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Non-Markovian rock-paper-scissors games
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Evidence is mounting that species interactions often involve long-term memory, with highly varying waiting
times between successive events and long-range temporal correlations. Accounting for memory undermines the
common Markovian assumption, and dramatically impacts key ingredients of population dynamics including
birth, foraging, predation, and competition processes. Here we study a critical aspect of population dynamics,
namely, non-Markovian multispecies competition. This is done in the realm of the zero-sum rock-paper-scissors
(zZRPS) model that is broadly used in the life sciences to metaphorically describe cyclic competition among three
interacting species. We develop a general non-Markovian formalism for multispecies dynamics, allowing us to
determine the regions of the parameter space where each species dominates. In particular, when the dynamics are
Markovian, the waiting times are exponentially distributed and the fate of the zZRPS model in large well-mixed
populations is encoded in a remarkably simple condition, often referred to as the “law of the weakest” (LOW),
stating that the species with the lowest growth rate is the most likely to prevail. We show that the survival
behavior and LOW of the zZRPS model are critically affected by nonexponential waiting times and, especially,
by their coefficient of variation. Our findings provide key insight into the influence of long waiting times on

non-Markovian evolutionary processes.
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I. INTRODUCTION

Ecosystems consist of a large number of competing
species, and it is of paramount importance to study the
mechanisms affecting their probability of extinction and sur-
vival. It is well known that random birth and death events
cause demographic fluctuations that can ultimately lead to
species extinction or fixation—when one species takes over
the entire population. As demographic fluctuations are strong
in small communities and weak in large populations, var-
ious dynamics as well as survival and fixation scenarios
appear in communities of different size and structure; see,
e.g., Refs. [1-18]. For example, experiments on three-strain
colicinogenic microbial communities have demonstrated that
cyclic rock-paper-scissors-like competition led to intriguing
behavior, with only the colicin-resistant strain surviving in
large well-mixed populations, and to the long-time coex-
istence of all species on Petri dishes [3]. In this context,
“rock-paper-scissors” games have received much attention
and served as paradigmatic models for the dynamics of
species in cyclic competition; see, e.g., [3,4,6-8,11,14—17,
19-39].
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The conditions favoring one species over other competing
ones generally depend on numerous complex factors, e.g., the
availability of nutrients or the presence of toxins in the ecosys-
tems. However, the fixation and survival probabilities of the
zero-sum rock-paper-scissors (zRPS) model, in which what
one gains is exactly what the opponent loses, satisfy a remark-
ably simple relation in large well-mixed populations [1,2,40]:
the species with lowest per-capita predation-reproduction rate
(lowest payoff) is the most likely to survive and fixate the pop-
ulation. This counterintuitive result, often referred to as the
“law of the weakest” (LOW) [2,40], becomes asymptotically
a zero-one law in large populations, where the species with
lowest payoff fixates the population and the others go extinct
with a probability approaching 1 [1,2,40]. The LOW has been
studied in various settings; see, e.g., Refs. [1,2,15,16,40], in-
cluding in recent laboratory-controlled experiments. Notably,
Ref. [17] studied cyclic competition of three strains of Es-
cherichia coli and found that the "weakest strain" dominates
the microbial community.

The LOW has been derived when the underlying stochastic
dynamics are interpreted as a Markov process, with exponen-
tially distributed waiting times (also referred to as interevent,
holding, or residence times); see, e.g., [41]. In many situa-
tions, however, species interactions may involve time delays
or different timescales, often yielding memory effects and
hence the violation of the Markov assumption. In this case,
the waiting-time distribution (WTD) is no longer exponential,
and this can significantly affect the evolutionary dynamics,
resulting, e.g., in correlations, amplified oscillations, or en-
hanced extinction probabilities [42—49]. In the context of
animal behavior, optimal search strategies are often related to
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nonexponentially distributed interevent times [42-46,50-52].
It has notably been reported that environmental variability,
affecting resource availability, can result in a heavy-tailed
WTD, which in turn shapes the population dynamics; see,
e.g., [43,44]. For instance, heavy-tailed WTDs characterizing
Caenorhabditis elegans dynamics, have recently been shown
to be associated with slow adaptation and to yield long-range
correlations [48].

While nonexponential WTDs have been found to lead to
strong stochastic oscillations and to enhance extinction in
a two-species predator-prey model [49], to the best of our
knowledge, the fixation/survival behavior of zRPS games
with non-Markovian dynamics has not been studied. In par-
ticular, it is unknown how the fixation properties change
when the reactions have nonexponential WTDs. In this
work, we systematically analyze how different examples of
WTDs alter the LOW in the paradigmatic zZRPS model, and
hence shed further light on the influence of WTDs on the
evolution of non-Markovian processes in the presence of
long-term memory.

A. Basic model

We consider a well-mixed population of constant size N
consisting of individuals of three species: n4, ng, and nc¢ in-
dividuals of species A, B, and C, respectively, with ny + ng +
nc = N. The species are in cyclic competition: A outcompetes
B, which dominates C, which in turn kills and replaces A, clos-
ing the cycle. That is, in this general zZRPS model, sometimes
referred to as cyclic Lotka-Volterra model [6,12,15,16,20,22],
each species is the predator of another and the prey of the
third species. Each predator-prey interaction consists of a
“predation with reproduction” event, where the prey is killed
and simultaneously replaced by an individual of the predating
species. The dynamics can thus be represented by the reac-
tions [see Eq. (B1)]:

A+B Y A4A.

B+c =25 p1B, (1)

ke/N
—

C+A C+C,

where ka, kg, kc are predator-prey interaction rates.

Under Markov dynamics, in the mean-field (MF) limit
where N — oo and demographic fluctuations are negligible,
denoting by a = n4 /N, b = ng/N, and ¢ = n¢/N the respec-
tive fractions of A, B, and C in the population, the zRPS
dynamics obey the set of rate equations [21]

a= Cl(kAb — kcc), b = b(kBC— kAa), ¢ = C(kca— ka),

2
where, here and henceforth, the dot denotes the time deriva-
tive. Here the equilibrium points are the absorbing steady
states (a, b, ¢) = {(1, 0, 0), (0, 1,0), (0,0, 1)} and the coex-

istence stationary point
s* = (a*,b*, c*) = (ka + ks + ko) ' (kp. ke ka).  (3)

The absorbing steady states correspond to each species pre-
vailing in turn and are all saddles (unstable), whereas s* is a
marginally stable nonlinear center. In fact, Eqs. (2) admit the

(c) (d)

FIG. 1. (a)~(c) Dynamics in the the ternary simplex (phase
space) for the ZRPS model with exponential WTD in (a). In (b) and
(c) the last two reactions of (1) have an exponential WTD, while the
first reaction has a power-law WTD (8) with (ks, @s) = (0.8, 2.5)
in (b), and a gamma WTD (16) with (ks, @a) = (0.8, 0.8) in (c).
Furthermore, in (a)-(c) kg = k¢ =1, and N = 100. Gray dotted
lines: stochastic trajectories (single realization, clockwise dynamics)
represent (n4, ng, nc)/N, with initial conditions (1/3, 1/3, 1/3). Red
thick lines: deterministic outermost orbits; see Appendix C. Each
corner corresponds to the fixation of the labeled species. (d) RGB
diagram used to color code the fixation heatmaps, where the letters A
(red), B (green), and C (blue) denote the winning species associated
with each color; see text.

nontrivial constant of motion [21]
R(t) = d®brecks. )

With the conservation of R, the oscillatory dynamics gov-
erned by (2) are characterized by neutrally stable closed
orbits, set by R(r) = R(0), surrounding s* in the ternary
phase space simplex; see Fig. 1(a) and Appendix A. One of
the aspects of this study is to analyze the robustness of the
dynamics predicted by (2) when memory effects modify the
form of these rate equations; see below.

In finite populations, with N < oo, the zZRPS dynamics
are generally modeled as a Markov process with absorbing
states [6,8,41,53-55]. In the presence of demographic fluc-
tuations, stemming from randomly occurring birth and death
events (see Appendix B), R(¢) is no longer conserved. Here
the stochastic trajectories in the phase space follow the MF
orbits for a transient and perform random walks between
them, before hitting a boundary and then a corner of the
ternary simplex (phase space); see Fig. 1(a). This results in the
extinction of two species and fixation of the third [6,12,14,15].
The ensuing fixation/survival behavior depends crucially on
the fluctuations in the number of individuals of each species
that scales as \/N (their fraction scales as 1 /\/ﬁ). In this
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context, there has been a great interest in analyzing the in-
fluence of N on the species survival/fixation scenarios; see,
e.g., Refs. [1,2,15-17,40]. A central question concerns the
survival or, equivalently, fixation probability ¢; of species
i € {A, B, C}, defined as

¢; = lim Prob{m;(r) = NIni(0)} ~ lim Prob{n(t) = N}.

In large populations, N > 1, ¢; for the zRPS model with
Markovian dynamics are independent of the initial con-
ditions (except when initially one or more species are
absent, or if the system starts very close to an absorbing
boundary) [2,12,15,16,40] and satisfy the LOW. Thus, since
throughout this paper we assume N > 1, without loss of gen-
erality, unless specified otherwise, we consider an equal initial
number of individuals of each species, n;(0) = N/3. We have
also numerically confirmed that ¢4, ¢, and ¢¢ are essentially
independent of the initial condition when N > 1.

Throughout this paper, we focus on studying the influ-
ence of nonexponential WTD on ¢; in large populations, and
deviations from the survival/fixation scenarios arising under
Markovian dynamics that are briefly summarized below.

The mean time to extinction (MTE) 7., the average time
for two species to go extinct (with fixation of the remaining
one), is also a relevant quantity that depends on N. For the
zRPS model with Markovian dynamics, the MTE has been
shown to scale linearly with N [6,12,16]: fexe ~ N. This is
because extinction/fixation is reached after O(N?) reactions
(random-walk steps in parameter space), each occurring on a
timescale O(1/N). For the zZRPS model with nonexponential
WTD, we still expect f.x; ~ N whenever the underlying MF
dynamics are characterized by closed orbits; see below and
Figs. 1(b) and 1(c). Yet, a systematic study of the MTE for
non-Markovian dynamics will be done elsewhere.

B. The law of the weakest under Markovian dynamics

As aforementioned, when reactions (1) have exponential
WTDs (Markovian dynamics), the fixation probabilities of
the zZRPS games satisfy the LOW [1,2,12,15,16,40]: for suf-
ficiently large N, typically N 2 100, the species i € {A, B, C}
with the lowest rate k; € {ka, kg, kc} is the most likely to
fixate the population [2,12,40]:

(]5,‘ > (]5]' lfk, < kj fori # ] S {A,B, C} (5)

The LOW thus identifies the species i with the lowest
ki, dubbed the “weakest species,” as the most likely to
fixate/survive, with a probability ¢; <1 and 0 < ¢; < ¢;,
independent of the initial condition. Moreover, in very large
populations the LOW becomes asymptotically a zero-one
law [2,40]: it predicts that the weakest species has a proba-
bility one to survive while the others go extinct. Hence, for
very large N, we have

¢m_) 1v¢nv¢l_>0

for (m, n, [) being all possible permutations of (A, B, C). If
two species have the same interaction rate that is less than the
other species’ rate, the LOW predicts that the latter is most
likely to go extinct, with a probability approaching one when
N > 1, while the former have the same probability (approach-
ing 1/2 when N > 1) to fixate. The LOW thus predicts the

if Ky < ks ki (©6)

regions of the parameter space in which each species is most
likely to prevail [40]. For Markovian dynamics, according to
Egs. (5) and (6), the borders between these phases are given
by simple linear relationships between the k/s.

Insight into the LOW can be gained by considering the
effect of demographic fluctuations on the closed orbits of
the MF dynamics (2). When the stochastic trajectories in
the phase space reach the outermost orbit defined by R(¢) =
1/N [15,40], chance fluctuations cause the extinction of two
species and fixation of the remaining one. From the coexis-
tence equilibrium s* and expression (4) of R, it can be argued
that the outermost orbit is closest to the edge leading to the
fixation of the weakest species, yielding the LOW [40].

It is worth noting that a different scenario emerges in the
Markovian zRPS model in small populations (N < 20): ¢/s
satisfy the so-called “law of stay out” [40], where ¢4, ¢p,
and ¢¢ depend on the initial condition [15,16,40,56]. Yet,
here we consider large enough systems (N > 10?) to disregard
possible effects of the law of stay out.

C. RPS under exponential WTD

The LOW of the zRPS model has been amply studied
under Markov dynamics. Here the rates k; of reactions (1) are
directly related to the mean of the exponential WTD, ¥ (t;),
between two reactions [41], where t; is the time between two
successive events in which the predating species i € {A, B, C}
kills and replaces a prey.

Generally, in a continuous-time Markov process, waiting
times are distributed according to a one-parameter exponential
function that can be written as

Yex (T) = )‘e_krv (t) = /Oo TYex(T)dT = )L_l’ @)
0

with the single parameter A coinciding with the inverse of (7},
the mean time separating two successive events (reactions).
In the zZRPS model under Markov dynamics one has Ay =
Nkaab, Ag = Nkgbc, and Ac = Nkcac, for the reactions in
Eq. (1). For ¥ (1), the variance, coefficient of variation (CV,
ratio of the standard deviation to the mean), and median are,
respectively, var(t) = A72,CV(r) = l,and 7 = In2/A.
Here we are interested in how the LOW is affected by
WTDs that are not exponential, i.e., when the resulting zZRPS
dynamics are non-Markovian and include long-term mem-
ory. For simplicity our analytical derivation focuses on the
case where the second and third reactions B+ C — B+ B
and C + A — C + C are Markovian, with exponential WTDs,
Yi(t) = Aje M7 for i = B, C, whereas the first reaction A +
B — A+ A is non-Markovian and has a nonexponential
WTD, denoted by ¥A(7). We consider two representative
choices of a power-law and gamma WTDs [47] with a fi-
nite mean. The former allows us to study the influence of
WTD with “heavy tails,” commonly observed in ecology and
biology [42,44-46,48,50-52], and the latter allows us to in-
vestigate the role of the WTD shape (skewness, median) on
non-Markovian dynamics. Notably, we focus on the regime
where the CV of the WTD is larger than that of an exponential,
i.e., CV(1r) > 1, where large deviations from the LOW are
expected. The non-Markovian RPS processes considered in
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this work are simulated following the method described in
Appendix C.

II. RESULTS
A. RPS survival behavior with power-law WTD

Here we assume that the interevent time 7 of the reaction
A+ B — A + A s distributed according to the two-parameter
(A, ap) power-law WTD:

oA

=Ay———,
Ya(ta) = Aa (A Anco

ap > 1, A >0, (8)

whose mean, variance, and median are, respectively,

() = ar(ey = oAl
A __4AA(aA —-1)’ A -_-(aA _'2)’
2l 1
fA:A—A’ 9

while CVa = /var(ta)/(ta) = ~/a@a/(@a —2). While the
variance and CV  are finite when oy > 2, one can still simu-
late the dynamics when oy < 2; see below.

The natural choice to directly compare the dynamics with a
nonexponential WTD and its Markovian counterpart (with ex-
ponential WTDs) is to require the WTD’s mean (7 ) to match
the mean waiting time under Markovian dynamics )\;1 [57],
where Ay = Nkaab. This yields

Ax = Aa/(aa = 1). (10)

Henceforth, we assume that (10) holds focusing on the s > 1
regime (finite mean), and discuss our results chiefly in terms
of the parameters ka and o4.

Notably, under Eq. (10), while the mean interevent time of
the reaction A + B — A + A is the same as in the Markovian
(exponential) case, the variance of 74 with the power-law
WTD is larger for any as > 1 [for 1 < @p < 2 the variance
and CV, of (8) diverge]; see Eq. (9). In fact, we notice that
for the WTD (8), CVa — 1 (as for an exponential WTD) as
ap — 00, and CV, — oo when ap — 2. We thus expect the
main differences from the exponentially distributed case to
arise when oy = 1, whereas we recover the LOW scenarios
when a4 — 0.

Importantly, as shown below, for a zZRPS model with a
heavy-tailed WTD the survival/fixation behavior is not fully
captured by the LOW, as it cannot be solely inferred from
the mean interevent times of the reactions (1). Intuitively, this
stems from the fact that the mean time for a reaction to occur,
related to the reaction rate, is not necessarily a good measure
for typical events. In fact, while the mean time may be large,
corresponding to a small reaction rate, the fypical interevent
times can actually be short; see Fig. 2 for an illustration with
a gamma WTD [see Eq. (16)] for the reactionA +B — A+ A
(with the others being Markovian). In this case the typical
reaction rate is larger than its mean and the LOW prediction
does not generally capture the survival/fixation scenario: i.e.,
even if k4 < kg, kc, A may not be the most likely to survive.
Notably, while this behavior can be expected for monotone-
decreasing WTDs (e.g., power-law or gamma WTD with o <
1; see below), it is not intuitively clear how the LOW changes
for nonmonotone WTDs.

10?

10! \E\

100.

—— gamma WTD
—— exponential WTD

~ -1 |
510
10—2 4

10—3.

1074
10-3

101 10° 101
T

1072

FIG. 2. An illustration of a gamma distribution (blue line) for
ap = 0.1 and Ap = 0.25, such that the mean (black triangle) equals
0.4. The red line depicts an exponential distribution with the same
mean. In contrast, the medians (green squares) differ significantly:
0.277 (exponential WTD) and 0.0024 (gamma WTD).

B. Generalized rate equations under power-law WTD

We now consider explicitly the case where the reaction
A+ B — A+ A has an interevent time distribution, given
by the power-law WTD (8), with the other two reactions
of (1) having exponential WTDs. Analytical progress can
be made using the formalism of continuous-time random
walks [58,59], which leads to replace Egs. (2) by the following
generalized MF rate equations:

a=abky®(a,b,c)—ackc,
b=bcks —abka®(a, b, c), (11)
¢c=ackc—bckg,

where ©(a, b, ¢) = Opp(a, b, ¢) is the memory kernel in the
power-law case (see Appendix B):

OpL(a, b, ¢) = x{[1 — “* VX apEq, 1l(@a — D117 = 1}

(12)
Here x = c(bkg + akc)/(abka), E,(z) = floo e Tt "dt is
the exponential integral function, and we have set Ax =
Aa/(a — 1) with Ay = Nkaab. Thus, the mean interevent time
of (8) equals that of an exponential WTD.

In fact, the generalized rate equations (11) can be used
to find the coexistence equilibrium of the zZRPS model with
different nonexponential WTDs (see also the next section) and
study the deviations that they cause to (3). When Egs. (11)
lead to closed orbits in the phase space, we can proceed as
under Markovian dynamics, and infer from the location of the
coexistence equilibrium and outermost orbit which species is
the most likely to fixate/survive; see Figs. 1(b) and 1(c) and
below.

While rate equations (11) with (12) cannot be solved
analytically, a numerical solution for its coexistence station-
ary state (a*, b*, c*), with Ao given by Eq. (10), is shown
in Figs. 3(a) and 3(b). Figure 3(a) shows (a*, b*, c*) ver-
sus aa, when ky = kg = kc = 1 and the power-law WTD
[Eq. (8)] has the same average (ta) = 1/Aa as under Marko-
vian dynamics. As aa increases, we recover the well-known
Markovian result, with a* = b* = ¢* = 1/3 forasy — o0 [see
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FIG. 3. Mean-field steady-state concentrations of A, B, and C
versus a;l and a (a, ¢) and k4 (b, d). In (a)—(b) and (c)—(d) the first
reaction of (1) has a power-law and gamma WTD, respectively, while
the second and third reactions have exponential WTDs. Markers
are mean-field values (see legend) as obtained by averaging over
stochastic simulations (see details in Appendix C). In all panels
dashed lines show the analytical results: Eq. (14) in (a) and (b) and
Eq. (20) in (c) and (d). The solid lines in (a) and (b) show the exact
expression from numerically solving Egs. (11) for a = b=¢=0.
Parameters are ka = kg = kc = 1 (a), ap =3 and kg = kc =1 (b),
ka =kg =kc =1(c),and ey = 0.4 and kg = kc =1 (d).

Eq. (3)], whereas a* = b* < ¢* when ay is finite. Figure 3(b)
shows the dependence of the coexistence state on ka for fixed
OA.

The limit ¢p>>1 is particularly interesting as it is amenable
to further analytical progress, and we aim at deriving the
first subleading correction to (3) as a function of a;l < 1.
To do so, we first approximate the exponential integral func-
tion E,,(z) in the limit of m, z > 1, which yields E,(z) =
floo e~ ™mde ~ e7*/(m + z) [60]. Using this approximation
and the definition of x [below Eq. (12)], in the limit of p > 1
the memory kernel [Eq. (12)] becomes

OpL(a, b, ¢) = apx[l+ (@a — Dx]1™", (13)

where x is a function of a, b, and ¢, given below Eq. (12).
This result is formally valid for oy > 1, but remains rather
accurate also for ap = 2; see Figs. 3(a) and 3(b). As can be
seen, at wy — 00 we recover the well-known form of ® = 1,
such that the rate equations (2) of an exponential WTD are
recovered, yielding the coexistence fixed point (3). However,
at finite oy, we find a nontrivial correction stemming from the
power-law WTD of 74 and non-Markovian nature of dynam-
ics; see Figs. 3(a) and 3(b).

Focusing on aa > 1, here we analyze the interesting case
where the predator-prey reaction rates obey the ratio ks : kg :
kce=k:1:1, eg., kg =kc =1, ks = k. (The coexistence
equilibrium point for arbitrary ka, kg, and k¢ is determined in
in Appendix D.) Using Eq. (13), the coexistence equilibrium
in this case reads

_ 2(ea = 1), 2(aa = 1), k(2aa — D)}

{a*,b*,c*}
4(0[A — 1) +k(20lA — 1)

(14)

This shows that a power-law WTD for to generally changes
the long-time zRPS dynamics. In particular, the tie pre-
dicted by Eq. (3) when k =1 is broken (even at large o),
with now ¢* = (1/3){1 — 2/[3Qas — D]}~ and a* = b* =
(1/3){1+1/[6(xa — D1} at ap > 1, implying ¢* > a*, b*
as found in Figs. 3(a) and 3(b). Notably, when o4 is not too
close to 1, we have numerically verified that this coexistence
equilibrium remains a nonlinear center, and species extinc-
tion/fixation thus occurs from its outermost orbit, according
to the scenario outlined in the previous section; see also Ap-
pendix C. In Figs. 3(a) and 3(b) the numerical solution of
the stationary (11) agrees well with the analytical approxima-
tion (14) for a*, b*, ¢* and simulation results averaged over
many stochastic realizations; see also Fig. 7 in Appendix C. In
particular, Eq. (14) is quite accurate already when oy = 2.

From Eq. (14) we can derive a useful expression for
the critical value k* = k(as) for which a*(k*) = b*(k*) =
c¢*(k*) = 1/3. This can be found by demanding that a* =
b* = ¢* in Eq. (14), which for ay > 1 yields

K (aa) >~ 1 — Qaa — 17 (15)

This critical value separates the k — oza parameter space into
two regions: ¢* > a* = b* where k > k* and a* = b* > ¢*
where k < k*. For sufficiently large aa this informs on the
location of the outermost orbit of (11) (see also Appendices A
and C), implying that species A is the most likely to go
extinct when k > k*, while species A is the most likely to
fixate the population when k < k*. This is discussed below
and remarkably demonstrated in Fig. 4.

C. RPS survival behavior with gamma WTD

We now consider a different non-Markovian scenario
where the distribution of interevent times ty of A+ B —
A + A is a two-parameter (Aa, oa) gamma distribution:

oA

A
Ya(ta) = F(A ) Tl Mt with
aa

oA, AA >0 (16)

such that ¥, is normalizable, with mean and variance

(ta) = aa/Aa,  var(za) = aa/A%, (17)
and CVa(7) = a:/ 2. The median does not admit a closed
form but can be computed numerically for any (A, aa). To
directly compare the dynamics under gamma and exponential
WTDs, we demand that the mean of the gamma WTD be
(ta) = 1/Aa = 1/(Nkaab). This yields

AA =)\.A05A. (18)

For the gamma WTD, CV, — 1 when oy — 1 whereas
CVa — 0 when ap — o0, and CV,y — o0 when ay — 0.
We thus expect to essentially recover the LOW scenarios
when oy — 1, and to find strong deviations from it when
aa — 0. In the following, we focus on the regime of ap < 1
for which CV s > 1. While the theory presented below is also
applicable for s > 1, a detailed treatment requires specific
computational techniques that will be presented elsewhere
(see Appendix C).
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FIG. 4. RGB fixation heatmaps for power-law WTD (8) (a—c) and gamma WTD (16) (d—f) versus as and ka, for N = 999 (a—c) and
N =300 (d—f) and kg = kc = 1. Red, green, and blue denote the fixation of A, B, and C, while cyan denotes the fixation of B and C with
(approximately) equal probability; see diagram of Fig. 1(d). In (a) and (d) the WTDs for the second and third reactions of (1) are exponential.
In (b) and (c) the second and third reactions of (1) have power-law WTDs with ag = ¢ = 10 (b) and o = ac = 1.5 (¢). In (e) and (f) the
second and third reactions of (1) have gamma WTDs with ag = ¢ = 0.9 (e) and ag = a¢c = 0.5 (f). In (a)-(b) and (d)—(e) we compare our
results to the theoretical curve for k*(«) (dashed lines): Eq. (15) for (a) and (b) and Eq. (21) for (d) and (e); the dotted lines denote ky = 1.

D. Generalized rate equations under gamma WTD

For a gamma WTD (16) of the first reaction of (1), pro-
ceeding as above, the generalized MF rate equations are given
by (11), with the memory kernel (see Appendix B)

Oc(a, b, c) = x[(1 + x/aa)™

where again x = c(bkg + akc)/(abky ), and we have assumed
Aa = Aaaa. When ap = 1, we recover Og = 1, yielding the
MF Markovian dynamics.

Using memory kernel (19), we can solve for the
steady state of Eqs. (11) exactly. Setting a=b=¢=
0 in (11), we find a relation for the coexistence equi-
librium: a*b*kp®g(a*, b*, c*) = kca*c* = kgb*c*. Here, for
concreteness, we focus again on ka kg :kc =k :1:1 (see
Appendix D for the general case). Together with the relations
c¢*=1—a"—b* and memory kernel (19), the coexistence
equilibrium here becomes

-1, (19)

{a* b* C*} — {2’ 2’ kaA(Sl/aA - 1)}
. 4+ kan(3lon — 1)

(20)

Thus, a* and b* are a decreasing function of k at fixed .
In addition, for k = 1, we have a* = b* > 1/3 and ¢* < 1/3
when ap > 1, while ¢* = b* < 1/3 and ¢* > 1/3 when ap >
1; see Figs. 3(c) and 3(d). At wp < 1, the fixed point becomes
a* = b* ~ (2/kax)3 V% and ¢* ~ 1 — (4/kap)3~1/; de.,
a* and b* are exponentially small, while ¢* approaches 1
exponentially.

A simple expression for the critical value k* = k(ap ) for
which a*(k*) = b*(k*) = ¢*(k*) = 1/3 is easily found by
solving axk*(31/% — 1) = 2, yielding

k*(oea) = 2[aa (3 — 1), 1)

This critical value separates the k — ap parameter space into
two regions, one in which a* = b* > ¢* (where k < k*) and
another in which a* = b* < ¢* (where k > k*); see below.

E. Fixation heatmaps for the power-law WTD

A systematic way to visualize the influence of a heavy-
tailed WTD on the zRPS fixation behavior is by means of
fixation heatmaps shown in Fig. 4. These are RGB coded
according to the diagram of Fig. 1(d) and report the triplet
(da, ¢B, ¢c) versus ap and ka, the mean rate (per A-B pair)
of the first reaction of (1). According to Fig. 1(d), the phase
dominated by species A, B, and C appears in red, green, and
blue, respectively. In the color coding of Fig. 1(d), different
levels of yellow, cyan, and magenta correspond, respectively,
to a finite fixation probability of A and B, B and C, and C and
A, while white encodes the same fixation probability for each
species (¢; ~ 1/3).

In Fig. 4(a) we show results where the first reaction
has power-law WTD (8) and the other reactions have ex-
ponential WTDs, with A, given by (10), and Ap = Nkaab,
A = Nkgbc and Ac = Nkcac. In Figs. 4(b) and 4(c) we re-
port results obtained for the dynamics where all reactions
are drawn from a power-law WTD, with ag = a¢c = 10 in
(b), and agp = a¢c = 1.5 in (c). Here Ag = Ag/(ag — 1) and
Ac = Ac/(ac — 1); see Eq. (10). As a reference, it is use-
ful to consider the fixation heatmap predicted by the LOW
for Markovian dynamics with exponential WTD: when kg =
kc = 1, A dominates (red phase) for k. < 1 and B and C dom-
inate (cyan phase) for ks > 1, separated by ky = 1 (dotted
lines in Fig. 4).

The heatmap diagram of Fig. 4(a) is mostly characterized
by a red phase dominated by A (¢ = 1, ¢p & ¢c = 0), and
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a cyan phase where B and C are the prevailing species (¢a ~
0, ¢ =~ ¢¢c ~ 1/2). The border between these phases is an in-
creasing function of @p. When a5 approaches 1, the dynamics
of (11) are not necessarily characterized by closed orbits, and
a third phase, not predicted by the LOW, emerges in blue: it
corresponds to the dominance of C (¢pa ~ ¢p = 0, ¢pc = 1),
with breaking of the B/C symmetry. Here, as ap — 1, the
typical interevent time (median) becomes much smaller than
the mean [see Eq. (9)]. As a result, the typical production rate
of A individuals is very high at the expense of B individuals.
Thus, the population of C can grow almost without opposition
from its predator, species B, that is rapidly consumed by A,
and hence C eventually fixates the entire population when
aa ~ 1. Notably, Eqgs. (11) support this analysis: as aa — 1,
memory kernel (12) becomes very large, ®p_ > 1, which
yields ¢* — 1, and a*, b* — 0. In contrast, when os > 1,
we recover the LOW predictions, and the separation between
the red and cyan phases occurs around k* (dashed line) given
by (15). Remarkably, the prediction of k* as a separating
curve turns out to be valid also at ap = 1. Here, as ap ap-
proaches 1 and the median increasingly deviates from the
mean, a striking departure from the LOW is observed; i.e.,
it is necessary to significantly lower ks (much below 1) for
A to win. The diagram of Fig. 4(b) is quantitatively similar to
that of Fig. 4(a). This is because for large values of ag, oc, the
power-law WTDs for the corresponding reactions are close to
the exponential WTDs considered in Fig. 4(a).

The heatmap of Fig. 4(c) is characterized by the same
phases as in Figs. 4(a) and 4(b), but with some major quan-
titative differences. In particular, we notice that the separation
between the cyan and red phases in Fig. 4(c) occurs for values
of kx much higher than 1 (predicted by the LOW). This stems
from the fact that the typical rates of the last two predator-prey
reactions of (1) are higher than their corresponding means,
giving rise to the fixation of A even for k4 > 1.

F. Fixation heatmaps for the gamma WTD

In Figs. 4(d)—4(f) we report the fixation heatmaps for
the zZRPS dynamics with gamma WTD for the reaction A +
B — A+ A as a function of kn and «s. Here, the WTD is
given by (16) and the parameters (A, «) satisfy Eq. (18). In
Fig. 4(d), the WTDs of the other two reactions are exponen-
tial. As expected, the survival/fixation behavior reproduces
the LOW scenario at ap = 1: with an A-dominated (red)
phase where kp < 1 and a (cyan) phase dominated by B/C
where ks > 1. In Figs. 4(d) and 4(e) the white dotted line
separates the two phases predicted by the LOW. This has
to be contrasted with the critical value (21), shown as the
dashed white curve, which separates the phases where A (red)
dominates and where it does not dominate (blue/cyan region).
In Figs. 4(d) and 4(e), the non-Markovian dynamics results in
the fixation of A where ka(aa) < kj (ca) which is the region
of the phase space where ¢* < 1/3; see Eq. (20). In this red
region of the parameter space the coexistence equilibrium is
thus closest to the A-B edge of Fig. 1, and species A is hence
the most likely to fixate the population. The opposite occurs
when ka(aa) > ki (a): species B or C prevail and A goes
extinct. While the zRPS with gamma WTD reproduces the
LOW predictions for aa close to 1, with B and C most likely

to prevail with the same probability where k4 > 1, the B/C
symmetry is broken when a, is distinctly below 1, and in this
case C is the most likely to prevail as indicated by the blue
phase in Figs. 4(d)—4(f).

Notably, the striking symmetry-breaking effect in the case
of the gamma WTD is not predicted by the LOW and is not
captured by the MF approximation. We note that a similar,
but less striking, effect is also observed with power-law WTD
in the narrow region where o — 1; see Figs. 4(a)—4(c). We
conjecture that the stark contrast between the power-law and
gamma WTD results stem from the ratio of the median to
the mean of the WTD. Indeed, for the gamma WTD as ap
decreases below 1, the ratio between the median and mean
goes to zero much more rapidly than in the power-law case
(as s goes to 1); see, e.g., Fig. 2. Hence, the extreme scenario
of almost complete depletion of B and takeover by C species
occurs much earlier with the gamma WTD.

We notice that the nontrivial curve of ky = k* given by (21)
determines the separation between the phases where species A
dominates (red) and where it loses (blue/cyan) with excellent
accuracy. While for practical reasons, the numerical simu-
lations are limited to ap < 1 (see Appendix C), we expect
that the phases in which A is dominant and where it loses
is determined by k* also for ap > 1. In fact, when oy > 1,
the gamma WTD is unimodal, with the mean and median be-
ing increasingly closer as aa increases, and coinciding when
ap — oo. Thus, when ap > 1, A can prevail also for k4 > 1,
assuming that the fixation dynamics are qualitatively similar
to those in the oy < 1 regime. In particular, at ¢p — 00, A
prevails as long as ks < 2/1n3 =~ 1.82; see Eq. (20).

In Figs. 4(e) and 4(f), the last two reactions of (1) occur
with interevent times that are also distributed according to
a gamma WTD [Eq. (16)] with the equivalent of (18) for
Ap and Ac. In Fig. 4(e) we take ap = ac = 0.9 and the
resulting heatmap is very similar to that in Fig. 4(d). Yet in
Fig. 4(f) ag = ac = 0.5 and the separating interface markedly
changes. Even when ks = kg = kc = 1, the values of o and
ac, hence the shape of the WTDs, change the range of ku
for which the LOW predictions are reproduced. In partic-
ular, when ag = ac = 0.5, species A dominates for higher
values of ka than under Markovian dynamics, and thus, the
red region in Fig. 4(f) is larger than in Figs. 4(d) and 4(e)
[see also Figs. 4(a)—4(c)]. We also notice that for k4 > 1 and
o > op, oc a green B-dominated phase appears in Fig. 4(f).
Notably, both cases of symmetry breaking—dominance of C
for ap < ap, ac, and B for ap > ap, ac—are not captured
by MF theory. Thus, the observed symmetry breaking and
dominance of either of the species may strongly depend on
the full set of WTDs of all reactions rather than on a simple
hierarchy.

G. Comparison of power-law and gamma WTDs

To further compare the effect of the power-law and gamma
WTDs on the RPS survival scenarios, we plot in Fig. 5 the
fixation maps under power-law and gamma WTDs versus the
average waiting time (t5) and coefficient of variation CV.
This allows us to directly compare the effect of these different
WTDs. As expected, in both panels for CV, = 1 we fully
reproduce the predictions of the LOW for exponential WTDs:
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FIG. 5. RGB fixation heatmaps (based on the diagram of Fig. 1)
for power-law (a) and gamma (b) WTDs of the first reaction of (1):
mean interevent time (t,) versus coefficient of variation CV . Here
N =999 and kg = kc = 1.

species A is the most likely to fixate the population (red phase)
when (ta) > 1 (ka < 1), whereas species B and C are the
most likely to survive (same probability) and A goes extinct
(cyan phase) when (tp) < 1 (kg > 1). When CV, > 1, the
survival scenarios drastically deviate from the LOW predic-
tions for the two cases considered here. When the first reaction
has a power-law WTD, the white interface (equal fixation
probability for all species) is a concave function which grad-
ually changes as CV, grows; see Fig. 5(a). Here, as CVu
is increased, larger (7o) (smaller ka) is required for A to
win, with saturation of (75) when CV, > 1. A much more
pronounced effect is observed in the case of the gamma WTD
with o < 1 shown in Fig. 5(b). Here the white interface is
a convex function and is much steeper than in the power-law
case, with no observable saturation. Remarkably, when CV
grows by a factor of 2, in order for A to still win, (ta) (ka)
needs to increase (decrease) by a factor of >10; see Fig. 5(b).
A similar increase in CV, in the power-law case leads to an
increase in (7a) of only ~40%; see Fig. 5(a).

Moreover, as also observed in Fig. 4, in the power-law
case the white interface separates fixation of A (red regime)
and extinction of A accompanied by equal fixation probability
of B and C (cyan regime). In contrast, in the case of the
gamma WTD with aa < 1, the interface separates fixation
of A (red regime) and C (blue regime), and symmetry be-
tween B and C is broken; see Fig. 5. This is because for the
gamma WTD, increasing CV 4 has a much stronger effect on
decreasing the typical interevent time than in the power-law
case.

III. DISCUSSION

Evidence is mounting that waiting times between succes-
sive events play an important role in shaping evolutionary
processes across biology and ecology. For instance, optimal
foraging strategies have been linked to heavy-tailed waiting
time distributions (WTDs) [42-46]. Moreover, with the devel-
opment of microfluidic devices and single-cell experiments,
the role of the reproduction time distribution on microbial
growth has received significant attention [47,61,62]. Here we
studied the influence of WTDs on the fate of the paradigmatic
zero-sum rock-paper-scissors (zRPS) game between three
species in cyclic competition, which is broadly used in bi-
ology and ecology [3,6-8,12,14—-17,19-24,28,55,63,64]. The
zRPS dynamics are classically modeled in terms of Markov

processes, with exponential WTDs, and their final state satis-
fies the simple “law of the weakest” (LOW) [40] stating that
the species that is most likely to fixate is the one with the
lowest predation-reproduction (predator-prey) rate. Here we
have shown that the LOW predictions are drastically altered in
the non-Markovian zZRPS model with nonexponential WTDs.

By combining analytical arguments and extensive stochas-
tic simulations, we investigated the fixation probability of
each species when at least one of the zRPS reactions has
a nonexponential WTD, and we have focused on the two-
parameter power-law and gamma WTDs. The former is
related to anomalous diffusion [43], abundantly found in an-
imal behavior, while the latter is often used to model the
reproduction of microbial cells [47,61]. Keeping the same
mean for all WTDs, we found that the fate of the zZRPS dynam-
ics is drastically affected by the features of the nonexponential
WTD: the conditions under which one species is most likely to
fixate depend nontrivially on the WTD parameters in addition
to the reaction rates. We visualized our findings in fixation
heatmap diagrams identifying the parameter regions domi-
nated by each species. Depending on the WTD parameters,
the phase in which one species dominates over the others can
be enhanced or reduced with respect to the predictions of the
LOW; see Figs. 4 and 5.

The major deviations from the LOW arise when the dif-
ference between the “typical” and “mean” interevent times
(difference between the median and mean of the WTD) in-
creases. By focusing on positively skewed distributions (like
the exponential WTD), we showed that the region of domi-
nance of the species whose reproduction is governed by the
nonexponential WTD strongly depends on the WTD coef-
ficient of variation (CV). The region of dominance of each
species thus shrinks or grows with respect to the LOW pre-
dictions, depending on whether CV > 1 or CV < 1; e.g., in
Fig. 5, the phase dominated by species A shrinks as CV > 1.
In addition, the symmetry between the other two species,
a signature of exponential WTDs, is expected to be broken
when the ratio between the median and mean vanishes. Our
analytical arguments are based on the analysis of generalized
MF rate equations. These involve memory kernels derived
from the underlying non-Markovian master equations. While
it would be desirable to establish a physical interpretation of
the memory kernels, this is beyond the scope of this study.
Yet, our work is readily applicable for a wide class of nonex-
ponential WTDs, including scenarios in which species switch
between multiple internal behavioral states, each having a
distinct WTD, or empirical distributions which are directly
inferred from data.

We believe that our analysis of the influence of nonex-
ponential WTDs on the fate of the zZRPS model can help
shed further light on non-Markovian evolutionary dynamics
and can help motivate further studies. Besides a physical
derivation of the memory kernels, understanding how the
mean fixation time of each species is affected by general
nonexponential WTDs is an open question. Moreover, as a
number of microbial experiments have been modeled using
RPS dynamics [3,17], we expect that the effects of interevent
time distributions on species in cyclic competition can be
tested in laboratory-controlled experiments by employing our
theoretical approach.
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APPENDIX A: STABILITY ANALYSIS IN THE
NON-MARKOVIAN CASE

Here we briefly study the linear stability of the coexis-
tence equilibrium (a*, b*, ¢*) in the case of nonexponential
WTD for the first reaction. As stated in the main text, with
exponential WTDs, the MF rate equations (2) admit the con-
stant of motion (4). In the phase space, the MF dynamics
are therefore characterized by closed orbits surrounding (3)
that is a (nonlinear) center; see Fig. 1(a). In fact, the Ja-
cobian of (2) evaluated at (3) has two conjugate purely
imaginary eigenvalues, denoted by {Bi, —fi} where § de-
pends on the k; values. In the case of kpa = kg = k¢ = 1,
B =—1/3.

Interestingly, when the first reaction of (1) has a power-law
WTD and aa > 1, the Jacobian of (11) evaluated at (D1)
also has a pair of conjugate purely imaginary eigenvalues of
the form {(8 + BpL/aa)i, —(B + BpL/aa)i}, where BpL de-
pends on k;. In the case of kx = kg = kc = 1, B is identical
to the exponential case, and Bpp, = —1/ (6\/5). Moreover,
the quantity (4) is conserved by (11) to leading order
in 1/ap: dR/dt = R(Opp — 1)ka(kgb — kca) = O(R/aa),
where we have used (13). This indicates that when oy > 1,
the phase space dynamics prescribed by (11) are charac-
terized by closed orbits surrounding the equilibrium (D1),
where kgb* — kca®™ = 0, for long transients; see Fig. 1(b).
This behavior is qualitatively similar to that predicted by (2).
However, the location of (a*, b*, ¢*) and the shape of the
orbits around it now depend on the nonexponential WTD
parameter «a, yielding deviations from the survival/fixation
scenarios predicted by the LOW; see main text. While this
analysis cannot be extended for arbitrary values of aa,
our extensive numerical simulations have confirmed that
(a*, b*, ¢*) is a nonlinear center for most values s > 1; see
Fig. 1(b).

A similar analysis can be done in the case of gamma WTD,
when oy is close to 1. Introducing € = ap — 1, for €] < 1,
the coexistence equilibrium (a*, b*, c*), given by (D2), is
again a center associated with two purely imaginary conju-
gate eigenvalues, {(8 + Bge)i, —(B + Bge)i}. For ky = kg =
kc =1, B is identical to the exponential case, and Bg =
(31n3 — 2)/(6+/3). In fact, the quantity (4) is again conserved
by the generalized rate equations (11) [with (19)] to lead-
ing order in € when o = 1: dR/dt = R(Og — 1)ka(kgb —
kca) = O(Re), where we have used (D3). This again indi-
cates that when |e€| < 1, the phase space dynamics prescribed
by (11) are characterized by closed orbits surrounding (D4);
see Fig. 1(c). Thus, the survival scenario can again be inferred
from the location of (a*, b*, c*).

Notably, in the regime of s = O(1) in the power-law case,
and |ap — 1| = O(1) in the gamma case, we cannot prove in

general that the dynamics include closed orbits. Nevertheless,
our extensive numerical simulations show that, as long as «
is not to close to 1 (in the power-law case) and to O (in the
gamma case), closed orbits around the equilibrium state are
still observed.

APPENDIX B: GENERALIZED RATE EQUATIONS

In this appendix, we outline the derivation of the gener-
alized rate equations (11) with the memory kernel (12) in
the case of a power-law WTD (8), and with the memory
kernel (19) in the case of a gamma WTD (16). In the follow-
ing, we respectively number the reactions A + B — A + B,
B+ C — B+BandC +A — C + C as the first, second, and
third reaction, and henceforth denote their WTDs by 1A (ta),
¥e(t), and Yc(tc).

We begin by writing the master equation for the probability
Py, g () to find na, ng, and nc individuals of type A, B,
and C, at time ¢. For Markovian dynamics, where all reactions
have exponential WTDs, one obtains

ka

Pn(l) - W(Er;\{;t:l - l)nA”BPn(t)
kg, _
+ N(EHB%;::—I - l)anCPn(t)
kc _
+ 7 Ll = DnancPa@), B

where N = na + ng + nc is the total (constant) population
size. Here we have defined a step operator for brevity of no-
tation, E,ﬁl'_’,f:f(kl, ko) = f(ki + j1, ko + j»), and denoted the
population sizes by a vector n = {na, ng, nc}. In the gen-
eral case of reactions with nonexponential WTDs, the master
equation becomes nonlocal in time; i.e., the current state
depends on the entire history of the process with prescribed
memory kernels that depend on the WTDs of the different
processes; see below. In this case, Eq. (B1) becomes

t
Pua(t) = ka(E, ;T — 1)/ Ma(n, t)Pa(t —t))dt'
' 0

ng,nc

t
+ks(E; N —1) / Mg, t')Py(t — 1')d1’
0

t
+kc(Ef N - 1)/ Mc(n, 1)Py(t — )dt'. (B2)
0
Here Ma(n,t), Mg(n,t), and Mc(n,t) are the (yet to be
found) memory kernels for the creation of A, B, and C, re-
spectively, and the constant N was absorbed in these kernels.
Following the derivation in [58,59,66] we find the memory
kernels by Laplace transforming Eq. (B2). We first define the
probability density for the first reaction to occur at time ¢

while the other two reactions do not occur until ¢:

¢A(t)=1ﬂA(l)/ 1//B(t)df/ Ye(rydr,  (B3)

where ®g(7) and ®¢(¢) are defined similarly. Note that, in
addition to their time dependence, ® 4, ®p, and $¢ may also
depend on na, ng, and nc. It can be shown that the memory
kernels in Laplace space satisfy [58,59,66]

Mx(s) = s®x(s)[1 — Da(s) — Pp(s) — Dc(s)]™!, (B4
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where X = {A, B, C}, &x denotes the Laplace transform of
Eq. (B3), and s is the Laplace variable.

We now explicitly compute the memory kernels in the
case of power-law WTD for the first reaction given by
Eq. (8) with Ay = Xa/(xa — 1), and exponential WTDs for
the second and third reactions, such that ¥g(7) = Age 87
and Yc(t) = Ace *¢*. Computing the Laplace transforms
of Eq. (B3), ®, plugging the result into Eq. (B4), putting
)»A = kAnAnB/N, )\B = kBl’lB}’lc/N and )\C = kCnAI’lc/N, and
taking the leading-order result with respect to N >> 1, one
obtains Mg(s) = Nkgb c and Mc(s) = Nkca c, where we have
used the notation for the population fractions a = na/N,
b=ng/N and ¢ =nc/N. In addition, we find Ma(s) =
Nkaab®py(a, b, c)+0(s), where Opp(a, b, c) is given by
Eq. (12). As all the memory kernels are constant in s in the
leading order, performing an inverse Laplace-transform yields
to leading order:

Ma(a,b,c,t) = NkaabOpp(a, b, c)5(t),

Mg(a, b, c,t) = Nkgbcd(t), Mc(a,b,c,t) = Nkcacé(t),
(B5)

where §(¢) is the Dirac delta function. Plugging these memory

kernels into master equation (B2), all the integrals over time

yield the integrands evaluated at time #, and one obtains

Pa(t) = 'jv—‘“(E*l*+1 — 1)nang Opr (n)Py (1)

na,np
kg

A B Ve
ke +1,—1
+ ﬁ(EnA,;zc — l)nAnan(t). (B6)

This equation coincides with master equation (B1) up to the
factor of ®p (n), which is the signature of the non-Markovian
nature of the first reaction. As a result, and using the definition
of the species averages

fia =Y naPa(t), g =Y ngPa(t). fic =Y ncPu(t).

(B7)
in Eq. (B6), we arrive at rate equations (11) fora = 71p /N, b=
ng/N and ¢ = fic /N, with Opy (a, b, c¢) given by Eq. (12). Note
that, in the MF limit, N — oo, the average species fractions
a, b, ¢ coincide with the fractions a = na /N, b = ng/N, and
¢ = nc/N, and, for brevity, the latter have been used in all the
MF equations in the main text [e.g., Egs. (2) and (11)].

Similarly, the memory kernel and rate equations for the
gamma WTD can be found via Eq. (16) for the first reaction

with Ap = Aaaa, and repeating the above steps.

APPENDIX C: COMPUTATIONAL METHODS

1. Simulations

Here we summarize the simulation methods we have used.
We start with a description of the original Gillespie algo-
rithm [67], followed by the Laplace Gillespie algorithm [68]
used to simulate nonexponential WTD.

a. Gillespie algorithm

The original Gillespie algorithm assumes N independent
Poisson processes with rates A; (1 < i < A) running in par-

allel. The combined effect of these Poisson processes results
in a superposed Poisson process with a total rate le\:/l Ai. The
algorithm steps are as follows:

(1) Time increment (At) calculation. The time to the next
event in the superposed Poisson process follows the exponen-
tial distribution:

N
o(At) = (Z xi) e~ (Tim 201,
i=1

Using the survival function, which is the probability that a
random variable exceeds a given value:

*© N
/ o(t)Hdt' = e~ (XLim)ar

At

(ChH

(623

we have At = —lnu/ vazl A; with u € [0, 1] uniformly cho-
sen.

(2) Event determination. Identify process i that generated
the event with probability: TT; = A;/ Zi\’: | A

(3) Process update. Advance time by Ar and repeat.

b. Laplace Gillespie algorithm

The Laplace Gillespie algorithm is designed for efficient
simulation of non-Markovian point processes by utilizing an
event-modulated Poisson process; see details in [68]. The key
steps are as follows:

(1) Initialize each of the N processes by drawing the
rate 5; (1 <i <N) according to its density function p;(s;),
defined in terms of the WTD vy (7):

oo
Y(t) = / p(s)se"ds. (C3)
0
Alternatively, integrating both sides one can write
W(r) = / Y(thdt = / p(s)e " ds. (C4)
T 0

This entails that p(s) is the inverse Laplace transform of
the survival probability W(1).

(2) Draw the time until next event At = —Inu/ Zj\il s,
with u € [0, 1] uniformly chosen.

(3) Select the process i that has generated the event with
probability: IT; = s;/ N, 5.

(4) Draw a new rate s; according to p;(s;). For any process
j (1 < j < N) whose interevent time statistics have changed
following the occurrence of the event in steps 2—3, update their
rates A ; according to modified p;(s;).

(5) Repeat steps 2—4 or exit (e.g., upon fixation).

For an exponential distribution (7), we have a Poisson
process with rate so; i.e., ¥ (1) = sge” 7 is trivially generated
by p(s) = §(s — so), where § is the Dirac delta function. For a
power-law distribution following Eq. (8), p(A) can be shown
to follow a gamma distribution [68] given by

Sutflefs/AA

Tny )

p(s) =

where I'(«) is the gamma function, « is the shape parameter,
and A, is the scale parameter. Similarly, for a gamma WTD
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(b)

FIG. 6. Dynamics in the ternary simplex for the model of
zRPS with the last two reactions of (1) having exponential WTDs
with kg = kc = 1, while the first reaction has a power-law WTD
with (ka, @a) = (1,2) in (a), and a gamma WTD with (k4, pa) =
(0.4,0.4) in (b). Gray dotted lines are stochastic trajectories
(na, ng, nc)/N, averaged over 10* realizations starting from the same
initial condition (clockwise dynamics), where trajectories are shown
for 0 < r < 100 (omitting initial transients). Red thick lines: numer-
ical solution of the deterministic rate equations. Corners correspond
to the fixation of the labeled species. Here the initial concentrations
of A and B are 1/6 while that of C is 2/3.

with o < 1, p(s) is given by

_ O, s < A As
PE) = V[P = a)s(s/An — 1], 5> An.
(Co)
Equations (C5) and (C6) are used here to simulate the model
with power-law and gamma WTD, respectively.

Importantly, for the gamma WTD p(s) can be used to
express the inverse Laplace transform of W(7) only for 0 <
a < 1 [68]. Thus, this algorithm cannot be used for gamma
WTD with @ > 1, a regime that will be considered elsewhere
with different computational techniques. It is worth noting
that, since here CV(7) = agl/ 2 it is precisely in the regime
where ap < 1 where the WTD is wider than an exponen-
tial interevent distribution, which is the main focus of this

study.

2. Numerical methods

Here we explain the analysis used to generate Figs. 1 and 3.
The deterministic orbits plotted in Fig. 1 (red solid lines)
are obtained by numerically solving rate equations (11) for
both power-law and gamma WTDs. In the exponential case
[Fig. 1(a)] we plot the outermost orbit defined by R(¢) =
1/N, where R is given by (4). For the nonexponential WTD
[Figs. 1(b)-1(c)], R(t) is not necessarily constant and the
outermost orbit may not admit a closed form expression. We
show the differences between the exponential and nonexpo-
nential cases by solving Eqs. (11) with an identical initial
condition R(t = 0) = 1/N, which resides on the outermost
orbit of the exponential case in Fig. 1(a). The conserved
quantity in this figure, R(t) = abc®® = 1/100, is no longer
conserved as can be seen from the clear differences between
the red solid lines in Figs. 1(a) and 1(b)-1(c).

In Fig. 3 we compare the theoretical fixed point to the
fixed points of the stochastic simulations. To obtain the latter
we performed 10* realizations with N = 103, for times ¢ =
10° « N, such that nearly no realization reaches fixation. The
steady-state concentrations of A, B, and C in the stochastic

dynamics are obtained by averaging each population over all
data points in all realizations. Notably, by averaging over all
realizations at constant time intervals it is also possible to
obtain the dynamic orbits from the stochastic simulations.
A typical example of the orbits surrounding the coexistence
equilibrium (a*, b*, ¢*) in the ternary simplex is reported in
Fig. 6 for the power-law and gamma WTDs with typical
parameters considered in this work. Here all realizations have
the same initial concentration of species. In this figure we find
good agreement between the averaged stochastic trajectories
and numerical solutions of the deterministic rate equation for
both classes of WTDs. Finally, in Fig. 7 we show simula-
tion results with a power-law WTD (8) of the concentrations
versus time. In Fig. 7(a) we show a single realization, while
in Figs. 7(b)-7(c) we show ensemble averages. As expected,
the relative fluctuations about the MF equilibrium point (11)
decrease as we increase the number of realizations over which
the concentrations are averaged.

APPENDIX D: EQUILIBRIUM FOR
NONEXPONENTIAL WTDS

Here we obtain the equilibrium point in the general case of
arbitrary ka, kg, and kc. Assuming a power-law WTD for the
first reaction of (1) and using memory kernel (13) valid for
aa > 1, the equilibrium of (11) reads

(@ b ) = {(a — Dkg, (@a — Dk, (@a — 1/2)ka}
T (aa — 1/2)ka + (aa — (kg + kc)

Stability analysis shows that this fixed point remains a nonlin-
ear center in the limit of oy > 1; see Appendix A.

In the case of the gamma WTD, one can also compute the
equilibrium point in the general case for any os. Together
with the relation ¢* =1 — a* — b*, we can solve the rate
equations [Eqs. (11)] for arbitrary s, finding

* 1k ok {2]{3, 2kC9 kAaA(31/aA _ 1)}
{Cl 5 b , C } = .
2(kg + kc) + kaaa(31/2a — 1)

The limit ap — 1 yields (a*, b*, ¢*) = (kg, kc, ka)/(ka +
kg + kc). In contrast, for ap > 1, a* >~
kg /lkg+kc+(ka/2)In3], b* =~ kc/(kg + kc + (ka/2)In 3),
and ¢* ~ (ka/2)In3/(kg + kc + (ka/2)In3), yielding
a*=>b*>c* when ks =kg=kc. Another important
limit is an — 0. To leading order in op K1, the
coexistence equilibrium becomes a* ~ 2kg /(kAocA)S’l/“A,
b* = (kc/kg)a*, and c* ~ 1 —2(kg + kc)/(kaoa) 371/,
Thus a* and b* are exponentially small, whereas c*
asymptotically approaches 1.

Finally, we consider more carefully the limit of ap — 1.
For this, we introduce € = oy — 1. Assuming that |¢| < 1, to
linear order in € the memory kernel [Eq. (19)] becomes

(D2)

Ogla,b,c) ~1—1[(3/2)In3 — 1]e. (D3)
Here the coexistence equilibrium, (D2), becomes
1
a4 = kB |:1+<3 H3_1) GkA :|’
kA+kB+kc 2 kA+kB+kC
k 3In3 kg + ki
o= A [1_< n _1) € (kg + kc) }’(m)
ka + kg + kc 2 ka + kg + kc
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FIG. 7. Shown are concentrations of A (blue), B (black), and C (red) versus time from stochastic simulations for the zZRPS model (1) with
the last two reactions of (1) having exponential WTDs with kg = k¢ = 1, while the first reaction has a power-law WTD with (k4, aa) = (1, 2).
The solid lines in (a) represent a single realization, while in (b) and (c) they represent ensemble averages over 10 and 100 realizations,
respectively. The dashed lines are predictions of Eq. (11). In all panels the total population is N = 3 x 10* and the initial concentrations of A
and B are 1/6 while that of C is 2/3; also note that the concentrations of A and B are overlapping.

with b* = (kc/kg)a®. One can see that for a gamma WTD,
changing as to be below 1, namely, ¢ < 0, has the same
qualitative effect as having a power-law WTD with finite (but
large) as. Note that, to obtain Eq. (D3), we have plugged the
leading-order in ¢ of the equilibrium point [Eq. (D4)] into the
subleading-order term in € of Og.

In the special case of kx = k and kg = k¢ = 1, Eq. (D4)
drastically simplifies, and we can find k* = k(ay) for
which a* = b* = c*: k*(aa) =1+ [(3/2)In3 — 1](axa — 1)
[see Eq. (21)]. The linear nature of the interface between the
red and blue phases can be seen in Figs. 4(d)—4(e) close to
N = 1.
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