-MRI experiment of a non-Newtonian laminar jet

The test section is part of the FDA nozzle (Hariharan et al. 2011; Stewart et al. 2012),
which is an axisymmetric pipe that converges to a narrow throat section, followed by a
sudden expansion, where a non-Newtonian laminar jet forms (see figure 1). The geometry
was three-dimensionally (3-D) resin-printed to a nominal tolerance of ±0.2 mm. Acrylic
tubes were attached upstream and downstream of the test section, and the former was
equipped with a flow straightener array. The test section was placed inside a water-filled
acrylic outer tube in order to avoid air-induced magnetic susceptibility gradients. A pipe
loop provided flow from pumping hardware outside the MRI scanner room, with the return
pipe looping back through an annular gap between the resonator body and the gradient coil
inner diameter. Flow was collected in a receiver reservoir, pumped via a variable speed
diaphragm pump, fed to a pulsation dampening accumulator, and then back to the test
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Figure 1. Overall flow system and set-up around the MRI scanner with detail of the FDA flow nozzle
geometry implemented: ID, inner diameter; OD, outer diameter.

section. Controlled pump bypass enabled very low flow rates whilst keeping the pump
oscillation frequency high. Loop circulation time scales are of the order of the scanning
time scale. The flow loop was purged of bubbles after filling, and K-Type and alcohol
thermometer measurements indicated a fluid (ambient) temperature of 21.8 ◦C.

The test solution used here is a 46 wt % haematocrit level blood analogue (Brookshier
& Tarbell 1993) (0.5 wt % NaCl was omitted because it would interfere with MRI).
A 40 wt % glycerine solution in deionised water was first prepared and then used as the
solvent for a 0.04 wt % xantham gum solution. The solution appears weakly viscoelastic,
with viscous stresses above elastic stresses in their 2 Hz oscillatory shear tests, justifying
the generalised Newtonian fluid assumption.

Flow-MRI was performed using a Bruker BioSpec 70/30USR 7T preclinical scanner
(660 mT/m gradients, 35 mm ID resonator coil). Images were acquired with uniform radial
pixel spacing of 0.1 mm and axial slice thickness of 0.08 mm. Four scan repetitions were
performed in order to reduce noise (∼15 min total scanning time).

3.1. Flow-MRI data preprocessing

We use phase-contrast MRI and Hadamard encoding to measure all three components of a
3-D velocity field using a single set of four, fully sampled k-space scans, {s}4

j=1. For each
scan we compute its respective complex image, w j , which is given by

w j := ρ j e
iϕ j =F−1s j , (3.1)

where ρ j is the nuclear spin density image, ϕ j is the phase image and F is the Fourier
transform. The velocity components ui , for i = 1, . . . , 3, are then given by

ui = ci hi j ϕ j , hi j =

⎛
⎝

−1 1 1 −1
−1 1 −1 1
−1 −1 1 1

⎞
⎠ , j = 1, . . . , 4, (3.2)

where repeated indices imply summation, and ci is a known constant that depends on
the gyromagnetic ratio of hydrogen and the gradient pulse properties. In order to remove
any phase shift contributions that are not caused by the flow, we conduct an additional
no-flow experiment. That is, we acquire a set of four k-space scans, {s̄}4

j=1, for the
same geometry and field-of-view, but with zero flow (stagnant fluid). We then obtain
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the no-flow complex images, w̄ j , using (3.1), and compute the corresponding no-flow
velocity images using (3.2), such that ūi = c̄i hi j ϕ̄ j , where c̄i is the no-flow constant, which
is known. The corrected velocity is then given by ui = ciθ(hi jϕ j ) − c̄iθ(hi j ϕ̄ j ), where
θ(x) := x − 2π(⌊(⌊x/π⌋ − 1)/2⌋ + 1) is the phase difference unwrapping function, and
⌊·/·⌋ denotes integer division. To increase the signal-to-noise ratio (SNR) of steady flow
images we acquire n sets (in this study n = 4) of k-space scans, generate their respective
velocity images {ui }n

k=1, and compute the average velocity image
∑n

k=1(ui )k/n. The
noise variance in the averaged velocity images then reduces to σ 2/n, where σ 2 is the
noise variance of each individual velocity image. We straighten and centre the averaged
flow-MRI images, and, since the flow is axisymmetric, we mirror-average the images to
further increase SNR and enforce mirror-symmetry. We generate a mask for the region
of interest by segmenting the mirror-averaged nuclear spin density image, and apply
this mask to the velocity images. Because we solve an inverse N–S problem in a 3-D
discrete space comprising trilinear finite elements (voxels), the final preprocessing step is
to L2-project the two-dimensional (2-D) axisymmetric flow-MRI images, (ur , uz), to their
corresponding 3-D flow field, u⋆ = (u⋆

x , u⋆
y, u⋆

z). Note that the 3-D data that we generate
(Kontogiannis et al. 2024b) have the same (2-D) spatial resolution as the 2-D images.

4. Joint flow field reconstruction and Carreau parameter learning

We apply algorithm 1 to the non-Newtonian axisymmetric jet in order to jointly reconstruct
the velocity field and learn the rheological parameters of the Carreau fluid. We use the
velocimetry data (Kontogiannis et al. 2024b), u⋆, and compute the data noise covariance,
Cu⋆ = σ 2I, where I is the identity operator, and σ = 0.234 cm s−1 (Gudbjartsson &
Patz 1995) (for reference, peak jet velocity is ∼24 cm s−1.) We fix the geometry, Ω ,
which is known (FDA nozzle), and the outlet b.c. to go ≡ 0, and infer the unknown
Carreau parameters and the inlet b.c., gi . To test the robustness of algorithm 1, we
assume high uncertainty in the priors by setting the prior mean and covariance of the
Carreau parameters to p̄µ = (µ∞, δµ, λ, n) = (4 × 10−3, 10−1, 5, 1), C p̄µ

= diag(0.5 ×
10−3, 0.5 × 10−1, 1, 0.5)2, in SI units, and ρ = 1099.3 kg m−3. Note that the prior mean
corresponds to a Newtonian fluid with viscosity µe( p̄µ) ≡ µ̄∞ + ¯δµ ≃ 0.1 Pa·s. We set
the prior mean of the inlet b.c. to ḡi = (S∗u⋆)|Γi

, i.e. the restriction of the S∗-projected
data on Γi , and the prior covariance to C ḡi

= σ 2
ḡi

I, where σ ḡi
= 1 cm s−1. We infer the

inlet b.c., instead of fixing its value to (S∗u⋆)|Γi
, in order to compensate for measurement

noise and local imaging artefacts/biases on (or near) Γi .

4.1. Flow field reconstruction

The reconstructed flow field, u◦, which is generated using algorithm 1, is shown in
figure 2 versus the velocimetry data, u⋆. We define the average data-model distance by
E(u�) := |Ω|−1‖u⋆

� − Su�‖L2(Ω), where |Ω| is the volume of Ω , and � is a symbol
placeholder. For the reconstructed velocity field, u◦, we then find E(u◦

x ) = E(u◦
y) = 0.71σ ,

E(u◦
z ) = 1.40σ , and compare this to the distance between the initial guess, u(0), and the

data E(u
(0)
x ) = E(u

(0)
y ) = 1.39σ , E(u

(0)
z ) = 5.87σ . The inferred (MAP) versus prior strain-

rate magnitude, γ̇ , and effective viscosity field, µe(γ̇ ), are shown in figure 3. Note that we

initialise algorithm 1 using the prior means, and thus µ
(0)
e = µe(γ̇ (u0); p̄µ) ≃ 0.1 Pa·s.

Using the reconstructed flow field, u◦, and the inferred effective viscosity field, µ◦
e , we find

that the generalised Reynolds number of this flow is Reg = 37.5, where Reg := ρUc Lc/µc,
Uc := Q/A = 11.1 cm s–1, Q is the volumetric flow rate, A is the cross-section area before
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Figure 2. Images, streamlines and slices of reconstructed (MAP) flow, u◦, versus velocimetry data, u⋆. Panels
(a) and (e) show the axial velocity, uz , and panels (b) and ( f ) show the radial velocity component, ur . In panels
(e) and ( f ), velocity is normalised by U = 20 cm s−1, and length is normalised by L = 5 mm. We separate the
transverse slices in the plot by applying a vertical offset of 0.1n to the nth slice (the horizontal offset value is
immaterial).

the expansion, Lc = 4 mm, and µc = 13 mPa is the value of the effective viscosity on the
wall, before the expansion.

4.2. Carreau parameter learning

According to the optimisation log (figure 4a), the algorithm learns the unknown N–S
parameters (i.e. the Carreau parameters and the inlet b.c.) in ∼20 iterations, but most of
the work is done in ∼10 iterations. Using the Carreau parameters learned at every step, k,
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Figure 3. Inferred (MAP) versus prior strain-rate magnitude (a), γ̇ (s−1), and effective viscosity (b), µe(Pa·s).

of the optimisation process, we plot the evolution of the posterior p.d.f. of µe (mean, µ
(k)
e ,

and covariance, C(k)
µe ) in figure 4(b). The posterior covariance of µ

(k)
e is given by

C(k)
µe

:= G(k)
µe

C̃(k)
pµ

(
G(k)

µe

)∗
, (4.1)

where G(k)
µe is the Jacobian of the Carreau fluid model (2.10) with respect to its parameters,

pµ, and C̃
(k)
pµ

is the BFGS approximation of the posterior covariance of the Carreau

parameters, C
(k)
pµ

. The prior uncertainty, shown in figure 4(b) as a ±3σ red shaded

region, is sufficiently high and extends beyond the µe − γ̇ plotting range. (To ensure
that the inversion is stable with respect to prior perturbations, we performed inversions
with different priors and found that the inferred posterior parameter distributions were
practically the same. A sensitivity analysis with respect to the priors is, however, beyond
the scope of the present study.) We observe that the posterior uncertainty of µe reduces
significantly after assimilating the data in the model, and that the highest uncertainty
reduction is for 10 � γ̇ � 200 s−1, which is the γ̇ -range of the laminar jet (see figure 3a).
It is worth mentioning that, even though we observe a flow for which γ̇ ∈ [0, 200] s−1,
the region that provided the most information is that around the jet because (i) inertial
effects balance viscous effects, and (ii) the local velocity-to-noise ratio is high, hence the
uncertainty collapse in the jet-operating γ̇ -range.

The posterior p.d.f. evolution of the Carreau parameters is shown in figure 4(c). In this
case, the prior uncertainty isocontours can be visualised using hyperellipsoids in R

4 whose
centres are p̄µ, and axis lengths are proportional to (the columns of) C p̄µ

. To highlight the
parameter uncertainty reduction after assimilating the data, we set the origin to p̄µ, and

scale each dimension of R4 using (the columns of) C p̄µ
. In this transformed space, the

prior uncertainty isocontours are hyperspheres, and the posterior uncertainty isocontours
are hyperellipsoids, whose slices are shown in figure 4(c). It is interesting to note that, after
assimilating the velocimetry data, the posterior uncertainty collapses along the axes n, δµ,
whilst it slightly decreases along the axes µ∞, λ. This indicates that there is insufficient
information in the data to further collapse the prior uncertainties of λ and µ∞.

It is known that for models with univariate design (e.g. shear rate, γ̇ ) and observable
variables (e.g. effective viscosity, µe) in order to learn the most about the unknown
parameters (e.g. pµ) we need to perform experiments with the design parameters at which
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Figure 4. Optimisation log (a), and posterior p.d.f. evolution of the effective viscosity (b) and the Carreau
parameters (c). In panel (c), the axes are such that dσ x := (x − x̄)/σx̄ , where x̄ is the prior mean and σx̄ is the
prior standard deviation.

the model is most uncertain (Yoko & Juniper 2024b, § 4.1). Here, figure 4(b) shows that
the model is most uncertain for γ̇ ≪ 10 s−1 and γ̇ ≫ 200 s−1. Consequently, in order to
further collapse the uncertainty of λ and µ∞, we require more (or higher SNR) flow-MRI
data for γ̇ ≪ 10 s−1 and γ̇ ≫ 200 s−1. In particular, since we have used flow-MRI data of
a jet for which γ̇ ∈ [0, 200] s−1, we would require new experiments with (i) higher SNR,
since information at low velocity magnitudes, i.e. γ̇ ≪ 10 s−1, is corrupted by noise, and
(ii) higher velocity magnitudes (for the same geometry), since information at γ̇ ≫ 200 s−1

is missing from the current experiment.

4.3. Validation via an independent rheometry experiment

Steady-shear rheometry of the test solution was conducted using a Netzsch Kinexus
rheometer with a ∅27.5 mm cup and a ∅25 mm bob geometry, at the same temperature
as the flow-MRI experiment. The experiment was conducted to validate the Carreau
parameters learned from the flow-MRI data (§ 4.2) against rheometry data. To find the
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Figure 5. Learned Carreau fit to rheometry data, learned model parameters (MAP estimates), and assumed
priors. Uncertainties in the figures correspond to 3σ intervals.

most likely Carreau parameters that fit the rheometry data, we use Bayesian inversion
(see § 2). In this case, operator Z corresponds to the Carreau model, given by the explicit
relation (2.10), and operator G corresponds to the Jacobian of the Carreau model with
respect to its parameters. We use the same prior as in § 4. Because the prior uncertainty
is sufficiently high relative to the noise variance, the bias it introduces to the model fit is
negligible. The Carreau parameters learned from flow-MRI versus rheometry are shown in
figure 5. We observe that the parameters learned from flow-MRI agree well with rheometry
data, considering uncertainties (figure 5b), and that the learned effective viscosity field fits
the rheometry data (figure 5a). As in the case of learning from flow-MRI, it is not possible
to infer λ and µ∞ with high certainty when data, µe(γ̇ ), for γ̇ ≪ 10 s−1 and γ̇ ≫ 200 s−1

are missing (or the measurement uncertainty is high).

5. Summary and conclusions

We have formulated a Bayesian inverse N–S problem that assimilates velocimetry data of
3-D steady incompressible flow in order to jointly reconstruct the flow field and learn the
unknown N–S parameters. By incorporating a Carreau shear-thinning viscosity model into
the N–S problem, we devise an algorithm that learns the Carreau parameters of a shear-
thinning fluid, and estimates their uncertainties, from velocimetry data alone. Then we
conduct a flow-MRI experiment to obtain velocimetry data of an axisymmetric laminar jet
through an idealised medical device (FDA nozzle), for a blood analogue fluid. We show
that the algorithm successfully reconstructs the noisy flow field, and, at the same time,
learns the Carreau parameters and their uncertainties. To ensure that the learned Carreau
parameters explain the rheology of the fluid, instead of simply fitting the velocimetry data,
we conduct an additional rheometry experiment. We find that the Carreau parameters
learned from the flow-MRI data alone are in very good agreement with the parameters
learned from the rheometry experiment (taking into account their uncertainties), and that
the learned effective viscosity field fits the rheometry data. In this paper we have applied
the algorithm to a Carreau fluid. The present algorithm, however, accepts any generalised
Newtonian fluid, as long as the model is (weakly) differentiable. More complicated
non-Newtonian behaviour, such as viscoelasticity, can be learned from velocimetry data
if a viscoelastic model (e.g. Oldroyd-B fluid) is incorporated into the N–S problem.
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The present study has demonstrated the method on a single dataset. In future work we
will extend this to more test cases and different experimental configurations.
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