
This is a repository copy of Pseudo adjoint optimization: harnessing the solution curve for
SPICE acceleration.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/227184/

Version: Accepted Version

Proceedings Paper:
Sun, J. orcid.org/0009-0007-0540-7482, Zha, X. orcid.org/0000-0002-4616-2334, Wang,
C. orcid.org/0009-0000-1248-889X et al. (4 more authors) (2024) Pseudo adjoint
optimization: harnessing the solution curve for SPICE acceleration. In: Xiong, J. and Wille,
R., (eds.) ICCAD '24: Proceedings of the 43rd IEEE/ACM International Conference on
Computer-Aided Design. ICCAD '24: 43rd IEEE/ACM International Conference on
Computer-Aided Design, 27-31 Oct 2024, New York, USA. ACM ISBN 9798400710773

https://doi.org/10.1145/3676536.3676789

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a paper
published in ICCAD '24: Proceedings of the 43rd IEEE/ACM International Conference on
Computer-Aided Design is made available via the University of Sheffield Research
Publications and Copyright Policy under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution and
reproduction in any medium, provided the original work is properly cited. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1145/3676536.3676789
https://eprints.whiterose.ac.uk/id/eprint/227184/
https://eprints.whiterose.ac.uk/

Pseudo Adjoint Optimization: Harnessing the Solution Curve for
SPICE Acceleration

Anonymous Author(s)

ABSTRACT

Pseudo transient analysis (PTA) has been a promising solution for

direct current (DC) analysis of transistor-level circuit simulation.

Despite its popularity, PTA requires meticulous hyperparameter

tuning for optimal performance. In this paper, we propose pseudo

adjoint optimization, Soda-PTA, which models the PTA solution

curve (which is used to measure convergence) using a neural or-

dinary differential equation (Neural ODE) and deriving explicit

gradients of PTA iteration w.r.t. the PTA hyperparameters through

the classic adjoint method, enabling effective optimization of the

PTA hyperparameters. To generalize Soda-PTA for unseen circuits,

we further introduce a graph convolution network to transfer opti-

mal PTA hyperparameters from the other circuits to the target one.

Soda-PTA is implemented in an out-of-the-box SPICE simulator.

Through extensive experiments, Soda-PTA demonstrates superior

acceleration performance: an average speedup of 1.53x over the

state-of-the-art BoA-PTA while ensuring superior convergence and

up to 22.12x speedup compared to the native PTA solver.

KEYWORDS

Circuit simulation, Nonlinear DC analysis, Pseudo transient analy-

sis, Neural ODE, Graph convolution network

1 INTRODUCTION

Direct current (DC) analysis is a crucial step in SPICE simulation to

determine the static operating points, which provides initial solu-

tions for transient analysis and establishes small-signal parameters

such as transconductance for semiconductor devices [5]. The DC

analysis process involves solving a set of nonlinear algebraic equa-

tions generated from the circuit netlist using the Modified Nodal

Analysis (MNA) method [7].

However, with the exponential growth in integration and com-

plexity of integrated circuits driven by semiconductor technology

advancements, the algebraic systems to be solved in DC analysis

have become considerably larger and highly nonlinear. The basic

Newton-Raphson (NR) [4] method is no longer suitable for these

challenges. Consequently, various continuation methods for DC

analysis have been extensively researched, includingGmin Stepping

[14], Source Stepping [19], Homotopy [16], and Pseudo transient

analysis (PTA) [12], among others. Unfortunately, Gmin Stepping

and Source Stepping may fail to converge in situations involving

large-scale circuits with strong non-linearity and discontinuity. Al-

though Homotopy can ensure global convergence under certain

conditions, its implementation heavily relies on device models,

rendering it impractical in real simulators.

Among various continuation methods, PTA and its variants,

including Pure PTA (PPTA) [6, 25], Damped PTA (DPTA) [26],

Ramping PTA (RPTA) [11], and Compound Element PTA (CEPTA)

[10], have proven to be the most promising approaches for solving

large-scale and strongly nonlinear DC analysis problems, due to

their ease of implementation and the absence of discontinuity issues

[8]. The PTA algorithm transforms nonlinear algebraic systems into

ordinary differential equaions (ODEs) by inserting pseudo-elements

into the circuit [12]. Subsequently, numerical integration methods,

i.e. Backward Euler [18], can be employed to solve this ODE system

iteratively. At each discrete time point, a set of nonlinear equations

is solved using the NR method.

The efficiency of solving the ODE systems is influenced by two

aspects: time-step control and initial parameter selection. Regard-

ing time-step control, there has been considerable prior research.

Conventional PTA algorithms, even those employed in commercial

EDA tools [15, 22], utilize a simple iteration counting approach to

determine time-step size [20]. X.Wu et al. [27] proposed an adaptive

time-step control method based on Switched Evolution/Relaxation

(SER), which is a heuristic approach leveraging domain experiences.

Z. Jin [9] and D. Niu [21] utilized advanced reinforcement learning

to intelligently select the optimal time-step size for accelerating the

solution of ODE systems. However, research on initial parameter

selection is scarce. Unfortunately, for different circuits, the required

pseudo-elements may vary significantly. For any given circuit, the

problem of selecting optimal pseudo-elements i.e. PTA hyperpa-

rameters to minimize the total number of NR iteration (primary

metric for evaluating PTA performance) does not have a definitive

answer.

W. Xing et al. [29] introduced Bayesian Optimization Accelerated

PTA (BoA-PTA), which focuses exclusively on the relationship be-

tween PTA hyperparameters and the total number of NR iterations.

It employs a modified Gaussian process (GP) to characterize this re-

lationship for updating the next iteration of PTA hyperparameters.

Unfortunately, this approach appears to overlook the information

embedded within the PTA iterative process and does not utilize

judicious information in the evolution of the ODE system toward a

steady state of the inserted pseudo-elements.

To this end, we present a novel solution-curve-based adjoint

optimization to accelerate the PTA solver. Specifically, unlike con-

ventional works where the solver is considered as a black box, we

leverage the convergence information (in the solution curve) from

the PTA during its simulation and model them using a Neural Or-

dinary Differential Equations (Neural ODE) [3]. We then define a

novel loss function to measure the convergence and derive the opti-

mization gradient for the PTA hyperparameters. For unseen circuits,

we introduce a graph convolution network (GCN) to embed the de-

sign topology onto feature space, which allows effective knowledge

transfer between different circuit designs and thus the optimal PTA

hyperparameters for an unseen circuit. The contributions of this

work are as follows:

• To the best of our knowledge, this is the first SPICE acceleration

method by harnessing the convergence information collected while

solving the system ODE, delivering an accurate hyperparameters

optimization gradient explicitly.

ICCAD ’24, October 27ś31, 2024, NEW JERSEY, USA Anon.

• Soda-PTA is equipped with a GCN and allows knowledge

transfer for different circuits and the acceleration can be generalized

to unseen circuits.

• We demonstrate a significant speedup over the SOTA AI-

accelerated SPICE BoA-PTA, with an average speedup of 1.53x and

a maximum of 1.90x, while ensuring superior convergence. More-

over, extending Soda-PTA to PPTA, DPTA, and RPTA, the average

acceleration ratios are 2.26x, 14.77x, and 22.12x respectively.

• Soda-PTA showcases a novel direction of AI implementation

for standard EDA pipelines without introducing instability and

errors because all interventions happen in the SPICE and the error

can be monitored and controlled.

2 BACKGROUND

2.1 PTA for Nonlinear DC Simulation

Consider a nonlinear circuit with 𝑁 nodes excluding the ground

node, among which there are𝑀 independent voltage sources. Thus,

finding theDC operating point is equivalent to solving the nonlinear

system Eq. (1).

F(x) = 0 (1)

where x = (𝑣, 𝑖)𝑇 ∈ 𝑅𝑛 , 𝑛 = 𝑁 + 𝑀 , variable vector 𝑣 ∈ 𝑅𝑁

denotes node voltage, and vector 𝑖 ∈ 𝑅𝑀 represents internal branch

currents of the independent voltage sources. The conventional PTA

algorithm, PPTA, involves serially connecting a virtual inductor

to each independent voltage source and each nonlinear voltage-

related branch, and in parallel, connecting a virtual capacitor to

each independent current source and each nonlinear current-related

branch. Eq. (1) is transformed into a ODE system, denoted as Eq.

(2).
{

D¤x(𝑡) = −F(x(𝑡), 𝑡)

x(𝑡0) = x0
(2)

where ¤x(𝑡) = (¤𝑣 (𝑡), ¤𝑖 (𝑡)) is the derivative of x with respect to the

time 𝑡 , and D is the incidence matrix that represents the inserted

pseudo-elements. Subsequently, the BE method is employed for

transient analysis of this virtual circuit. Throughout this process,

truncation error magnitude is disregarded, and the selection of

integration time-step size is not bound by precision requirements,

until reaching steady-state.

(a) (b) (c)

j

i

IL(t)

ICB(t)

G(t)

VE

VCB(t)

IE(t)
k

VL(t)
L

GVL branch

IG(t) C

R(t)

j

i

IR

ICB VC

VR(t)

k

VCB(t)
I

RVC branch

C

R(t)

k
C

R(t)

ks

g C

R(t)

d

k

RVC branch

Figure 1: Inserted pseudo-elements and embedding positions.

In contrast to PPTA, CEPTA inserts a GVL branch into the in-

dependent voltage source in series, a RVC branch into the inde-

pendent current source in parallel, and transistors between each

node to ground [10], as shown in Figure 1. The relationships for

time-variant resistor and time-variant conductor respectively are:

𝑅(𝑡) = 𝑅0𝑒
𝑡/𝜏 and𝐺 (𝑡) = 𝐺0𝑒

𝑡/𝜏 , where 𝑅0 and𝐺0 is a given initial

value and 𝜏 is the time constant. Inserted GVL and RVC branch

are stamped into the circuit matrix following the format outlined

in Table 1, where 𝐺𝐶𝐵𝑒𝑞 , 𝐼𝐶𝐵𝑒𝑞 , 𝑅𝐶𝐵𝑒𝑞 and 𝑉𝐶𝐵𝑒𝑞 defined in Eq.

(3) and Eq. (4). Therefore, we denote the CEPTA hyperparameters

as: 𝜃𝐶𝐸𝑃𝑇𝐴 = [𝐶, 𝐿, 𝑅0,𝐺0], and obviously these inserted pseudo-

elements have a significant impact on simulation convergence and

efficiency.

DPTA, like PPTA, focuses on inductor 𝐿 and capacitor 𝐶 [26],

𝜃𝐷𝑃𝑇𝐴\𝜃𝑃𝑃𝑇𝐴 = [𝐶, 𝐿]. Meanwhile, RPTA solely concentrates on

capacitor 𝐶 , 𝜃𝑅𝑃𝑇𝐴 = [𝐶]. For the internal of independent voltage

sources, function control is employed to ensure the convergence

of PTA [11]. In reality, the circuit matrix mappings of these three

PTA algorithms also correspond to Table 1. Only the redefinition

of Eq. (3) and (4) is required.

Table 1: The stampping for Branch RVC and GVL.

Branch 𝑖 𝑗 𝑰𝑬 𝑹𝑯𝑺

RVC
𝑖 𝐺𝐶𝐵𝑒𝑞 −𝐺𝐶𝐵𝑒𝑞 −𝐼𝐶𝐵𝑒𝑞

𝑗 −𝐺𝐶𝐵𝑒𝑞 𝐺𝐶𝐵𝑒𝑞 𝐼𝐶𝐵𝑒𝑞

GVL
𝑖 -1
𝑗 -1
𝐵𝑅 -1 -1 −𝑅𝐶𝐵𝑒𝑞 𝑉𝐶𝐵𝑒𝑞

𝐺−1𝐶𝐵𝑒𝑞 = ℎ𝑛+1/𝐶 + 𝑅(𝑡𝑛+1), 𝐼𝐶𝐵𝑒𝑞 = 𝐺𝐶𝐵𝑒𝑞 (𝐼
𝑛
𝐶𝐵𝑅(𝑡

𝑛) −𝑉𝑛𝐶𝐵) (3)

𝑅−1𝐶𝐵𝑒𝑞 = ℎ𝑛+1/𝐿 +𝐺𝑛+1, 𝑉𝐶𝐵𝑒𝑞 = 𝑅𝐶𝐵𝑒𝑞 (−𝐼
𝑛
𝐶𝐵 +𝐺

𝑛 (𝑉𝑛𝐶𝐵 − 𝐸)) + 𝐸

(4)

2.2 Problem Formulation

Consider the PTA with netlist denoted as 𝝃 and solver hyperparam-

eters 𝜽 as a function,
(

𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 ;𝑀 ; {x𝑡 }
𝑀
𝑡=1

)

= 𝑃𝑇𝐴(𝝃 , 𝜽) (5)

where {x𝑡 } is the collection of the states at each instant 𝑡𝑛 for Eq.

(2), 𝑀 and 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 are the total number of PTA steps and NR

iterations respectively, required to obtain the transient solution

{x𝑡 } and they are the most critical performance metrics for the

PTA.

In a PTA system, while we can achieve sensitivity to circuit

performance by applying a joint method to the circuit ODEs, it is

challenging to derive the convergence gradient within the standard

framework. This limitation suggests the need for an alternative

approach or an adaptation of the existing framework to effectively

compute the gradient. As a remedy, end-to-end optimization uses

a surrogate to learn the mapping of 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 = 𝜂 (𝝃 , 𝜽), based on

which optimization algorithms can be applied to find the optimal 𝜽 ∗

[29]. What is neglected is that useful information {x𝑡 } is discarded.

Therefore, we propose to include the information {x𝑡 } into the

surrogate model, which is the key to our method to improve the

optimization performance.

2.3 Neural Ordinary Differential Equations

A Neural ODE [3, 28] is a neural network that learns the derivative

of the hidden states w.r.t. time

¤ℎ(𝑡) = 𝑓w (h(𝑡), 𝑡) (6)

where h(𝑡) ∈ 𝑅𝑛 is the state, ¤ℎ denotes the time derivative of ℎ,

𝑓w : 𝑅𝑛 → 𝑅𝑛 is a neural network model parameterized by w.

Given an initial state ℎ0, the solution of Eq. (6) can be obtained

Pseudo Adjoint Optimization: Harnessing the Solution Curve for SPICE Acceleration ICCAD ’24, October 27ś31, 2024, NEW JERSEY, USA

Inserted to
non-linear

branch

x6

x1
x3

x4x2

x0

x5

x7

x8

x6

x1
x3

x4x2

x0

x5

x7

x8

Netlists

Pseudo Elements

PTA Solver

Inter-process
Informations

x5

x1

x2

x4
x6

x3

x0

GCN
Topology

Graph

Input

Netlist2vec Embedding

x5

x1

x2

x4
x6

x3

x0

GCN
Topology

Graph

Input

Netlist2vec Embedding

Update

iter

Zn

R0

C

L

…
…

…
…

...

G0

Z1

Zn

R0

C

L

…
…

…
…

...

G0

Z1

FNN

Topological
Features

Z1 ... Zn

Hyper
parameters

C L R0 G0

Gradient Update

Pseudo Adjoint
Process

tt1 t3 tM-1 tMt0 ...

...

Y L iter

Gradient

Adjoint
Gradient

t2

Neural ODE

Stage1：PTA solver and GCN process netlists Stage2：Neural ODE fits target trajectory Stage3：Construct loss function Stage4：Update hyperparameters

Neural Network Trainning Process

Fitting

Update

tt1 t2 t3 tM-1 tMt0 ...

Y

...

Hyper
parameters

Hyper
parameters

[
]

,,[]

,,[]

g

j

CEPTA
C

R(t)

k
C

R(t)

ks

C

R(t)

d

k

C

R(t)

k
C

R(t)

ks

C

R(t)

d

k

C R(t)

I

i

k

C R(t)

I

i

k

ji G(t)

L

ji G(t)

L

� Voltage source

� Current source � MOS transistor

g

j

CEPTA
C

R(t)

k
C

R(t)

ks

C

R(t)

d

k

C R(t)

I

i

k

ji G(t)

L

� Voltage source

� Current source � MOS transistor

ji L ji LPPTA

DPTA

PPTA

DPTA � Current source � Voltage source

C
i j

C
i jji LPPTA

DPTA � Current source � Voltage source

C
i j

RPTA
C

i j
C

i j

t

V

0

Initial voltage

t

V

0

Initial voltage

� Current source � Voltage source

RPTA
C

i j

t

V

0

Initial voltage

� Current source � Voltage source

Iteratively
solve

Inserted to
non-linear

branch

x6

x1
x3

x4x2

x0

x5

x7

x8

Netlists

Pseudo Elements

PTA Solver

Inter-process
Informations

x5

x1

x2

x4
x6

x3

x0

GCN
Topology

Graph

Input

Netlist2vec Embedding

Update

iter

Zn

R0

C

L

…
…

…
…

...

G0

Z1

FNN

Topological
Features

Z1 ... Zn

Hyper
parameters

C L R0 G0

Gradient Update

Pseudo Adjoint
Process

tt1 t3 tM-1 tMt0 ...

...

Y L iter

Gradient

Adjoint
Gradient

t2

Neural ODE

Stage1：PTA solver and GCN process netlists Stage2：Neural ODE fits target trajectory Stage3：Construct loss function Stage4：Update hyperparameters

Neural Network Trainning Process

Fitting

Update

tt1 t2 t3 tM-1 tMt0 ...

Y

...

Hyper
parameters

[
]

,,[]

,,[]

g

j

CEPTA
C

R(t)

k
C

R(t)

ks

C

R(t)

d

k

C R(t)

I

i

k

ji G(t)

L

� Voltage source

� Current source � MOS transistor

ji LPPTA

DPTA � Current source � Voltage source

C
i j

RPTA
C

i j

t

V

0

Initial voltage

� Current source � Voltage source

Iteratively
solve

Figure 2: Entire flow of proposed Soda-PTA. ① PTA solver takes netlist input and outputs key state trajectory and the total

number of NR iterations. GCN model embeds circuit design to a feature vector. ② Neural ODE uses the embedding features and

PTA hyperparameters to fit the target trajectory, forming an effective surrogate for the PTA process. ③ Construct loss function

with outputs from Neural ODE and PTA Solver, and get gradients of PTA hyperparameters. ④ Update PTA hyperparameters.

by any classic numerical solver for ODEs, e.g. Runge-Kutta (RK)

methods and the solution is the dynamics of the states h(𝑡). 𝑓w
can be expressed as: 𝑓w = 𝑓w1,2 ◦ · · · ◦ 𝑓w𝑘,𝑘+1 , 𝑘 is the number of

layers, 𝑓w𝑘,𝑘+1 is the forward process of the 𝑘-th layer, and ℎ𝑘 =

(𝑓w1,2 ◦ · · · ◦ 𝑓w𝑘,𝑘+1) (·) ∈ 𝑅𝑛𝑘 is the intermediate representation at

the 𝑘-th layer, ℎ𝐾 =
¤ℎ is the output. 𝑛𝐾 = 𝑛 denotes the number of

neurons at 𝑘-th layer.

For the training of Neural ODE, the loss function is defined as:

𝐿 =

∫ 𝑡1

𝑡0

𝑙 (h(𝑡), 𝑡)𝑑𝑡 (7)

where 𝑙 (h(𝑡), 𝑡) is the loss function (e.g., L2 loss) at time 𝑡 . The gra-

dient of the loss function w.r.t. the parameters w, can be computed

by the adjoint sensitivity method [3]:

𝜕𝐿

𝜕w
= −

∫ 𝑡0

𝑡1

𝑎(𝑡)𝑇
𝜕𝑓w (h(𝑡), 𝑡)

𝜕w
𝑑𝑡 (8)

where 𝑎(𝑡) = 𝜕𝐿
𝜕h(𝑡)

is the adjoint, and h(𝑡) is the intermediate state

of Neural ODE at each instant. Its dynamics are defined by Eq. (8),

where h(𝑡) can simply recomputed backwards in time together

with the adjoint.

3 PSEUDO ADJOINT OPTIMIZATION

3.1 Overall Framework

As discussed, what is missing in the literature is the inclusion of

the process information (in this case, the whole solution curves),

which leads to inferior performance. To this end, we propose to use

the Neural ODE as a surrogate to imitate the PTA process. More

importantly, once the Neural ODE is trained, the adjoint state of

the Neural ODE can be used to compute the gradient of the loss

function w.r.t. the PTA hyperparameters, which is not available in

the original PTA solver.

The overall workflow of Soda-PTA is shown in Figure 2. Based

on a given netlist and hyperparameters, PTA solves the system

ODEs iteratively until the states {x𝑡 } converge, based on which we

summarize the dynamic of {x𝑡 } using key trajectory {y𝑡 }. A Neural

ODE is then introduced to fit {y𝑡 } by minimizing the fitting loss.

Once the fitting is completed, another loss of measuring the con-

vergence is defined to enable the maximization of the convergence

speed w.r.t. the PTA hyperparameters.

3.2 Solution Curve Modeling Using Neural ODE

We first model the solution curves of the node voltages as a whole

dynamical system, encapsulating essential information about the

PTA hyperparameters, objective optimization metrics, and circuit

topology. Each node within PTA is inherently linked with a unique

solution curve. However, modeling every solution curve is both

unnecessary and impractical. Our primary aim is to minimize

𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 , which can be effectively achieved by focusing on a subset

of the key solution curves that accurately reflect the convergence

of the PTA process.

In this pursuit, we propose using the first n-th moments of these

solution curves as the target fitting trajectory y𝑡 . Our investigations

reveal that the first moment, or the mean of the solution curves,

suffices in modeling the convergence of the PTA process. Utilizing

these solution curves, we apply Neural ODE to simulate the PTA

process, as illustrated in the following equation:

𝑑y

𝑑𝑡
= 𝑓w (y(𝑡), 𝑡, 𝜽) (9)

Here, y represents the discretized solution trajectory,w signifies the

Neural ODE parameters, and 𝜽 denotes the PTA hyperparameters.

ICCAD ’24, October 27ś31, 2024, NEW JERSEY, USA Anon.

The objective of the Neural ODE is to dynamically replicate the

behavior of the PTA process.

...

FNN
tt1 t2 t3 tM-1 tMt0 ...

Y
...

La
y
e
r 1

La
y
e
r 2

La
y
e
r O

u
tp

u
t

Ɵ
P

T
A

...

Update
Network

Fitting
Loss

Neural ODE Workflow

...

FNN
tt1 t2 t3 tM-1 tMt0 ...

Y
...

La
y
e
r 1

La
y
e
r 2

La
y
e
r O

u
tp

u
t

Ɵ
P

T
A

...

Update
Network

Fitting
Loss

Neural ODE Workflow

Figure 3: Neural ODE fits the target solution curve in the k-th

fitting epoch.

A pivotal aspect of our methodology is the optimization process,

which uses a Smooth L1 loss function, 𝑙𝑓 𝑖𝑡 (·), to compare the pre-

dictive solution curve with the target, as shown in Figure 3. The

gradient of this loss function w.r.t. Neural ODE parametersw yields

the adjoint state 𝑎(𝑡), which in turn is employed to update the PTA

hyperparameters (with details in Section 3.3 and Algorithm 1).

Despite efforts in standardizing the data for the target trajectory,

striking a balance between fitting efficiency and learning rate sched-

uling remains challenging. To mitigate this, we have implemented

an early stopping strategy based on the relative change in the fitting

loss. Specifically, if
𝑎𝑏𝑠 (𝑙𝑘

𝑓 𝑖𝑡
−𝑙𝑘−1

𝑓 𝑖𝑡
)

𝑙𝑘
𝑓 𝑖𝑡

< 0.001 consistently over a fixed

number of iterations, such as 10, we terminate the fitting process.

This early termination often indicates either suboptimal PTA hyper-

parameter selection or complex convergence challenges in the PTA

process due to specific circuit characteristics. Notably, terminating

the fitting process does not imply an end to the optimization of PTA

parameters. The formulation and impact of this strategy on PTA

hyperparameter optimization are further elaborated in Section 3.3.

Moreover, appropriately reducing the length of y𝑡 is also a nec-

essary operation. For PTA processes that exhibit oscillatory non-

convergence and prolonged convergence times, the target trajectory

often comprises a significant number of PTA steps, which imposes

a substantial overhead on fitting Neural ODE. Fortunately, we draw

inspiration from another non-convergence scenario in the PTA

process, "time-step too small", by selectively utilizing partial trajec-

tory to accommodate unacceptable trajectory lengths. To this end,

we employ an adaptive approach where, upon exceeding a certain

threshold of PTA steps, only the first 500 PTA steps are retained.

In section 4.4, analysis in dealing with non-convergence scenarios

validates the effectiveness of this approach.

3.3 Pseudo Ajoint Optimization

Upon fitting the Neural ODE to the critical target trajectory, our

focus shifts to deriving the convergence as a function of the PTA

hyperparameters, formulated through a specialized loss function.

This function not only reflects the deviation from the target tra-

jectory but also incorporates the dynamics of the circuit analysis,

as evidenced in the empirical correlation between the number of

PTA execution steps (𝑃𝑇𝐴_𝑠𝑡𝑒𝑝𝑠) and NR iterations (𝑁𝑅_𝑖𝑡𝑒𝑟𝑠),

highlighted in Figure 4.

We introduce a novel loss function Eq. (10) that combines the

count of NR iteration (𝑁𝑅_𝑖𝑡𝑒𝑟𝑠), states (∥ŷ𝑡 ∥1) and the cumulative

magnitude (∥(ŷ𝑡 − ŷ𝑡−1)∥1) of the generated trajectory, which is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Circuits
0

500

1000

1500

2000

N
R_
it
er
s

NR_iters

0

50

100

150

200

250

300

350

400

PT
A_
st
ep

s

PTA_steps

Figure 4: The relationship between NR_iters and PTA_steps

for 36 circuits from benchmark [2] under default CEPTA

hyperparameters.

inspired by Figure 5:

𝑙𝑜𝑠𝑠𝜽 ({ŷ𝑡 }) = 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 · (∥ŷ𝑡 ∥1 + ∥(ŷ𝑡 − ŷ𝑡−1)∥1) (10)

where ŷ𝑡 represents the states on the trajectory generated by the

Neural ODE. This loss function is pivotal in guiding the optimiza-

tion of the PTA hyperparameters 𝜽 . Notably, its design, involving

numerical computations along the trajectory, facilitates the up-

dated 𝜽 to progress towards improved values, even in cases of early

stopping. This approach potentially offsets the costs associated

with early termination by steering the optimization in a beneficial

direction.

5 10 15 20 25 30 35 40 45 50

80

100

120

140

160

N
R_

it
er

s

NR_iters

5 10 15 20 25 30 35 40 45 50

NR_iters

20

22

24

26

28

30States

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75Magnitude

Sets of Hyperparameters
Figure 5: The relationship between NR_iters and two sub-

components of the loss function Eq. (10) for the "hussamp"

circuit across 50 different sets of CEPTA hyperparameters.

Gradient calculations for updating 𝜽 are expressed in Eq. (11)

and Eq. (12), which cumulatively accounts for the contribution of

each state along the trajectory:

∇𝜽 =

𝑀
∑︁

𝑡=1

𝜕𝑙𝑜𝑠𝑠𝜽
𝜕ŷ𝑡

𝜕ŷ𝑡

𝜕𝜃
(11)

𝜽 = 𝜽 − 𝑙𝑟 · ∇𝜽 (12)

where 𝜕𝑙𝑜𝑠𝑠𝜽 /𝜕ŷ𝑡 corresponds to the adjoint state within the Neural

ODE framework. Employing this methodology, we aim to minimize

NR iterations by iteratively updating the PTA hyperparameters 𝜽

in the direction indicated by the gradient in Eq. (11). Since these

gradients are not the actual gradients of the SPICE solver but offer

a viable direction for updating 𝜽 , we refer to this method as Pseudo

Adjoint Optimization, with its details summarized in Algorithm 1.

3.4 Netlist2vec Embedding Through GCN

From Algorithm 1, we can see that the optimization of 𝜽 for a

given netlist is always conducted from scratch, despite that previ-

ous optimization for a similar circuit (e.g., a two-stage operational

amplifier and a three-stage one). If we can learn the connection

between circuits, we will be able to directly propose near-optimal

Pseudo Adjoint Optimization: Harnessing the Solution Curve for SPICE Acceleration ICCAD ’24, October 27ś31, 2024, NEW JERSEY, USA

Algorithm 1 Soda-PTA Algorithm Framework

Input: PTA solver, Neural ODE 𝑓w (·) , number of epoch 𝑁𝑒𝑝𝑜𝑐ℎ ,

default PTA hyperparameters 𝜽0
1: 𝜽 = 𝜽0
2: for 𝑖 = 1→ 𝑁𝑒𝑝𝑜𝑐ℎ do

3:

(

𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 ;𝑀 ; {x𝑡 }
𝑀
𝑡=1

)

= 𝑃𝑇𝐴(𝝃 , 𝜽)

4: Summarize {x𝑡 }
𝑀
𝑡=1 into {y𝑡 }

𝑀
𝑡=1

5: w← argminw

(

𝑙𝑓 𝑖𝑡 ({ŷ𝑡 }, {y𝑡 })
)

using adjoint method

6: 𝜃𝜃𝜃 ← argmin𝜃𝜃𝜃
(

𝑙𝜃𝜃𝜃 ({ŷ𝑡 })
)

using adjoint method

7: end for

8: return 𝜃𝜃𝜃

hyperparameters given a new circuit, which will be refined through

iterations. The emerging AI technique, GCN, has been extensively

applied in the EDA domain [23, 24], notably in areas such as relia-

bility and security in integrated circuit design [1], as well as in the

realm of testability analysis [17].

j Parse netlist

k Convert netlist to graph

Topology
Graph

Node Feature Vectors

#BJT

#R

#V
...

#BJT

#R

#V
...

x0 x1 x2 x3 x4 x5 x6x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1
...

0

1

2
... ...

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1
...

x0 x1 x2 x3 x4 x5 x6x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

1

1

0

0

0

0

0

1

0

1

0

1

0

1

1
...

0

1

2
... ...

1

2

0

1

1

0

0

0

0

0

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

1

1

0

0

0

0

0

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

0

0

1

1

0

1

0

1

0

1

1
...

0

1

2
... ...

1

2

0

2

1

0

1

0

0

1

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

0

0

1

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

1

0

1

1

0

1

0

1

0

2

1
...

0

1

2
... ...

1

2

0

2

1

0

1

1

0

1

1

0

1

0

1

0

2

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

1

0

1

1

0

1

0

1

0

2

1
...

dim

m

#BJT

#R

#V
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

1

1

0

0

0

0

0

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

0

0

1

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

1

0

1

1

0

1

0

1

0

2

1
...

dim

m

x6

n Feature

 embedding

Topology
Vector

Node Feature
Matrix

Z1,0 Z1,1 Z1,6

Zm,0 Zm,1 Zni...

...

............

Zm,6

Z1

...

Zn

Z1

...

Zn

GCN Model

m Node feature

 aggregation

Netlist

x1
x3

x4x2

x0

x5

rc1

r3

rc2

vcc

q2q1

revin

Node Device-list & Type

0 re(R) vin(V) vcc(V)

1 q1(BJT) rc1(R) r3(R)

2 re(R) q1(BJT) q2(BJT)

3 rc2(R) q2(BJT)

4 r3(R) q2(BJT)

5 vin(V) q1(BJT)

6 vcc(V) rc1(R) rc2(R)

Connection Information

Node Device-list & Type

0 re(R) vin(V) vcc(V)

1 q1(BJT) rc1(R) r3(R)

2 re(R) q1(BJT) q2(BJT)

3 rc2(R) q2(BJT)

4 r3(R) q2(BJT)

5 vin(V) q1(BJT)

6 vcc(V) rc1(R) rc2(R)

Connection Information

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4

x3

x0

x6x5

x1

x2

x4

x3

x0

x6 x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4

x3

x0

x6 x5

x1

x2

x4
x6

x3

x0

l Input

Devices as Edges

Circuit Nodes as Graph Nodes

Traverse connection information by nodes

j Parse netlist

k Convert netlist to graph

Topology
Graph

Node Feature Vectors

#BJT

#R

#V
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

1

1

0

0

0

0

0

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

0

0

1

1

0

1

0

1

0

1

1
...

x0 x1 x2 x3 x4 x5 x6

0

1

2
... ...

1

2

0

2

1

0

1

1

0

1

1

0

1

0

1

0

2

1
...

dim

m

x6

n Feature

 embedding

Topology
Vector

Node Feature
Matrix

Z1,0 Z1,1 Z1,6

Zm,0 Zm,1 Zni...

...

............

Zm,6

Z1

...

Zn

GCN Model

m Node feature

 aggregation

Netlist

x1
x3

x4x2

x0

x5

rc1

r3

rc2

vcc

q2q1

revin

Node Device-list & Type

0 re(R) vin(V) vcc(V)

1 q1(BJT) rc1(R) r3(R)

2 re(R) q1(BJT) q2(BJT)

3 rc2(R) q2(BJT)

4 r3(R) q2(BJT)

5 vin(V) q1(BJT)

6 vcc(V) rc1(R) rc2(R)

Connection Information

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4
x6

x3

x0

x5

x1

x2

x4

x3

x0

x6 x5

x1

x2

x4
x6

x3

x0

l Input

Devices as Edges

Circuit Nodes as Graph Nodes

Traverse connection information by nodes

Figure 6: Netlist2vec embedding process.

To this end, we utilize GCN to characterize the netlist, fostering

expedited optimization and superior optimization outcomes [13]. In

contrast to conventional methodologies that rely on simple circuit

summary factors [29], our approach capitalizes on more extensive

automatic feature extraction by incorporating circuit topology in-

formation. Drawing inspiration from the MNA matrix formulation,

the netlist is mapped here as a graph structure with circuit nodes

as vertices and devices as edges. The specific process is shown in

Figure 6. We further embed the vector of circuit features 𝝃 for the

subsequent learning of Neural ODE.

𝑑y

𝑑𝑡
= 𝑓w (y(𝑡), 𝑡, 𝜽 , 𝝃) (13)

Substituting circuit feature vector 𝝃 into the Neural ODE, our

model becomes Eq. (13), which is fitted using previously described

fitting loss function 𝑙𝑓 𝑖𝑡 (·) and the optimization is conducted ex-

actly as in Eq. (11) and Eq. (12) with the only difference being that

optimization is conditional on a given 𝝃 . Given an unseen circuit,

our model will construct a feature vector 𝝃 and then guess the

solver trajectory, based on which the optimal PTA hyperparame-

ters 𝜽 are obtained. The specific steps are illustrated in Algorithm 2.

Certainly, this guess might not be accurate, but it is a good starting

point for the optimization process. Also, if this model is trained on

a large number of circuits, it will be able to generalize to unseen

circuits as we will see in the experiments.

Algorithm 2 Soda-PTA for unseen circuit with GCN

Input: Algorithm 1,𝐺𝐶𝑁 (·), test set𝑇𝑒 , train set𝑇𝑟 , test iteration

𝑁 𝑡𝑒
𝑒𝑝𝑜𝑐ℎ

, train iteration 𝑁 𝑡𝑟
𝑒𝑝𝑜𝑐ℎ

1: Initilize Neural ODE 𝑓w (·)

2: for 𝜇 in 𝑇𝑟 do

3: 𝝃 = 𝐺𝐶𝑁 (𝜇)

4: 𝜃𝜃𝜃∗ (𝝃)= 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝑓w (·),𝜃𝜃𝜃0, 𝝃 , 𝑁
𝑡𝑟
𝑒𝑝𝑜𝑐ℎ

)

5: end for

6: Update GCN by the total loss of all generated trajectories

7: for 𝜇 in 𝑇𝑒 do

8: 𝝃 = 𝐺𝐶𝑁 (𝜇)

9: 𝜃𝜃𝜃∗= 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚1(𝑓w (·),𝜃𝜃𝜃0, 𝝃 , 𝑁
𝑡𝑒
𝑒𝑝𝑜𝑐ℎ

)

10: end for

4 EXPERIMENTS AND RESULTS

4.1 Experimental Setup

We implement the proposed Soda-PTA in a SPICE-like circuit sim-

ulator on AMD 4900H CPU, and train neural networks on NVIDIA

GeForce RTX 2060 6GB GPU. The hyperparameters to be optimized

and their default values for various PTA algorithms are shown in

Table 2. For a comprehensive assessment, Soda-PTA is evaluated

on a canonical benchmark [2], collected challenging test cases, and

multiple real-world complex problems.

Our primary performance metric of interest is the solution time,

indicated by 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 . The SOTA work BoA-PTA [29] is conducted

under three acquisition functions: UCB, MES, and EI, to obtain

optimal results. Unless stated otherwise, all PTA uses a simple

iteration counting time-step control [22] for a fair comparison.

Table 2: The hyperparameters and their default values of

various PTA algorithms.

PTA algorithms PPTA DPTA RPTA CEPTA

Hyperparameters 𝐶, 𝐿 𝐶, 𝐿 𝐶 𝐶, 𝐿, 𝑅0,𝐺0

Default values [1e-4, 1] [1e-4, 1] [1e-4] [1e-4, 1, 100, 1e-5]

In this work, Soda-PTA is utilized to dynamically select opti-

mal PTA hyperparameters online to enhance the performance and

convergence of nonlinear DC simulation. Section 4.2 demonstrates

the fitting effectiveness of Neural ODE. In Section 4.3, we compare

Soda-PTAwith the SOTA BoA-PTA solver [29] under CEPTA, while

also extending Soda-PTA to other PTA algorithms, illustrating the

effectiveness of Soda-PTA. Section 4.4 analyzes two scenarios of

non-convergence and validates the robustness of Soda-PTA. Section

4.5 introduces GCN to further improve the optimization quality

of Soda-PTA. Finally, in section 4.6, we apply Soda-PTA to RL-S

[9], which leverages reinforcement learning to intelligently select

time-step, thereby accelerating PTA.

4.2 Solution Curve Modeling Performance

Figure 7 and Figure 8 represent the neural ODE fitting process for

two circuits under CEPTA and DPTA, respectively. As mentioned

ICCAD ’24, October 27ś31, 2024, NEW JERSEY, USA Anon.

0 5 10 15 20 25
PTA_step

(a) 1st fitting epoch

-1.0

0.0

1.0

St
at

es

extrapolation
target
generated

0 5 10 15 20 25
PTA_step

(b) 11th fitting epoch

-1.0

0.0

1.0

extrapolation
target
generated

0 5 10 15 20 25
PTA_step

(c) 27th fitting epoch

-1.0

0.0

1.0

extrapolation
target
generated

0 5 10 15 20 25
PTA_step

(d) 56th fitting epoch

-1.0

0.0

1.0

extrapolation
target
generated

Figure 7: Fitting process of Neural ODE for the "hussamp" circuit under CEPTA.

0 5 10 15 20 25 30 35
PTA_step

(a) 1st fitting epoch

-1.5

-1.0

-0.5

0.0

0.5

1.0

St
at

es

extrapolation
target
generated

0 5 10 15 20 25 30 35
PTA_step

(b) 5th fitting epoch

-1.0

0.0

1.0

2.0

extrapolation
target
generated

0 5 10 15 20 25 30 35
PTA_step

(c) 34th fitting epoch

-1.5
-1.0
-0.5
0.0
0.5
1.0

extrapolation
target
generated

0 5 10 15 20 25 30 35
PTA_step

(d) 61st fitting epoch

-1.5
-1.0
-0.5
0.0
0.5
1.0

extrapolation
target
generated

Figure 8: Fitting process of Neural ODE for the "6stageLimAmp" circuit under DPTA.

above, we use the mean of the solution curves as the key target

trajectory.

The red line represents the target key trajectory obtained from

SPICE simulation, while the blue line represents the learned tra-

jectory from the fitting training data, and the orange additional

portion of the blue line corresponds to our subsequent predictive

outputs. Specifically, after the fitting training, Neural ODE con-

tinues to produce subsequent data points using a fixed time-step,

identical to the last time-step of the generated trajectory. Notably,

as the fitting training process progresses, Neural ODE gradually

approaches the target trajectory, enabling the model to robustly

achieve convergence.

4.3 PTA Acceleration Comparisons

To comprehensively evaluate the optimization performance of the

proposed Soda-PTA, we have tested it under four PTA algorithms

(PPTA [25], DPTA [26], CEPTA [10] and RPTA [11]), and compared

it with the native PTA and BOA-PTA (which is a SOTA enhance of

PTA). Convergence and simulation efficiency will be comparatively

analyzed.

bia
s

bjt
ff

gm
17 jge

hu
ss

am
p

na
gle

to
ro

nt
o

ad
d3

2

UA74
1P

FB

 VIN
NEG

UA74
1P

FB

 VIN
PO

S

MOSM
EM

sra
m

0

2

4

6

Sp
ee

du
p

(v
s.

 C
EP

TA
)

3.
51

1.
97

1.
16 1.

52

1.
06

1.
00

1.
00 1.

68

1.
38

1.
25

1.
05

1.
00

5.
71

2.
49

1.
59 2.

47

1.
47 1.

92

1.
50 2.

37

1.
99

1.
95

1.
35 1.

90

BoA-PTA Soda-PTA

Figure 9: Simulation performance comparison under CEPTA.

Firstly, we compare Soda-PTA and BoA-PTA across 12 test cir-

cuits, as depicted in Figure 9. It can be observed that Soda-PTA

exhibits an average improvement of 1.53x, with a maximum im-

provement of 1.9x compared to BoA-PTA. Subsequently, we select

four different types of circuits from the benchmark to compare

the optimization processes of Soda-PTA and BoA-PTA, primarily

reflecting their utilization of SPICE resources. Figure 10 depicts

the comparison of the first 10 update epochs of PTA hyperparam-

eter optimization. It can be seen that Soda-PTA requires fewer

optimization epochs to achieve comparable optimization perfor-

mance compared to BoA-PTA, indicating less utilization of SPICE

resources.

We then extend Soda-PTA to other PTA algorithms and ana-

lyze the optimization effects of Soda-PTA across 20 test circuits, as

shown in Table 3. From the table, it is evident that Soda-PTA ex-

hibits significant acceleration, with average speedups of 2.11x and

maximum speedups of 5.71x under CEPTA and maximum speedups

of 4.74x under PPTA. The acceleration is particularly pronounced

for DPTA and RPTA, with average speedups of 14.77x and 22.12x,

respectively. Notably, for the circuits "ab_opamp", "schmitfast",

"MOSMEM" and "UA709", a substantial reduction in the number of

NR iteration is observed. This can be attributed to the core concept

of Soda-PTA, which leverages inter-process trajectory information

to learn surrogate models, effectively guiding the convergence of

PTA process and the formation of PTA hyperparameter gradients.

Consequently, this significantly reduces the number of NR itera-

tions.

Additionally, under PPTA, Soda-PTA cannot guarantee conver-

gence for some circuits due to instances of "time-step too small"

non-convergence phenomena occurring in the early stages of the

PTA process. This results in trajectory sequences being too short to

enable the Neural ODE to capture critical information of the PTA

process effectively and form a valid surrogate to guide the forma-

tion of effective gradient information for PTA hyperparameters.

Although for the "Multiplier" circuit under CEPTA, similarly expe-

riencing "time-step too small" non-convergence issues, it provides

sufficient trajectory information for Soda-PTA to handle effectively.

Furthermore, for the circuits "bias", "nand", and "MOSAMP1" non-

convergence stemming from oscillations is observed, and Soda-PTA

effectively ensures convergence in these cases.

It is essential to conduct testing across other PTA algorithms.

While CEPTA significantly mitigates oscillation issues in the tra-

ditional PTA algorithms, it is not always optimal. The numbers

highlighted in the "Soda-PTA " column in the Table 3 represent the

Pseudo Adjoint Optimization: Harnessing the Solution Curve for SPICE Acceleration ICCAD ’24, October 27ś31, 2024, NEW JERSEY, USA

0 2 4 6 8 10
update epoch

 e1480

1.0

1.1

1.2

1.3

Sp
ee

du
p

(v
s.

 C
EP

TA
)

0 2 4 6 8 10
update epoch

 gm17

1.0

1.1

1.2

1.3

0 2 4 6 8 10
update epoch

 schmitecl

1.0

1.1

1.2

1.3 BoA-PTA
Soda-PTA

0 2 4 6 8 10
update epoch

 add32

1.00

1.05

1.10

1.15

1.20

1.25

Figure 10: Optimization process comparison between Soda-PTA and BoA-PTA.

Table 3: Simulation performance comparison under CEPTA, PPTA, DPTA and RPTA. "Ð" denotes non-convergence. The numbers

highlighted represent the best results among these PTA algorithms.

circuits

NR_iters
Speedup

CEPTA PPTA DPTA RPTA

native Soda-PTA native Soda-PTA native Soda-PTA native Soda-PTA vs. CEPTA vs. PPTA vs. DPTA vs. RPTA

ab_opamp 150 110 Ð Ð 2417 146 2408 127 1.36x Ð 16.55x 18.96x

astabl 55 45 108 64 81 43 75 41 1.22x 1.69x 1.88x 1.83x

bias 839 147 Ð 899 755 607 498 110 5.71x Ð 1.24x 4.53x

bjtinv 186 53 125 77 155 51 101 101 3.51x 1.62x 3.04x 1.00x

cram 91 88 Ð Ð 130 100 128 81 1.03x Ð 1.30x 1.58x

gm6 69 42 Ð Ð 110 55 107 38 1.64x Ð 2.00x 2.82x

hussamp 91 62 Ð Ð 209 87 240 71 1.47x Ð 2.40x 3.38x

mosrect 65 51 251 53 838 63 837 55 1.27x 4.74x 13.30x 15.22x

nand 83 53 Ð 32 Ð 142 Ð 76x 1.57x Ð Ð Ð

schmitfast 82 59 71 30 5681 106 5678 92 1.39x 2.37x 53.59x 61.72x

6stageLimAmp 137 51 69 38 135 73 137 51 2.69x 1.82x 1.85x 2.69x

add32 173 73 Ð Ð 1765 234 1970 70 2.37x Ð 7.54x 28.14x

DCOSC 126 78 108 91 116 98 136 100 1.62x 1.19x 1.18x 1.36x

DIFFPAIR 148 57 101 71 114 109 137 47 2.60x 1.42x 1.05x 2.91x

MOSAMP1 122 82 Ð 139 158 96 162 69 1.49x Ð 1.65x 2.35x

MOSBandgap 153 85 Ð Ð 342 113 341 104 1.80x Ð 3.03x 3.28x

MOSMEM 127 94 253 98 26029 171 26037 101 1.35x 2.58x 152.22x 257.79x

TADEGLOW 103 63 151 51 164 66 86 60 1.63x 2.96x 2.48x 1.43x

UA709 407 110 311 143 2985 219 3270 887 3.70x 2.17x 13.63x 3.69x

Multiplier Ð 105 Ð Ð 232 92 225 94 Ð Ð 2.52x 2.39x

Average 2.11x 2.26x 14.77x 22.12x

best results in parameter optimization among these four PTA algo-

rithms. It is noteworthy that these results are consistently better

than the native CEPTA, and it is evident that the optimized effects

of Soda-PTA correspond to different PTA algorithms. This provides

a crucial insight that, when dealing with unseen circuits and lacking

an optimal decision on which PTA algorithm to execute, applying

parameter optimization strategy Soda-PTA can consistently achieve

higher performance.

4.4 PTA Convergence Comparisons

In addition to simulation performance, PTA convergence assurance

is actually more crucial and promising, especially for large-scale cir-

cuits and circuits with convergence challenges. As shown in Table

4, we list some circuits under three commonly used PTA algorithms,

all of which are difficult to converge under default hyperparame-

ters. From the table, it is apparent that BoA-PTA provides weaker

convergence assurance compared to proposed Soda-PTA.

Figure 11 illustrates two non-convergence scenarios under the

PTA algorithms. We elucidate the "time-step too small" issue using

the "opampal" circuit from Table 4 and the non-convergence issue

Table 4: Conergence analysis. "Ð" denotes non-convergence.

PTA Algorithms Circuits
NR_iters

native BoA-PTA Soda-PTA

CEPTA

opampal Ð (time-step 635 317

D10 too small) 65 60

loc
Ð (oscillation)

Ð 328

ram2k 188 158

DPTA

gm17

Ð (oscillation)

N/A 304

gm19 N/A 160

REGULATOR N/A 644

Divider N/A 511

RPTA

Schmitslow

Ð (oscillation)

N/A 4507

bjtff N/A 1458

toronto N/A 1484

sram N/A 2341

caused by oscillation using the "Divider" circuit. The vertical axis

of Figure 11 represents the voltage value of a specific node during

the PTA process, while the horizontal axis represents discrete time

points during the PTA process. For Figure 11.(a), it can be observed

ICCAD ’24, October 27ś31, 2024, NEW JERSEY, USA Anon.

from the left subplot that at the final time-step, the numerical inte-

gration time-step size falls below the lowest limit (1e-9), resulting

in non-convergence of the PTA process. However, the sufficient

inter-process information it provides can be leveraged by Soda-PTA

for learning, guiding the gradient updates of PTA parameters, ulti-

mately leading to the convergence scenario depicted in the right

subplot. As for Figure 11.(b), the left subplot clearly exhibits oscil-

latory behavior, while the right subplot demonstrates the results

after parameter optimization.

Notably, the oscillatory behavior depicted in the left subplot

of Figure 11.(b) can lead to prolonged non-convergence issues,

resulting in the generation of a significant amount of inter-process

information in the PTA process, posing a considerable challenge

to the learning cost of Neural ODE. Fortunately, the core idea of

Soda-PTA is to surrogate the PTA process by learning the target

trajectory, which prompts us to adaptively truncate long sequences

to balance the learning cost with optimization effectiveness. As

demonstrated in Table 4, our strategy proves to be effective.

0 2 4 6
t 1e 2

1.5

1.0

0.5

0.0

vo
lt

ag
e(

5)

1e 4

0.0 0.5 1.0 1.5 2.0 2.5
t 1e1

8

6

4

2

0
1e 1

0 1 2
t 1e2

2

0

2

vo
lt

ag
e(

7)

0 2 4 6 8
t 1e1

2

0

2

5 6
1e 10+7.0157413e 2

8

6

4 1e 8 1.788e 4

< 1e-9

(a) circuit "opampal" (Non convergence, time-step too small)

(b) circuit "Divider" (Non convergence, oscillation)

native Soda-PTA

Figure 11: Two Non-convergence scenarios.

4.5 Unseen Circuit Performance with GCN

GCN extracts circuit topological features in order to reduce the ad-

ditional calculations caused by executing the solver multiple times

when finding the optimal parameters for the PTA solver correspond-

ing to a given circuit. Therefore, we use various practical circuits

outside the training set (bennchmark [2]) to test the performance

of Soda-PTA combined with GCN models under CEPTA and DPTA,

as shown in Figure 12.

The first subplot of Figure 12 depicts tests conducted under

CEPTA, where from circuits "D20" and "D21", it is evident that

the introduction of GCN model leads to an improvement in op-

timization results while reducing the required parameter update

iterations. Additionally, for the "TRACKTorig" circuit, under the

condition of maintaining optimization results almost unchanged,

there is a significant reduction in the required update iterations.

Similar conclusions are observable under DPTA as well. The circuit

"D10", despite undergoing more update iterations, demonstrates

more pronounced improvements during the optimization process.

In summary, it can be affirmed that GCN provides a stable map-

ping relationship from circuit descriptions to vector spaces, thereby

cooperatively participating in the parameter optimization process

and ensuring the quality of the optimization process.

0 1 2 3 4
0.0

0.5

1.0

1.5

Sp
ee

du
p

(v
s.

 C
EP

TA
)

1.
21

1.
11

1.
02 1.

10 1.
15

1.
45

1.
32

1.
06

1.
08 1.

18

0 1 2 3 4
0

20

40

60

U
pd

at
e

ep
oc

h

30

40 43

61 60

22 22

15 12

45

0 1 2 3 4
0

1

2

3

50

70

Sp
ee

du
p

(v
s.

 D
PT

A)

1.
22 1.

56

56
.7

3.
03

1.
37

1.
24 1.

54

64

3.
32

2.
25

0 1 2 3 4
0

10

20

30

40

50

U
pd

at
e

ep
oc

h

29

17

48 47

2

5

10

46 48

9

0:D20 1:D21 2:SCHMIT 3:TRACKToring 4:TRISTABLE

0:UA733 1:TADEGLOW6TR 2:THM5 3:MOSBandgap 4:D10

Soda-PTA (no GCN) Soda-PTA (with GCN)

Figure 12: Improvement effect of GCN on Soda-PTA under

CEPTA and DPTA.

4.6 Comparisons with PTA Algorithm Utilizing
Advanced Time-Step Strategy

To assess Soda-PTAwithmore advanced time-step control, we apply

RL-S [9], which employs reinforcement learning to select time steps,

to Soda-PTA. The results are illustrated in Figure 13. Compared to

the results without initial parameter selection, Soda-PTA achieves

an average improvement of 1.53x in terms of 𝑁𝑅_𝑖𝑡𝑒𝑟𝑠 , with a

maximum improvement of 7.55x. In terms of 𝑃𝑇𝐴_𝑠𝑡𝑒𝑝𝑠 , Soda-

PTA achieves an average improvement of 1.46x, with a maximum

improvement of 5.76x.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233
Circuits

1.0

1.5

2.0

2.5

7.0

7.5

8.0
Soda-PTA vs RL-S
 (NR_iters)

1.0

1.5

2.0

2.5

5.0

5.5

6.0
Soda-PTA vs RL-S
 (PTA_steps)

Sp
ee

du
p

(v
s.

 R
L-

S)
 o

f

 N
R_

it
er

s

Sp
ee

du
p

(v
s.

 R
L-

S)
 o

f

PT

A_
st

ep
s

Figure 13: Speedup of Soda-PTA over RL-S.

5 CONCLUSION

In this paper, we propose a novel pseudo adjoint framework to

optimize the hyperparameters in various PTA algorithms. This

framework is further enhanced by the incorporation of GCN to

expedite the process of transfer learning to deal with unseen circuits.

Evaluated on benchmark circuits, Soda-PTA outperforms native

CEPTA, PPTA, DPTA and RPTA by 2.11x, 2.26x, 14.77x and 22.12x

respectively. Moreover, Soda-PTA exhibits superior acceleration

performance and enhanced convergence capabilities compared to

BoA-PTA. Applied to RL-S employing advanced time-step control

strategy, the initial PTA hyperparameters provided by Soda-PTA

result in an average acceleration of 1.53x.

Pseudo Adjoint Optimization: Harnessing the Solution Curve for SPICE Acceleration ICCAD ’24, October 27ś31, 2024, NEW JERSEY, USA

REFERENCES
[1] Lilas Alrahis, Johann Knechtel, and Ozgur Sinanoglu. 2023. Graph Neural Net-

works: A Powerful and Versatile Tool for Advancing Design, Reliability, and
Security of ICs. In ASPDAC. https://doi.org/10.1145/3566097.3568345

[2] J.A. Barby and R. Guindi. 1993. CircuitSim93: A circuit simulator benchmarking
methodology case study. In Sixth Annual IEEE International ASIC Conference and
Exhibit. https://doi.org/10.1109/ASIC.1993.410775

[3] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. 2018. Neural
Ordinary Differential Equations. In NIPS.

[4] Leon O Chua. 1975. Computer-aided analysis of electronic circuits. Algorithms
and computational techniques (1975).

[5] J. Deng, K. Batselier, Y. Zhang, and N. Wong. 2014. An efficient two-level DC
operating points finder for transistor circuits. In DAC. https://doi.org/10.1145/
2593069.2593087

[6] L. Goldgeisser, E. Christen, M. Vlach, and J. Langenwalter. 2001. Open ended
dynamic ramping simulation of multi-discipline systems. In ISCAS. https://doi.
org/10.1109/ISCAS.2001.922046

[7] Chung-Wen Ho, Albert Ruehli, and Pierce Brennan. 1975. The modified nodal
approach to network analysis. IEEE Transactions on circuits and systems (1975).

[8] Z. Jin, M. Liu, and X. Wu. 2018. An adaptive dynamic-element PTA method
for solving nonlinear DC operating point of transistor circuits. In MWSCAS.
https://doi.org/10.1109/MWSCAS.2018.8623955

[9] Z. Jin, H. Pei, Y. Dong, X. Jin, X. Wu, W. W. Xing, and D. Niu. 2022. Accelerating
Nonlinear DC Circuit Simulation with Reinforcement Learning. In DAC. https:
//doi.org/10.1145/3489517.3530512

[10] Zhou Jin, Xiao Wu, and Yasuaki Inoue. 2013. An effective implementation and
embedding algorithm of PTA method for finding DC operating points. In ICCCAS.
https://doi.org/10.1109/ICCCAS.2013.6765265

[11] Zhou Jin, Xiao Wu, Yasuaki Inoue, and Niu Dan. 2014. A ramping method
combined with the damped PTA algorithm to find the DC operating points for
nonlinear circuits. In ISIC. https://doi.org/10.1109/ISICIR.2014.7029506

[12] C. T. Kelley and D. E. Keyes. 1998. Convergence analysis of pseudo-transient
continuation. SIAM J. Numer. Anal. (1998).

[13] Thomas Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. ArXiv (2016). https://api.semanticscholar.
org/CorpusID:3144218

[14] K. S. Kundert and P. Gray. 1995. The Designer’s Guide to Spice and Spectre. Kluwer
Academic Publishers.

[15] K. S. Kundert and P. C. Gray. 1995. The designer’s guide to spice and spectre.
[16] C. E. Lemke. 1984. Pathways to Solutions, Fixed Points, and Equilibria (C. B.

Garcia and W. J. Zangwill). SIAM Rev. (1984). https://doi.org/10.1137/1026093
arXiv:https://doi.org/10.1137/1026093

[17] Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo,
Karthikeyan Natarajan, and Bei Yu. 2019. High Performance Graph Convo-
lutional Networks with Applications in Testability Analysis. In DAC. https:
//doi.org/10.1145/3316781.3317838

[18] Benoıt Merlet and Morgan Pierre. 2009. Convergence to equilibrium for the
backward Euler scheme and applications. Convergence (2009).

[19] TM Najibi. 1989. Continuation methods as applied to circuit simulation. IEEE
Circuits and Devices Magazine (1989).

[20] F. N. Najm. 2010. Circuit simulation. John Wiley Sons.
[21] Dan Niu, Yichao Dong, Zhou Jin, Chuan Zhang, Qi Li, and Changyin Sun. 2023.

OSSP-PTA: An Online Stochastic Stepping Policy for PTA on Reinforcement
Learning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (2023). https://doi.org/10.1109/TCAD.2023.3251731

[22] H. R. Pota. 2010. Inside spice.
[23] Haoxing Ren, Siddhartha Nath, Yanqing Zhang, Hao Chen, and Mingjie Liu. 2022.

Why are Graph Neural Networks Effective for EDA Problems? (Invited Paper).
In ICCAD. Article 1, 8 pages. https://doi.org/10.1145/3508352.3561093

[24] Daniela Sánchez, Lorenzo Servadei, Gamze Naz Kiprit, Robert Wille, and Wolf-
gang Ecker. 2023. A Comprehensive Survey on Electronic Design Automation
and Graph Neural Networks: Theory and Applications. ACM Trans. Des. Autom.
Electron. Syst., Article 15 (feb 2023). https://doi.org/10.1145/3543853

[25] W. Weeks, A. Jimenez, G. Mahoney, D. Mehta, H. Qassemzadeh, and T. Scott.
1973. Algorithms for ASTAPśA network-analysis program. IEEE Transactions on
Circuit Theory (1973). https://doi.org/10.1109/TCT.1973.1083755

[26] Xiao Wu, Zhou Jin, and Yasuaki Inoue. 2013. Numerical integration algorithms
with artificial damping for the PTA method applied to DC analysis of nonlinear
circuits. In ICCCAS. https://doi.org/10.1109/ICCCAS.2013.6765266

[27] Xiao Wu, Zhou Jin, Dan Niu, and Yasuaki Inoue. 2017. An Adaptive Time-Step
Control Method in Damped Pseudo-Transient Analysis for Solving Nonlinear
DC Circuit Equations. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences (02 2017). https://doi.org/10.1587/transfun.
E100.A.619

[28] W. Xiao, T. Wang, R. Hasani, M. Lechner, Y. Ban, C. Gan, and D. Rus. 2023. On
the Forward Invariance of Neural ODEs. In ICML.

[29] W. W. Xing, X. Jin, T. Feng, D. Niu, W. Zhao, and Z. Jin. 2022. BoA-PTA: A
Bayesian Optimization Accelerated PTA Solver for SPICE Simulation. ACM
TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS (2022).
https://doi.org/10.1145/3555805

https://doi.org/10.1145/3566097.3568345
https://doi.org/10.1109/ASIC.1993.410775
https://doi.org/10.1145/2593069.2593087
https://doi.org/10.1145/2593069.2593087
https://doi.org/10.1109/ISCAS.2001.922046
https://doi.org/10.1109/ISCAS.2001.922046
https://doi.org/10.1109/MWSCAS.2018.8623955
https://doi.org/10.1145/3489517.3530512
https://doi.org/10.1145/3489517.3530512
https://doi.org/10.1109/ICCCAS.2013.6765265
https://doi.org/10.1109/ISICIR.2014.7029506
https://api.semanticscholar.org/CorpusID:3144218
https://api.semanticscholar.org/CorpusID:3144218
https://doi.org/10.1137/1026093
https://arxiv.org/abs/https://doi.org/10.1137/1026093
https://doi.org/10.1145/3316781.3317838
https://doi.org/10.1145/3316781.3317838
https://doi.org/10.1109/TCAD.2023.3251731
https://doi.org/10.1145/3508352.3561093
https://doi.org/10.1145/3543853
https://doi.org/10.1109/TCT.1973.1083755
https://doi.org/10.1109/ICCCAS.2013.6765266
https://doi.org/10.1587/transfun.E100.A.619
https://doi.org/10.1587/transfun.E100.A.619
https://doi.org/10.1145/3555805

	Abstract
	1 Introduction
	2 Background
	2.1 PTA for Nonlinear DC Simulation
	2.2 Problem Formulation
	2.3 Neural Ordinary Differential Equations

	3 Pseudo Adjoint Optimization
	3.1 Overall Framework
	3.2 Solution Curve Modeling Using Neural ODE
	3.3 Pseudo Ajoint Optimization
	3.4 Netlist2vec Embedding Through GCN

	4 EXPERIMENTS AND RESULTS
	4.1 Experimental Setup
	4.2 Solution Curve Modeling Performance
	4.3 PTA Acceleration Comparisons
	4.4 PTA Convergence Comparisons
	4.5 Unseen Circuit Performance with GCN
	4.6 Comparisons with PTA Algorithm Utilizing Advanced Time-Step Strategy

	5 Conclusion
	References

