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For an integer 𝑘 ≥ 1, the objective of 𝑘-Geodesic Center is to find a set  of 𝑘 isometric paths 
such that the maximum distance between any vertex 𝑣 and  is minimised. Introduced by Gromov, 
𝛿-hyperbolicity measures how treelike a graph is from a metric point of view. Our main contribution 
in this paper is to provide an additive 𝑂(𝛿)-approximation algorithm for 𝑘-Geodesic Center on 
𝛿-hyperbolic graphs. On the way, we define a coarse version of the pairing property introduced 
by Gerstel and Zaks (1994) [28] and show it holds for 𝛿-hyperbolic graphs. This result allows 
to reduce the 𝑘-Geodesic Center problem to its rooted counterpart, a main idea behind our 
algorithm. We also adapt a technique of Dragan and Leitert (2017) [24] to show that for every 
𝑘 ≥ 1, 𝑘-Geodesic Center is NP-hard even on partial grids.

1. Introduction

Given a graph 𝐺, the 𝑘-Geodesic Center problem asks to find a collection  of 𝑘 isometric paths such that the maximum distance 
between any vertex and  is minimised. This problem may arise in determining a set of 𝑘 ``most accessible'' speedy line routes in 
a network and can find applications in communication networks, transportation planning, water resource management and fluid 
transportation [24]. The decision version of this problem asks, given a graph 𝐺 and two integers 𝑘 and 𝑅, whether there exists a 
collection  of 𝑘 isometric paths such that any vertex of 𝐺 is at distance at most 𝑅 from .

𝑘-Geodesic Center is related to several algorithmic problems studied in the literature. 𝑘-Geodesic Center is a generalisation 
of Minimum Eccentricity Shortest Path (MESP) where given an integer 𝑅, the objective is to decide if there exists an isometric 
path 𝑃 such that the maximum distance between any vertex and 𝑃 is at most 𝑅 [24]. Clearly, 1-Geodesic Center is equivalent to 
MESP. If, instead of isometric paths, we ask whether there exists a subset of 𝑘 vertices of eccentricity at most 𝑅, we obtain the decision 
version of 𝑘-center which is one of the most studied facility location problem in the literature [30,31,35,41,42]. The solution of a 
𝑘-Geodesic Center can be thought of as a relaxation of 𝑘-Center. 𝑘-Geodesic Center is also related to Isometric Path Cover, 
where the objective is to find the minimum number of isometric paths that contains all vertices of the input graph. Study of the 
algorithmic aspects of Isometric Path Cover has garnered much attention recently [11,25,27,13].

All the three problems (i.e., IPC, MESP, and 𝑘-Center) are NP-hard for general graphs but are known to admit exact polynomial 
time algorithms when the given graph 𝐺 is a tree [11,24,43]. This raises the question about the complexity of these problems when 
the input graph is close to a tree? In this paper, we consider the graph parameter 𝛿-hyperbolicity [29], which measures how treelike a 
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graph is from a metric point of view. See Section 2 for a formal definition. Graphs with constant 𝛿-hyperbolicity are called hyperbolic 
graphs. From a practical perspective, the study of 𝛿-hyperbolicity of graphs is motivated by the fact that many real-world graphs are 
tree-like [1,2,32] or have small 𝛿-hyperbolicity [8,26,40]. From a theoretical perspective, many popular graph classes like interval 
graphs, chordal graphs, 𝛼𝑖-metric graphs [22], graphs with bounded tree-length [21], link graphs of simple polygons [16] have 
constant 𝛿-hyperbolicity.

When 𝑘 is part of the input, 𝑘-Geodesic Center remains NP-hard even on chordal graphs. This follows from the fact that 
Isometric Path Cover remains NP-hard on chordal graphs [12]. Since chordal graphs have hyperbolicity at most 1, it follows that 
𝑘-Geodesic Center remains NP-hard even on graphs with hyperbolicity at most 1.

Polynomial time approximation algorithms with an error (additive or multiplicative) depending only on the 𝛿-hyperbolicity of 𝐺
exist for MESP [39], 𝑘-Center [18,26], and Isometric Path Cover [12]. Motivated by the above results, in this paper, we provide 
an additive 𝑂(𝛿)-approximation algorithm1 for 𝑘-Geodesic Center on 𝛿-hyperbolic graphs for arbitrary 𝑘. The same algorithmic 
approach leads to an exact polynomial time algorithm in case of trees.

Theorem 1. Let 𝐺 be a 𝛿-hyperbolic graph and 𝑘 be an integer. Then, there is a polynomial time 𝑂(𝛿)-additive approximation algorithm for 
𝑘-Geodesic Center on 𝐺.

Our algorithm has mainly two stages. In the first stage, we solve the ``rooted'' version of (2𝑘 − 1)-Geodesic Center, where we 
require that all isometric paths in the solution have a common end-vertex. Then to reduce the number of isometric paths, we use the 
shallow pairing property of 𝛿-hyperbolic graphs. See Definition 6. Intuitively, this property ensures that the 2𝑘-many end-vertices of 
the 2𝑘 − 1 isometric paths obtained in the first stage can be ``paired'' to obtain 𝑘 many isometric paths which together provide an 
additive 𝑂(𝛿)-approximation algorithm for 𝑘-Geodesic Center. We think that the shallow pairing property could also be interesting 
in itself and for other algorithmic applications.

We also adapt a technique of Dragan & Leitert, (TCS ’17) to show that for every 𝑘 ≥ 1, 𝑘-Geodesic Center is NP-hard even on 
partial grids. A graph is a partial grid if it is a subgraph of (𝑘 × 𝑘)-grid for some positive integer 𝑘.

Theorem 2. For every integer 𝑘≥ 1, 𝑘-Geodesic Centre is NP-hard even on partial grids.

Related Works To the best of our knowledge, the computational complexity of 𝑘-Geodesic Center for arbitrary 𝑘 have not been 
studied before. Therefore, we begin by surveying the relevant results on 1-Geodesic Center i.e., the MESP problem. Dragan & 
Leitart [24] gave several constant factor approximation algorithms for MESP with varying running times on general graphs. In 
another paper [23], the authors proposed polynomial time algorithms for MESP on graph classes like chordal graphs and distance 
hereditary graphs. In fact the authors proved that, MESP admits an 𝑂(𝑛𝛾+3)-time algorithm on graphs with projection gap at most 
𝛾 , and 𝑛 vertices. The parameter projection gap generalizes the notion of 𝛿-hyperbolicity. Their result implies that MESP admits an 
𝑂(𝑛4𝛿+4)-time algorithm on graphs with 𝛿-hyperbolicity at most 𝛿, and 𝑛 vertices. We do not know if MESP admits a fixed parameter 
algorithm with respect to 𝛿-hyperbolicity. The same authors also proposed additive approximation algorithms for graphs with bounded 
tree-length. Fixed parameter tractability of MESP with respect to various graph parameters like modular width, distance to cluster 
graph, maximum leaf number, feedback edge set, etc. have been also studied recently [5,34]. As noted by Kučera and Suchỳ [34], 
the fixed parameter tractability of MESP with respect to tree-width is an interesting open problem. (Tree-width measures how far a 
graph is from a tree from a structural point of view.) Relation of MESP with other problems like the minimum distortion embedding on 
a line [24] and 𝑘-laminar problem [6] have been established.

Dragan & Leitart [23] observed that MESP admits an additive 𝑂(𝛿 log𝑛)-approximation algorithm on graphs with 𝛿-hyperbolicity 
at most 𝛿 and 𝑛 vertices. Their proof uses the fact that the tree-length of 𝛿-hyperbolic graphs are at most 𝑂(𝛿 log𝑛). As the best 
known bound for tree-length of 𝛿-hyperbolic graphs is 𝑂(𝛿 log𝑛), this method seems not directly provide constant error in case of 
hyperbolic graph. Then, in the PhD Thesis of A.O. Mohammed [39], an 𝑂(𝛿)-approximation algorithm for MESP on 𝛿-hyperbolic 
graphs has been proposed. Other examples include fast additive 𝑂(𝛿)-approximation algorithms for finding the diameter, radius, and 
all eccentricities [16--18] as well as packing and covering for families of quasiconvex sets [15]. Theorem 1 adds 𝑘-Geodesic Center 
in the list of problems admitting an additive approximation algorithm depending only on the 𝛿-hyperbolicity of the input graph. 
Recently, the computational complexity of maximum independent set of planar 𝛿-hyperbolic graphs has been studied [33].

Organisation: In Section 2 we introduce some terminologies. In Section 3, we introduce the notion of shallow pairing and prove its 
existence in 𝛿-hyperbolic graphs. In Sections 4 and 5, we prove Theorems 1 and 2, respectively.

2. Preliminaries

Basic notations: For two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝜎(𝑢, 𝑣) shall denote an (𝑢, 𝑣)-isometric path in 𝐺 and the length (i.e., the number 
of edges) in 𝜎(𝑢, 𝑣) is denoted as 𝑑(𝑢, 𝑣), the distance between 𝑢 and 𝑣. If an isometric path 𝑃 of 𝐺 has a vertex 𝑟 as end vertex, then 
𝑃 is called an 𝑟-path.

1 A feasible solution for a minimization problem is said to be additive 𝛼-approximate if its objective value is at most the optimum value plus 𝛼. An additive 𝛼

approximation algorithm for a minimization problem is a polynomial time algorithm that produces an additive 𝛼-approximate solution for every instance of the input.
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Fig. 1. A 𝛿-thin geodesic triangle. 

For two sets 𝑆1, 𝑆2 ⊆ 𝑉 (𝐺) of vertices, 𝑑(𝑆1, 𝑆2) = min{𝑑(𝑢, 𝑣) ∶ 𝑢 ∈ 𝑆1, 𝑣 ∈ 𝑆2} is the distance between 𝑆1 and 𝑆2. For con

venience, if one subset of vertices is a singleton, we abbreviate 𝑑({𝑣}, 𝑆) by 𝑑(𝑣,𝑆). For an integer 𝑘 and a set of vertices 𝑆 , the 
𝑘-neighbourhood (or 𝑘-ball) around 𝑆 , denoted as 𝐵𝑘 (𝑆), is the set of all vertices 𝑣 such that 𝑑(𝑣,𝑆) ≤ 𝑘. For an integer 𝑅, a collection 
 of isometric paths of 𝐺 is an 𝑅-cover of 𝐺 if

⋃
𝑃∈

𝐵𝑅 (𝑉 (𝑃 )) = 𝑉 (𝐺)

For an integer 𝑘, the symbol 𝑅∗
𝑘

shall denote the minimum integer for which there is a 𝑅∗
𝑘
-cover  of 𝐺 with || = 𝑘. If every 

path in  is an 𝑟-path, then  is an (𝑟,𝑅)-cover of 𝐺. For an integer 𝑅, and a vertex 𝑟, a subset 𝑆 ⊆ 𝑉 (𝐺) is a (𝑟,𝑅)-packing if the 
𝑅-neighbourhood of any 𝑟-path 𝑃 contains at most one vertex of 𝑆 , i.e., |𝐵𝑅 (𝑉 (𝑃 )) ∩𝑆| ≤ 1. Note that if 𝑆 is an (𝑟,𝑅)-packing of 𝐺
then any (𝑟,𝑅)-cover of 𝐺 has size at least |𝑆|. Indeed, the 𝑅-neighbourhood of any 𝑟-path covers at most one vertex in 𝑆 . Hence, it 
is not possible to cover 𝑆 with less than |𝑆| 𝑟-paths.

Definitions related to 𝛿-hyperbolicity: Let (𝑋,𝑑) be a metric space. A geodesic segment joining two points 𝑥 and 𝑦 from 𝑋 is a map 
𝜌 from the segments 𝜎(𝑎, 𝑏) of length |𝑎− 𝑏| = 𝑑(𝑥, 𝑦) to 𝑋 such that 𝜌(𝑎) = 𝑥, 𝜌(𝑏) = 𝑦, and 𝑑(𝜌(𝑠), 𝜌(𝑡)) = |𝑠− 𝑡| for all 𝑠, 𝑡 ∈ 𝜎(𝑎, 𝑏). 
A metric space (𝑋,𝑑) is geodesic if every pair of points in 𝑋 can be joined by a geodesic. We will denote by 𝜎(𝑥, 𝑦) any geodesic 
segment connecting the points 𝑥 and 𝑦.

Introduced by Gromov [29], 𝛿-hyperbolicity measures how treelike a graph is from a metric point of view. Recall that a metric 
space (𝑋,𝑑) embeds into a tree network (with positive real edge lengths), if and only if for any four points 𝑢, 𝑣,𝑤,𝑥 the two larger 
of the distance sums 𝑑(𝑢, 𝑣) + 𝑑(𝑤,𝑥), 𝑑(𝑢,𝑤) + 𝑑(𝑣,𝑥), and 𝑑(𝑢, 𝑥) + 𝑑(𝑣,𝑤) are equal. A metric space (𝑋,𝑑) is called 𝛿-hyperbolic if 
the two larger distance sums differ by at most 2𝛿. For a metric space (𝑋,𝑑), the Gromov product of two points 𝑥, 𝑦 with respect to a 
third point 𝑧 is defined as

(𝑥|𝑦)𝑧 = 1
2
(𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) − 𝑑(𝑥, 𝑦))

Equivalently, a metric space (𝑋,𝑑) is 𝛿-hyperbolic if for any four points 𝑢, 𝑣,𝑤,𝑥,

(𝑢|𝑤)𝑥 ≥min
{
(𝑢|𝑣)𝑥 , (𝑣|𝑤)𝑥}− 𝛿.

A connected graph 𝐺 = (𝑉 ,𝐸) equipped with standard graph metric 𝑑𝐺 is 𝛿-hyperbolic if (𝑉 ,𝑑𝐺) is a 𝛿-hyperbolic metric space. The 
𝛿-hyperbolicity 𝛿(𝐺) of a graph 𝐺 is the smallest 𝛿 such that 𝐺 is 𝛿-hyperbolic.

There exist several equivalent definitions of 𝛿-hyperbolic metric spaces involving different but comparable values of 𝛿. In the 
proof of Theorem 1, we will use the definition employing 𝛿-thin geodesic triangles. A geodesic triangle Δ(𝑥, 𝑦, 𝑧) is a union 𝜎(𝑥, 𝑦) ∪
𝜎(𝑥, 𝑧) ∪ 𝜎(𝑦, 𝑧) of three geodesic segments connecting these vertices. Let 𝑚𝑥 be the point of the geodesic 𝜎(𝑦, 𝑧) located at distance 
𝛼𝑦 ∶= (𝑥|𝑧)𝑦 from 𝑦. Then 𝑚𝑥 is located at distance 𝛼𝑧 ∶= (𝑥|𝑦)𝑧 from 𝑧 because 𝛼𝑦 + 𝛼𝑧 = 𝑑(𝑦, 𝑧). Analogously, define the points 
𝑚𝑦 ∈ 𝜎(𝑥, 𝑧) and 𝑚𝑧 ∈ 𝜎(𝑥, 𝑦) both located at distance 𝛼𝑥 ∶= (𝑦|𝑧)𝑥 from 𝑥; see Fig. 1.

There exists a unique isometry 𝜑 which maps the geodesic triangle Δ(𝑥, 𝑦, 𝑧) to a star 𝑇 (𝑥, 𝑦, 𝑧) consisting of three solid segments 
𝜎(𝑥′,𝑚′), 𝜎(𝑦′,𝑚′), and 𝜎(𝑧′,𝑚′) of length 𝛼𝑥, 𝛼𝑦, and 𝛼𝑧, respectively. This isometry maps the vertices 𝑥, 𝑦, 𝑧 of Δ(𝑥, 𝑦, 𝑧) to the 
respective leaves 𝑥′, 𝑦′, 𝑧′ of 𝑇 (𝑥′, 𝑦′, 𝑧′) and the points 𝑚𝑥, 𝑚𝑦, and 𝑚𝑧 to the center 𝑚 of this tripod. Any other point of 𝑇 (𝑥′, 𝑦′, 𝑧′)
is the image of exactly two points of Δ(𝑥, 𝑦, 𝑧). A geodesic triangle Δ(𝑥, 𝑦, 𝑧) is called 𝛿-thin [3] if for all points 𝑢, 𝑣 ∈ Δ(𝑥, 𝑦, 𝑧), 
𝜑(𝑢) = 𝜑(𝑣) implies 𝑑(𝑢, 𝑣) ≤ 𝛿.

The following result shows that the 𝛿-hyperbolicity of geodesic space can be approximated by the maximum thinness of its geodesic 
triangles.

Proposition 3 ([3,9,29]). Geodesic triangles of any geodesic 𝛿-hyperbolic space are 4𝛿-thin. Conversely, geodesic space with 𝛿-thin triangles 
are 𝛿-hyperbolic.
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Every graph 𝐺 = (𝑉 ,𝐸) equipped with its standard distance 𝑑𝐺 can be transformed into a geodesic space (𝑋,𝑑) by replacing 
every edge 𝑒 = (𝑢, 𝑣) by a solid segment [𝑢, 𝑣] of length 1. These segments may intersect only at their common ends. Then (𝑉 ,𝑑𝐺)
isometrically embeds naturally in (𝑋,𝑑). The thinness 𝜏(𝐺) of a graph 𝐺 is the smallest integer 𝛿, such that all geodesic triangles of 
the geodesic space arising from 𝐺 are 𝛿-thin. When thinness of a graph is 𝛿, then it is also called a 𝛿-thin graph.

Subdivisions and partial grids: For a graph 𝐺, its 𝓁-subdivision, denoted as 𝐺𝓁 , is obtained by replacement of all its edges by paths 
of a fixed length 𝓁 ≥ 1. An equal subdivision of 𝐺 is an 𝓁-subdivision for some 𝓁 ≥ 1. The vertices of 𝐺 in 𝐺𝓁 are the original vertices. 
We shall use the following result.

Lemma 4 ([12]). Let 𝐺 be a planar graph with maximum degree 4. Then there exists a partial grid graph 𝐻 , which is an equal subdivision 
of 𝐺 and contains at most 𝑂(|𝑉 (𝐺)|3) vertices.

3. Pairings and shallow pairings

In this section we first recall the definition of the pairing property following the terminology of [4]. Then, we introduce a coarse 
version of this property, called shallow pairing property,2 and show that this relaxed property holds for 𝛿-hyperbolic graphs.

Given a connected graph 𝐺, a profile of length 𝑛 is any sequence 𝜋 = (𝑥1,… , 𝑥𝑛) of 𝑛 vertices of 𝐺. The total distance of a vertex 𝑣 of 
𝐺 is defined by 𝑇𝜋(𝑣) =

∑𝑛

𝑖=1 𝑑(𝑣,𝑥𝑖). A pairing 𝑃 is a partition of an even profile 𝜋 of length 𝑛 = 2𝑘, into 𝑘 disjoint pairs. For a pairing 
𝑃 , define 𝐷𝜋(𝑃 ) =

∑
{𝑎,𝑏}∈𝑃 𝑑(𝑎, 𝑏). The notion of pairing was defined by Gerstel and Zaks [28]; they also proved the following weak 

duality between the functions 𝑇𝜋 and 𝐷𝜋 :

Lemma 5 ([28]). For any even profile 𝜋 of length 𝑛 = 2𝑘 of a connected graph 𝐺, for any pairing 𝑃 of 𝜋 and any vertex 𝑣 of 𝐺, 𝐷𝜋(𝑃 ) ≤ 𝑇𝜋(𝑣)
and the equality holds if and only if 𝑣∈

⋂
{𝑎,𝑏}∈𝑃 𝐼(𝑎, 𝑏).

We say that a graph 𝐺 satisfies the pairing property if for any even profile 𝜋 there exists a pairing 𝑃 of 𝜋 and a vertex 𝑣 of 𝐺 such 
that 𝐷𝜋(𝑃 ) = 𝑇𝜋(𝑣), i.e., the functions 𝑇𝜋 and 𝐷𝜋 satisfy the strong duality. Such a pairing is called a perfect pairing. By Lemma 5, the 
pairing property of [28] coincides with the intersecting-intervals property of [36]. It was shown in [28] that trees satisfy the pairing 
property. More generally, it was shown in [37] and independently in [19] that cube-free median graphs also satisfy the pairing 
property. It was proven in [36] that the complete bipartite graph 𝐾2,𝑛 satisfies the pairing property. As observed in [36], the 3-cube 
is a simple example of a graph not satisfying the pairing property.

In general, 𝛿-hyperbolic graphs do not satisfy the pairing property, but, as shown below, they satisfy some coarse variant of the 
pairing property. Before defining this variant, let us first define the notion of 𝛾 -shallow pairing

Definition 6 (𝛾 -shallow pairing). Let 𝐺 be a graph and 𝜋 be an even profile of length 2𝑘. A 𝛾 -shallow pairing of 𝜋 is a pairing 𝑃 such 
that, there exists a vertex 𝑣 with (𝑥|𝑦)𝑣 ≤ 𝛾 for every {𝑥, 𝑦} ∈ 𝑃 .

In the definition of a perfect pairing 𝑃 , the vertex 𝑣 belongs to every interval between a pair of vertices in 𝑃 . As the following 
lemma shows, in the definition of a 𝛾 -shallow pairing 𝑃𝛾 , the vertex 𝑣 is at distance at most 𝛾 + 𝜏(𝐺) from every isometric path 
between a pair of vertices in 𝑃𝛾 .

Lemma 7. Let 𝐺 be a 𝛿-thin graph, 𝜋 be an even profile of length 2𝑘 and 𝑃 be a 𝛾 -shallow pairing of 𝜋. Then there exists a vertex 𝑣 such 
that 𝑑(𝑣, 𝜎(𝑥, 𝑦)) ≤ 𝛾 + 𝛿 for every geodesic 𝜎(𝑥, 𝑦) with {𝑥, 𝑦} ∈ 𝑃 .

Proof. By definition of a 𝛾 -shallow pairing, there exists a vertex 𝑣 such that (𝑥|𝑦)𝑣 ≤ 𝛾 for every {𝑥, 𝑦} ∈ 𝑃 . For any pair of vertices 
{𝑥, 𝑦} ∈ 𝑃 , consider the geodesic triangle Δ(𝑥, 𝑦, 𝑣) and let 𝜎(𝑣,𝑥), 𝜎(𝑣, 𝑦), and 𝑄 be the sides of this triangle. Let 𝑥′, 𝑦′ be the points 
of 𝜎(𝑣,𝑥) and 𝜎(𝑣, 𝑦), respectively, located at distance (𝑥|𝑦)𝑣 from 𝑣. Since 𝐺 is 𝛿-thin, 𝑑(𝑥′, 𝑦′) ≤ 𝛿, moreover 𝑑(𝑥′, 𝑧′) ≤ 𝛿 and 
𝑑(𝑦′, 𝑧′) ≤ 𝛿, where 𝑧′ is the point of 𝑄 at distance (𝑦|𝑣)𝑥 from 𝑣 and at distance (𝑥|𝑣)𝑦 from 𝑦. Since, (𝑥|𝑦)𝑣 ≤ 𝛾 , we conclude that 
𝑑(𝑣,𝑄) ≤ 𝑑(𝑣, 𝑧′) ≤ 𝑑(𝑣,𝑥′) + 𝑑(𝑥′, 𝑧′) ≤ 𝛾 + 𝛿. □

We say that a graph 𝐺 satisfies the 𝛾 -shallow pairing property if for any even profile 𝜋 there exists a 𝛾 -shallow pairing 𝑃 of 𝜋.
The existence and the computation in polynomial time of a (2𝛿 + 1

2 )-shallow pairing in a 𝛿-thin graph 𝐺 can be obtained using 
the concept of fiber that was introduced in [15]. For a vertex 𝑢∈ 𝑉 (𝐺) and a profile 𝜋, the fiber of 𝑥 with respect to a vertex 𝑢 is the 
set of vertices

𝐹𝑢(𝑥) = {𝑦 ∈ 𝜋 ∶ (𝑥|𝑦)𝑢 ≥ 2𝛿 + 1}.

From Claim 1 and 2 of [15], the following lemma holds.

2 The notion of approximate (shallow) pairing in hyperbolic graphs was defined by Victor Chepoi, who also asked the question about their existence.
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Lemma 8. For any graph 𝐺 and any even profile 𝜋 of length 2𝑘, there is a vertex 𝑣∈ 𝑉 (𝐺) such that |𝐹𝑣(𝑥)| ≤ 𝑘 for any vertex 𝑥∈ 𝜋.

Lemma 8 is useful to prove the following result:

Proposition 9. Any 𝛿-thin graph 𝐺 satisfies the (2𝛿 + 1
2 )-shallow pairing property. Moreover, for any 𝛿-thin graph 𝐺 with 𝑛 vertices and 

𝑚 edges, and any even profile 𝜋 of length 2𝑘, a (2𝛿 + 1
2 )-shallow pairing of 𝜋 can be computed in 𝑂(𝑚𝑛2) time.

Proof. First, we will prove that the vertex 𝑣 whose existence is guaranteed by Lemma 8 can be calculated efficiently. Indeed, an 
𝑂(𝑚𝑛2) time algorithm was given in [14] to compute the thinness 𝛿 = 𝜏(𝐺) of a graph 𝐺 with 𝑛 vertices and 𝑚 edges. The matrix of 
distances between every pair of vertices can be computed in 𝑂(𝑚𝑛) time. Then, for every vertex 𝑢 ∈ 𝑉 (𝐺), it is possible to compute in 
𝑂(𝑘2) time the Gromov products (𝑥|𝑦)𝑢 for every pair of vertices 𝑥, 𝑦 ∈ 𝜋. Within the same running time, it is possible to also compute 
the fibers 𝐹𝑢(𝑥) for every 𝑥 ∈ 𝜋. Indeed, it suffices to add 𝑦 to 𝐹𝑢(𝑥) and 𝑥 to 𝐹𝑢(𝑦) when we compute a value (𝑥|𝑦)𝑢 exceeding 2𝛿+ 1

2 . 
If the size of a fiber 𝐹𝑢(𝑥) becomes larger than 𝑘 then we can abort and try the next vertex 𝑢. The procedure stops once we have 
found a vertex 𝑣 such that 𝐹𝑣(𝑥) ≤ 𝑘 for every vertex 𝑥 ∈ 𝜋. By Lemma 8, this happens for at least one vertex 𝑣 ∈ 𝑉 (𝐺). Hence, it is 
possible to find in 𝑂(𝑚𝑛+ 𝑛𝑘2) time a vertex 𝑣 such that |𝐹𝑣(𝑥)| ≤ 𝑘 for every 𝑥 ∈ 𝜋. Let 𝐻 be the graph defined on the vertices of 𝜋
by adding an edge between two vertices 𝑥 and 𝑦 whenever (𝑥|𝑦)𝑣 ≤ 2𝛿 + 1

2 . By the choice of 𝑣, every vertex of 𝐻 has degree at least 
𝑘. By Dirac’s theorem, 𝐻 is Hamiltonian and thus has a perfect matching 𝑀 . Such a perfect matching can be computed in 𝑂(

√
𝑛𝑚)

time [7,38]. The pairing defined by the end-vertices of edges in 𝑀 is a (2𝛿+ 1
2 )-shallow pairing of 𝜋 that can be computed in 𝑂(𝑚𝑛2)

time. Indeed, the running time is dominated by the algorithm that computes the thinness of 𝐺. □

In the next section, for any pairing 𝑃 , we will denote by (𝑃 ) a collection of isometric paths, one for each pair of vertices in 𝑃 , 
i.e., (𝑃 ) ∶= {𝜎(𝑥, 𝑦) ∶ {𝑥, 𝑦} ∈ 𝑃 }.

4. Additive approximation algorithm

In this section, we prove Theorem 10 which implies Theorem 1 by Proposition 3.

Theorem 10. Let 𝐺 be a 𝛿-thin graph with 𝑚 edges, 𝑛 vertices and 𝑘 be an integer. Then, Algorithm 3 is a 𝑂(𝑚𝑛2 log𝑛)-time (6𝛿+1)-additive 
approximation algorithm for 𝑘-Geodesic Center on 𝐺.

We provide a brief outline of the proof for the above theorem and organisation of this section. A collection  of isometric paths 
is ``rooted'' if all the paths in  have a common end-vertex. First we show in Section 4.1, that the rooted version of the 𝑘-Geodesic 
Center problem where we require that the collection of isometric paths is rooted can be solved in polynomial time up to an additive 
2𝛿 error in 𝛿-thin graphs. For that, we use a primal dual algorithm and a dichotomy to find an integer 𝑅 such that there is a collection 
of 2𝑘 − 1 isometric rooted paths of eccentricity 𝑅 + 2𝛿 and no such collection has eccentricity smaller than 𝑅. Then in Section 4.2, 
we show that any collection  of 𝑘 isometric paths can be transformed into a rooted collection ′ of size 2𝑘 − 1 such that the 
eccentricity of ′ is at most the eccentricity of  plus 𝛿. From this observation and the choice of 𝑅, we conclude that no collection of 
𝑘 isometric paths has eccentricity smaller than 𝑅− 𝛿. To transform the rooted collection returned by the primal-dual algorithm into a 
non rooted collection of size 𝑘, we also need a converse result. For that, using the (2𝛿 + 1

2 )-shallow pairing property of 𝛿-thin graphs, 
in Section 4.3, we show that any rooted collection ′ of 2𝑘− 1 isometric paths can be transformed into a non rooted collection  of 
𝑘 isometric paths such that the eccentricity of  is at most the eccentricity of ′ plus 3𝛿 + 1. We complete the proof in Section 4.4 as 
follows: the rooted collection of eccentricity 𝑅 + 2𝛿 computed by our primal-dual algorithm can be transformed into a collection of 
size 𝑘 and eccentricity 𝑅+5𝛿 +1. Since there is no such collection with an eccentricity less than 𝑅− 𝛿, the collection of eccentricity 
𝑅+ 5𝛿 + 1 is optimal up to a 6𝛿 + 1 error.

4.1. An algorithm for the Rooted 𝑘-Geodesic Center problem

In this Section, we present an algorithm that, given a 𝛿-thin graph 𝐺, computes an integer 𝑅 such that no collection of 2𝑘 − 1
rooted isometric paths has eccentricity smaller than 𝑅 and there is a collection of 2𝑘−1 isometric rooted paths of eccentricity 𝑅+2𝛿. 
Our description of this algorithm proceeds in two steps. First, we describe Algorithm 1. Given a graph 𝐺, a root 𝑟 ∈ 𝑉 (𝐺) and integer 
𝑅, Algorithm 1 outputs either an (𝑟,𝑅+2𝛿)-cover of 𝐺 of size 2𝑘−1 or a (𝑟,𝑅)-packing of size 2𝑘. Then, Algorithm 2 uses Algorithm 1
to perform a dichotomy. For every vertex 𝑢 ∈ 𝑉 (𝐺), Algorithm 2 computes the smallest value 𝑅𝑢 for which Algorithm 1 outputs a 
cover. We show that 𝑅 ∶= min{𝑅𝑢 ∶ 𝑢 ∈ 𝑉 (𝐺)} is an integer such that no collection of 2𝑘− 1 rooted isometric paths has eccentricity 
smaller than 𝑅 and there is a collection of 2𝑘−1 isometric rooted paths of eccentricity 𝑅+2𝛿. We start with the following technical 
lemma.

Lemma 11. Let 𝜎(𝑢, 𝑣) ∪ 𝜎(𝑣,𝑤) ∪ 𝜎(𝑢,𝑤) be a geodesic triangle with 𝑑(𝑤,𝜎(𝑢, 𝑣)) ≤𝑅. Then, (𝑢|𝑣)𝑤 ≤𝑅.
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Algorithm 1: Algorithm for the Rooted 𝑘-Geodesic Center problem for fixed root.

Input : A 𝛿-thin graph 𝐺, 𝑟∈ 𝑉 (𝐺), 𝑅∈ℕ, an integer 𝑘≤ |𝑉 (𝐺)|
Output : (𝑟,𝑅+ 2𝛿)-cover of 𝐺 of size 2𝑘− 1 or an (𝑟,𝑅)-packing of size 2𝑘.

1 𝑋 = 𝑉 (𝐺); 𝑖= 0;

2 while 𝑖 ≤ 2𝑘− 1 and 𝑋 ≠ ∅ do

3 Let 𝑣𝑖 ∈𝑋 be a vertex with 𝑑(𝑟, 𝑣𝑖) ≥ 𝑑(𝑟, 𝑧) for all 𝑧 ∈𝑋;

4 Let 𝜎𝑖 be any (𝑟, 𝑣𝑖)-isometric path;

5 𝑋𝑖 =
{
𝑢 ∈𝑋 ∶ ∃ an 𝑟-path 𝑃 such that 𝑑(𝑢,𝑃 ) ≤𝑅 and 𝑑(𝑣𝑖, 𝑃 ) ≤𝑅

}
6 𝑋 =𝑋 ⧵𝑋𝑖;
7  =  ∪ {𝑣𝑖};

8  =  ∪ {𝜎𝑖}.

9 𝑖 = 𝑖+ 1;

10 if 𝑋 = ∅ then

11 return ;

12 else

13 return 

Fig. 2. Illustrations for the two cases in the proof of Lemma 12. 

Proof. Let 𝑦 be a vertex of 𝜎(𝑢, 𝑣) at distance at most 𝑅 from 𝑤. Let 𝑦′ be the vertex of Δ(𝑢, 𝑣,𝑤) such that 𝜑(𝑦) = 𝜑(𝑦′). Without 
loss of generality, we can assume that 𝑦′ ∈ 𝜎(𝑣,𝑤). By triangle inequality, 𝑑(𝑤,𝑣) = 𝑑(𝑤,𝑦′) + 𝑑(𝑦′, 𝑣) ≤ 𝑑(𝑤,𝑦) + 𝑑(𝑦, 𝑣). Since 
𝑑(𝑣, 𝑦′) = 𝑑(𝑣, 𝑦), we get 𝑑(𝑤,𝑦′) ≤ 𝑑(𝑤,𝑦). Hence, (𝑢|𝑣)𝑤 ≤ 𝑑(𝑤,𝑦′) ≤ 𝑑(𝑤,𝑦) ≤𝑅. □

Lemma 12. Algorithm 1 either returns an (𝑟,𝑅)-packing of size 2𝑘 or an (𝑟,𝑅+ 2𝛿)-cover of 𝐺 of size at most 2𝑘− 1.

Proof. First assume that Algorithm 1 returns a subset of vertices  . Suppose there exists two vertices {𝑣𝑖, 𝑣𝑗} ⊆  with 𝑖 < 𝑗 such 
that (a) 𝑣𝑖, 𝑣𝑗 were included in  at the 𝑖𝑡ℎ and 𝑗𝑡ℎ iteration of Algorithm 1, and (b) there exists an 𝑟-path 𝑃 such that {𝑣𝑖, 𝑣𝑗} ⊆
𝐵𝑅 (𝑉 (𝑃 )) ∩ . But then 𝑣𝑗 ∈𝑋𝑖 and therefore was removed from 𝑋 in the 𝑖𝑡ℎ iteration, a contradiction.

Now assume that Algorithm 1 returns a collection of 𝑟-paths . For a vertex 𝑢 ∈ 𝑉 (𝐺), let 𝑣𝑖 ∈  be the vertex such that 𝑢 ∈𝑋𝑖
when 𝑢 was removed from 𝑋. By definition of 𝑋𝑖, there exists an 𝑟-path 𝑃 such that 𝑑(𝑢,𝑃 ) ≤ 𝑅 and 𝑑(𝑣𝑖, 𝑃 ) ≤ 𝑅. Let 𝑥 be the 
end-vertex of 𝑃 distinct from 𝑟. Let 𝜎𝑖 be the 𝑟-path added to  by Algorithm 1 during the 𝑖𝑡ℎ iteration and 𝜎(𝑟, 𝑢) be any isometric 
path between 𝑟 and 𝑢. We distinguish two cases (see Fig. 2).

• Case 1. First suppose that (𝑢|𝑥)𝑟 ≤ (𝑣𝑖|𝑥)𝑟. Let 𝑚𝑖, 𝑚′
𝑖
, 𝑚′′

𝑖
be the points of 𝜎𝑖, 𝑃 and 𝜎(𝑟, 𝑢) at distance (𝑢|𝑥)𝑟 from 𝑟. Since 

𝑑(𝑢, 𝜎(𝑟, 𝑥)) ≤𝑅, Lemma 11 implies 𝑑(𝑢,𝑚′′
𝑖
) = (𝑟|𝑥)𝑢 ≤𝑅. Hence, the 𝛿-thinness of the geodesic triangles 𝜎(𝑟, 𝑢) ∪𝜎(𝑢, 𝑥) ∪𝑃 and 

𝜎𝑖 ∪ 𝜎(𝑣𝑖, 𝑥) ∪ 𝑃 implies 𝑑(𝑢,𝑚𝑖) ≤ 𝑑(𝑢,𝑚′′
𝑖
) + 𝑑(𝑚′′

𝑖
,𝑚′

𝑖
) + 𝑑(𝑚′

𝑖
,𝑚𝑖) ≤𝑅+ 2𝛿.

• Case 2. Now, assume that (𝑣𝑖|𝑥)𝑟 ≤ (𝑢|𝑥)𝑟. Let 𝑚𝑖, 𝑚′
𝑖
, 𝑚′′

𝑖
be the vertices of 𝜎𝑖, 𝑃 and 𝜎(𝑟, 𝑢) at distance (𝑣𝑖|𝑥)𝑟 from 𝑟. By 

the choice of 𝑣𝑖, 𝑑(𝑟,𝑚𝑖) + 𝑑(𝑚𝑖, 𝑣𝑖) = 𝑑(𝑟, 𝑣𝑖) ≥ 𝑑(𝑟, 𝑢) = 𝑑(𝑟,𝑚′′
𝑖
) + 𝑑(𝑚′′

𝑖
, 𝑢). Since 𝑑(𝑟,𝑚𝑖) = 𝑑(𝑟,𝑚′′

𝑖
), we deduce that 𝑑(𝑚′′

𝑖
, 𝑢) ≤

𝑑(𝑚𝑖, 𝑣𝑖). Since 𝑑(𝑣𝑖, 𝜎(𝑟, 𝑥)) ≤ 𝑅, Lemma 11 implies 𝑑(𝑚′′
𝑖
, 𝑢) ≤ 𝑑(𝑚𝑖, 𝑣𝑖) = (𝑟|𝑥)𝑣𝑖 ≤ 𝑅. Using the thinness of geodesic triangles 

𝜎(𝑟, 𝑢) ∪ 𝜎(𝑢, 𝑥) ∪ 𝑃 and 𝜎𝑖 ∪ 𝜎(𝑣𝑖, 𝑥) ∪ 𝑃 , we derive that 𝑑(𝑢,𝑚𝑖) ≤ 𝑑(𝑢,𝑚′′
𝑖
) + 𝑑(𝑚′′

𝑖
,𝑚′

𝑖
) + 𝑑(𝑚′

𝑖
,𝑚𝑖) ≤𝑅+ 2𝛿.

We conclude that any vertex 𝑢 ∈ 𝑉 (𝐺) is at distance at most 𝑅+ 2𝛿 from some path in . □
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Algorithm 2: Algorithm for the Rooted 𝑘-Geodesic Center problem.

Input : A 𝛿-thin graph 𝐺, an integer 𝑘≤ |𝑉 (𝐺)|.
Output : An integer 𝑅 and an (𝑢,𝑅+ 2𝛿)-cover of size 2𝑘− 1 such that there is no (𝑣,𝑅′)-cover with 𝑅′ <𝑅.

1 for 𝑣 ∈ 𝑉 (𝐺) do

2 Let 𝑅𝑣 be the smallest 𝑅 integer for which Algorithm 1 returns a (𝑣,𝑅+ 2𝛿)-cover 𝑣 of size 2𝑘− 1.

/* The above steps can be implemented by using Algorithm 1 in combination with a binary search on 
𝑅𝑣 ∈ {0,1,… , |𝑉 (𝐺)|}. */

3 Let 𝑢 ∈ 𝑉 (𝐺) such that 𝑅𝑢 =min{𝑅𝑣 ∶ 𝑣 ∈ 𝑉 (𝐺)}.

4 return (𝑢,𝑅𝑢).

Fig. 3. Illustration of the notations used in Proof of Lemma 15. 

Lemma 13. Algorithm 2 returns an integer 𝑅 and a (𝑢,𝑅+2𝛿)-cover 𝑢 of 𝐺 of size 2𝑘−1 such that, there is no (𝑣,𝑅′)-cover of size 2𝑘−1
with 𝑅′ <𝑅.

Proof. Let 
(
𝑢,𝑅𝑢

)
be the output of Algorithm 2. Since 𝑅𝑢 =min{𝑅𝑣 ∶ 𝑣 ∈ 𝑉 (𝐺)} is the minimum integer 𝑅 for which Algorithm 1

returns (𝑢,𝑅 + 2𝛿)-cover 𝑢, Algorithm 1 returns a (𝑣,𝑅′)-packing of size 2𝑘 for any 𝑅′ < 𝑅𝑢 and any 𝑣 ∈ 𝑉 (𝐺). Hence, there is no 
(𝑣,𝑅′)-cover of size 2𝑘− 1 with 𝑅′ <𝑅. □

4.2. From non rooted to rooted collection of paths

In the following lemma, we show that if there is an 𝑅-cover of size 𝑘 of a 𝛿-thin graph then there is a rooted (𝑟,𝑅 + 𝛿)-cover of 
size 2𝑘− 1 of 𝐺, for some 𝑟 ∈ 𝑉 (𝐺).

Lemma 14. Let  be an 𝑅-cover of a 𝛿-thin graph 𝐺 with || = 𝑘, 𝑋 the set of end-vertices of paths in  and 𝑟 ∈𝑋 . Then, any collection 
of isometric paths 𝑟 =

{
𝜎(𝑟, 𝑥) ∶ 𝑥 ∈𝑋𝐶 ⧵ {𝑟}

}
is an (𝑟,𝑅+ 𝛿)-cover of 𝐺.

Proof. For a vertex 𝑢 ∈ 𝑉 (𝐺), let 𝑃 = 𝜎(𝑣1, 𝑣2) ∈  be a path such that 𝑑(𝑢,𝑃 ) ≤𝑅 and 𝑤 ∈ 𝑉 (𝑃 ) be a vertex with 𝑑(𝑢,𝑤) ≤𝑅. Let 
𝑃1, 𝑃2 ∈ 𝑟 where 𝑃𝑖 = 𝜎(𝑟, 𝑣𝑖). Since the geodesic triangle 𝑃 ∪ 𝑃1 ∪ 𝑃2 of 𝐺 is 𝛿-thin, either 𝑑(𝑤,𝑃1) ≤ 𝛿 or 𝑑(𝑤,𝑃2) ≤ 𝛿. Therefore, 
either 𝑑(𝑢,𝑃1) ≤𝑅+ 𝛿 or 𝑑(𝑢,𝑃2) ≤𝑅+ 𝛿. Hence, 𝑟 is a (𝑟,𝑅+ 𝛿)-cover of 𝐺. □

4.3. From rooted to non rooted collection of paths

Conversely, the next lemma shows that, from a set of rooted isometric paths of a 𝛿-thin graph of size 2𝑘 − 1 and eccentricity 𝑅, 
it is possible to construct a (𝑅+ 3𝛿 + 1)-cover of 𝐺 of size 𝑘.

Lemma 15. Let 𝑟 be a vertex of a 𝛿-thin graph 𝐺. For integers 𝑅 and 𝑘, let 𝑟 be an (𝑟,𝑅)-cover of 𝐺 with |𝑟| = 2𝑘−1. Let 𝜋𝑟 be a profile 
of length 2𝑘 containing all end vertices of the paths in 𝑟 and 𝑃𝑟 be a (2𝛿 + 1

2 )-shallow pairing of 𝜋𝑟. Then, (𝑃𝑟) is a (𝑅+ 3𝛿 + 1)-cover of 
𝐺 of size 𝑘.

Proof. Let 𝑢 ∈ 𝑉 (𝐺) and 𝑃 = 𝜎(𝑟, 𝑥) ∈ 𝑟 be an 𝑟-path with 𝑑(𝑢,𝑃 ) ≤ 𝑅. Let {𝑥′, 𝑟′} ⊆ 𝜋𝑟 be the vertices such that {𝑥,𝑥′} ∈ 𝑃𝑟 and 
{𝑟, 𝑟′} ∈ 𝑃𝑟. See Fig. 3 for notations used in this proof. By definition of a (2𝛿 + 1

2 )-shallow pairing, there is a vertex 𝑚 such that (
𝑥|𝑥′)

𝑚
≤ 2𝛿 + 1

2 and 
(
𝑟|𝑟′)

𝑚
≤ 2𝛿 + 1

2 which imply the following inequalities:

𝑑(𝑥,𝑚) + 𝑑(𝑚,𝑥′) − 𝑑(𝑥,𝑥′) ≤ 4𝛿 + 1⇒ 𝑑(𝑥,𝑥′) ≥ 𝑑(𝑥,𝑚) + 𝑑(𝑚,𝑥′) − (4𝛿 + 1)
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Algorithm 3: Algorithm for 𝑘-Geodesic Center.

Input : A 𝛿-thin graph 𝐺, an integer 𝑘≤ |𝑉 (𝐺)|.
Output : A collection of 𝑘 isometric paths with eccentricity at most 𝑅∗

𝑘
+ (6𝛿 + 1)

1 Let 𝑢 be the (𝑢,𝑅𝑢)-cover of 𝐺 returned by Algorithm 2 with 𝐺 and 𝑘 as input.

2 Let 𝜋 be the even profile consisting of 𝑢 and every other end vertex of the 𝑢-paths in 𝑢.
3 Compute a (2𝛿 + 1

2
)-shallow pairing 𝑃 of 𝜋.

4 return (𝑃 ). 

𝑑(𝑟,𝑚) + 𝑑(𝑚, 𝑟′) − 𝑑(𝑟, 𝑟′) ≤ 4𝛿 + 1⇒ 𝑑(𝑟, 𝑟′) ≥ 𝑑(𝑟,𝑚) + 𝑑(𝑚, 𝑟′) − (4𝛿 + 1)

Combining the above inequalities we derive:

𝑑(𝑥,𝑥′) + 𝑑(𝑟, 𝑟′) ≥ (𝑑(𝑥,𝑚) + 𝑑(𝑚, 𝑟′)) + (𝑑(𝑥′,𝑚) + 𝑑(𝑚, 𝑟)) − (8𝛿 + 2) ≥ 𝑑(𝑥, 𝑟′) + 𝑑(𝑥′, 𝑟) − (8𝛿 + 2) (1)

Adding 𝑑(𝑟, 𝑥) to both sides of (1) we get:

𝑑(𝑟, 𝑥) + 𝑑(𝑥,𝑥′) − 𝑑(𝑟, 𝑥′) ≥ 𝑑(𝑟, 𝑥) + 𝑑(𝑥, 𝑟′) − 𝑑(𝑟, 𝑟′) − (8𝛿 + 2)

which further implies:

(
𝑟|𝑥′)

𝑥
≥
(
𝑟|𝑟′)

𝑥
− (4𝛿 + 1) (2)

Recall that 𝑃 = 𝜎(𝑟, 𝑥) ∈ 𝑟. Let 𝑚𝑥 be the point of the geodesic 𝑃 such that 𝑑(𝑥,𝑚𝑥) = ⌊(𝑟|𝑥′)
𝑥
⌋ and 𝑚𝑟 be the point of the 

geodesic 𝑃 such that 𝑑(𝑥,𝑚𝑟) = ⌈(𝑟|𝑟′)
𝑥
⌉. Let 𝑧 be the vertex of 𝑃 with 𝑑(𝑢, 𝑧) ≤𝑅. Consider the following cases.

• If 𝑧 lies in the (𝑥,𝑚𝑥)-subpath of 𝑃 , consider any isometric path 𝜎(𝑟, 𝑥′). Since the geodesic triangle 𝑃 ∪ 𝜎(𝑟, 𝑥′) ∪ 𝜎(𝑥,𝑥′) is 
𝛿-thin, we have that 𝑑(𝑧, 𝜎(𝑥,𝑥′)) ≤ 𝛿. Hence, 𝑑(𝑢, 𝜎(𝑥,𝑥′)) ≤ 𝑑(𝑢, 𝑧) + 𝑑(𝑧, 𝜎(𝑥,𝑥′)) ≤𝑅+ 𝛿.

• If 𝑧 lies in the (𝑟,𝑚𝑟)-subpath of 𝑃 , consider any isometric path 𝜎(𝑟′, 𝑥). Since the geodesic triangle 𝑃 ∪𝜎(𝑟, 𝑟′) ∪𝜎(𝑟′, 𝑥) is 𝛿-thin, 
we have that 𝑑(𝑧, 𝜎(𝑟, 𝑟′)) ≤ 𝛿. Hence, 𝑑(𝑢, 𝜎(𝑟, 𝑟′)) ≤ 𝑑(𝑢, 𝑧) + 𝑑(𝑧, 𝜎(𝑟, 𝑟′)) ≤𝑅+ 𝛿.

• Otherwise, 𝑧 must lie in the (𝑚𝑟,𝑚𝑥)-subpath of 𝑃 . Due to inequality (2) we have that 𝑑(𝑚𝑟,𝑚𝑥) ≤ 4𝛿 + 2. This implies either 
𝑑(𝑧,𝑚𝑥) ≤ 2𝛿+1 or 𝑑(𝑧,𝑚𝑟) ≤ 2𝛿+1. Since the geodesic triangles 𝑃 ∪𝜎(𝑟, 𝑥′)∪𝜎(𝑥,𝑥′) and 𝑃 ∪𝜎(𝑟, 𝑟′)∪𝜎(𝑥, 𝑟′) are 𝛿-thin, we have 
𝑑(𝑚𝑥,𝜎(𝑥,𝑥′)) ≤ 𝛿 and 𝑑(𝑚𝑟, 𝜎(𝑟, 𝑟′)) ≤ 𝛿. If 𝑑(𝑧,𝑚𝑥) ≤ 2𝛿 +1 then 𝑑(𝑢, 𝜎(𝑥,𝑥′)) ≤ 𝑑(𝑢, 𝑧) + 𝑑(𝑧,𝑚𝑥) + 𝑑(𝑚𝑥,𝜎(𝑥,𝑥′)) ≤𝑅+3𝛿 +1. 
Otherwise, 𝑑(𝑧,𝑚𝑟) ≤ 2𝛿 + 1 and 𝑑(𝑢, 𝜎(𝑟, 𝑟′)) ≤ 𝑑(𝑢, 𝑧) + 𝑑(𝑧,𝑚𝑟) + 𝑑(𝑚𝑟, 𝜎(𝑟, 𝑟′)) ≤𝑅+ 3𝛿 + 1.

In all three above cases, either 𝑑(𝑢, 𝜎(𝑥,𝑥′)) ≤ 𝑅 + 3𝛿 + 1 or 𝑑(𝑢, 𝜎(𝑟, 𝑟′)) ≤ 𝑅 + 3𝛿 + 1. We conclude that, for any 𝑢 ∈ 𝑉 (𝐺), the 
collection (𝑃𝑟) contains an isometric path 𝑄 such that 𝑑(𝑢,𝑄) ≤𝑅+ 3𝛿 + 1, i.e., (𝑃𝑟) is a (𝑅+ 3𝛿 + 1)-cover. □

4.4. Proof of Theorem 10

Let 𝐺 be a connected 𝛿-thin graph. Let ∗ be a 𝑅∗
𝑘
-cover of 𝐺, 𝜋∗ the profile containing the end-vertices of paths in ∗ and 

𝑟 ∈ 𝜋∗ . Consider the set ∗
𝑟
=
{
𝜎(𝑟, 𝑥) ∶ 𝑥 ∈ 𝜋∗ ⧵ {𝑟}

}
. Due to Lemma 14, we have

∗
𝑟

is a 
(
𝑟,𝑅∗

𝑘
+ 𝛿

)
-cover of 𝐺. (3)

Now let 
(
𝑢,𝑅𝑢

)
be the output of Algorithm 2. By Lemma 13, there is no (𝑟,𝑅′)-cover of size 2𝑘− 1 with 𝑅′ <𝑅𝑢. Due to (3), there 

exists a (𝑟,𝑅∗
𝑘
+𝛿)-cover of 𝐺 of size 2𝑘−1. Hence, 𝑅𝑢 ≤𝑅∗

𝑘
+𝛿 and 𝑢 has eccentricity at most 𝑅𝑢+2𝛿 ≤𝑅∗

𝑘
+3𝛿. Let 𝜋𝑢 be the profile 

consisting of 𝑢 and every other end vertex of the 𝑢-paths in 𝑢 . Observe that 𝜋𝑢 is an even profile of length of 2𝑘. By Proposition 9, it 
is possible to compute in 𝑂(𝑚𝑛2)-time a (2𝛿 + 1

2 )-shallow pairing 𝑃 ′ of 𝜋𝑢. Due to Lemma 15, (𝑃 ′) is an (𝑅∗
𝑘
+ 6𝛿 + 1)-cover of size 

𝑘. This completes the proof of Theorem 10. Algorithm 3 describes our complete algorithm for 𝑘-Geodesic Center on 𝛿-thin graphs.

Clearly, the running times of Algorithm 1 and Algorithm 2 are 𝑂(𝑘(𝑛+𝑚)) and 𝑂(𝑛𝑘(𝑛+𝑚) log𝑛), respectively. Due to Proposition 9, 
computing a shallow pairing takes 𝑂(𝑚𝑛2)-time. Therefore, the total running time of Algorithm 3 is 𝑂(𝑚𝑛2 log𝑛).

4.5. The special case of trees

In case of trees, the same algorithmic approach leads to an exact polynomial time algorithm. Indeed, since trees are 0-hyperbolic, 
Lemma 13 implies that Algorithm 2 computes a rooted (𝑟,𝑅)-cover  of size 2𝑘− 1 such that there is no (𝑟′,𝑅′)-cover with 𝑅′ < 𝑅. 
By Lemma 12, an optimal 𝑅∗-cover of size 𝑘 can be transformed into a rooted (𝑟′,𝑅∗)-cover of size 2𝑘−1. Hence, 𝑅∗ ≥𝑅. Since trees 
satisfy the pairing property, any (𝑟,𝑅)-cover of size 2𝑘−1 can be transformed into an 𝑅-cover of size 𝑘. This implies 𝑅 ≥𝑅∗. Hence, 
in case of trees, 𝑅 =𝑅∗ and the solution returned by Algorithm 3 is an optimal 𝑅∗-cover of size 𝑘.
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5. NP-hardness for partial grids

In this section we prove Theorem 2. Our proof is an adaptation of the NP-hardness of 1-Geodesic Center on planar bipartite 
graphs proved by Dragan & Leitert (Corollary 8, [24]). First we prove the following lemmas.

Lemma 16. Let 𝐺 be a graph and 𝐻 =𝐺𝓁 for some 𝓁 ≥ 1. Then for integers 𝑚,𝑘, if 𝐺 has an 𝑚-cover of size 𝑘 then 𝐻 has an (𝑚𝓁 + ⌊𝓁∕2⌋)
cover of size 𝑘.

Proof. Let  be an 𝑚-cover of 𝐺 of size 𝑘 and ′ be a set of paths in 𝐻 which are 𝓁-subdivision of the paths in . Clearly, all paths in 
′ consist of isometric paths in 𝐻 . Let 𝑢 be an original vertex of 𝐻 and 𝑃 ∈  be a path such that 𝑑(𝑢,𝑉 (𝑃 )) ≤𝑚 in 𝐺. Let 𝑃 ′ ∈ ′ be 
the 𝓁-subdivision of 𝑃 . Clearly, 𝑑(𝑢,𝑉 (𝑃 ′)) ≤𝑚𝓁. Now consider a vertex 𝑢 ∈ 𝑉 (𝐻) which is not a vertex of 𝐺. Hence there exists an 
original vertex 𝑢′ ∈ 𝑉 (𝐻) with 𝑑(𝑢, 𝑢′) ≤ ⌊𝓁∕2⌋. Let 𝑃 ∈  be a path such that 𝑑(𝑢′, 𝑉 (𝑃 )) ≤𝑚 in 𝐺 and 𝑃 ′ ∈ ′ be the 𝓁-subdivision 
of 𝑃 . Then 𝑑(𝑢,𝑉 (𝑃 ′)) ≤ 𝑑(𝑢, 𝑢′) + 𝑑(𝑢′, 𝑉 (𝑃 ′)) ≤𝑚𝓁 + ⌊𝓁∕2⌋. □

Let 𝐺 be a graph and 𝐻 =𝐺𝓁 for some 𝓁 ≥ 1. For an isometric path 𝑃 of 𝐻 between two original vertices 𝑢, 𝑣, let 𝐺(𝑃 ) denote the 
(𝑢, 𝑣)-isometric path in 𝐺 such that 𝑃 is an 𝓁-subdivision of 𝐺(𝑃 ). Intuitively, 𝐺(𝑃 ) is the original isometric path whose 𝓁-subdivision 
created 𝑃 in 𝐻 .

Lemma 17. Let 𝐺 be a graph and let 𝐻 =𝐺𝓁 for some 𝓁 ≥ 1. Let 𝑃 be an isometric path of 𝐻 between two original vertices 𝑢, 𝑣. Let 𝑤 be 
an original vertex of 𝐺 such that 𝑑(𝑤,𝑉 (𝑃 )) < (𝑟+ 1)𝓁 for some positive integer 𝑟. Then, for 𝑄=𝐺(𝑃 ) we have 𝑑(𝑤,𝑉 (𝑄)) ≤ 𝑟.

Proof. Let 𝑤′ ∈ 𝑉 (𝑃 ) be a vertex which is closest to 𝑤 in 𝐻 and 𝑃 ′ be an (𝑤,𝑤′)-isometric path in 𝐻 . Clearly, 𝑤′ is an original 
vertex and therefore 𝐺(𝑃 ′) exists. Observe that, the number of original vertices in 𝑃 ′ is at most 𝑟 + 1. (Otherwise length of 𝑃 ′ is at 
least (𝑟+ 1)𝓁 in 𝐻 which is a contradiction.) Hence length of 𝐺(𝑃 ) is at most 𝑟 in 𝐺. □

Dragan & Leitert [24] reduced the NP-complete Planar Monotone 3-SAT [20] to show that 1-Geodesic Center is NP-hard on 
bipartite planar subcubic graphs. Given an Planar Monotone 3-SAT instance 𝐼 , the authors constructed a planar bipartite subcubic 
graph 𝐵 (𝐼) and an integer 𝑚′ with the following properties.

• 𝐵 (𝐼) has an isometric path with eccentricity at most 𝑚′ if and only if 𝐼 is satisfiable;
• there are two special cut vertices 𝑣0, 𝑣𝑛 of 𝐵 (𝐼) such that any isometric path with eccentricity at most 𝑚′ will contain 𝑣0 and 𝑣𝑛.

To prove our result, we modify the graph 𝐵 (𝐼) slightly. First construct a gadget as follows. Take a path 𝑃 of length 2𝑘 and let the 
vertices of 𝑃 be 𝑢1, 𝑢2,… , 𝑢2𝑘+1. For each 𝑗 ∈ [2,2𝑘], take a new path 𝑄𝑗 of length 𝑚′ and make one of the end-vertex of 𝑄𝑗 adjacent 
to 𝑢𝑗 . Let 𝑇 be the union of 𝑃 and 𝑄𝑗, 𝑗 ∈ [2,2𝑘− 1]. Now make the vertex 𝑣0 adjacent to 𝑢1.

We call the modified graph 𝐵′
𝑘
(𝐼). It is easy to verify that a set  of isometric paths in 𝐵′

𝑘
(𝐼) is an 𝑚′-cover if and only if the 

following holds:

• There are 𝑘− 1 isometric paths in 𝐵′
𝑘
(𝐼) whose vertices completely lie in 𝑇 .

• There is a special isometric path 𝑃 in 𝐵′
𝑘
(𝐼) containing 𝑣0, 𝑣𝑛 such that 𝑃 has eccentricity 𝑚′ in 𝐵 (𝐼).

The above discussion implies that 𝐵′
𝑘
(𝐼) has an 𝑚′-cover of size 𝑘 if and only if 𝐵 (𝐼) has an 𝑚′-cover of cardinality one. Moreover, 

𝐵′
𝑘
(𝐼) is planar and has maximum degree at most 3. Now we construct a 𝐻 = 𝑃𝑘 (𝐼) by applying Lemma 4 on 𝐺 = 𝐵′

𝑘
(𝐼) and 𝓁 be 

the integer such that 𝐻 = 𝐺𝓁 . We prove that 𝐺 has an 𝑚′-cover of cardinality 𝑘 if and only if 𝐻 has an 
(
𝑚′𝓁 + ⌈𝓁∕2⌉)-cover of 

cardinality 𝑘.
If 𝐺 has an 𝑚′-cover of cardinality 𝑘, then Lemma 16 implies that 𝐻 has an 

(
𝑚′𝓁 + ⌈𝓁∕2⌉)-cover of cardinality 𝑘. Now assume 

that 𝐻 has an 
(
𝑚′𝓁 + ⌈𝓁∕2⌉)-cover  of cardinality 𝑘. Let 𝑇𝓁 be the induced subgraph of 𝑃𝑘 (𝐼) isomorphic to the 𝓁-subdivision of 

𝑇 . The structure of 𝑇𝓁 implies that there will be 𝑘−1 isometric paths whose vertices lie completely in 𝑇𝓁 . Let 𝐵𝓁 denote the subgraph 
of 𝑃𝑘 (𝐼) isomorphic to the 𝓁-subdivision of 𝐵 (𝐼). Since the original vertices 𝑣0 and 𝑣𝑛 are still cut vertices in 𝑃𝑘 (𝐼), there is a special 
path 𝑃 ∈  such that all vertices in 𝐵𝓁 are at a distance at most 𝑚′𝓁 + ⌈𝓁∕2⌉ from 𝑃 . Now apply Lemma 17 to conclude that all 
vertices of 𝐵 (𝐼) which also belongs to 𝐵′

𝑘
(𝐼) are at distance 𝑚′ from 𝐺(𝑃 ). Therefore, the set ′ = {𝐺(𝑃 ) ∶ 𝑃 ∈ } is an 𝑚′-cover of 

𝐺.
The above discussion implies that 𝑃𝑘 (𝐼) has an 

(
𝑚′𝓁 + ⌈𝓁∕2⌉)-cover of cardinality 𝑘 if and only if 𝐼 is satisfiable. This completes 

the proof.

6. Conclusion

Constant factor approximability of 𝑘-Geodesic Center in general graphs for 𝑘 ≥ 2 remains open. From both application and 
theoretical point of views, approximability of 𝑘-Geodesic Center on planar graphs is an important open question. An approximation 
scheme even for MESP on planar graphs is open. Studying whether 𝑘-Geodesic Center (for arbitrary 𝑘) is fixed-parameter tractable 
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with respect to tree-width or hyperbolicity are interesting research questions. Polynomial solvability of 𝑘-Geodesic Center in 
superclasses of trees (e.g. outerplanar graphs), solid grids (i.e., partial grids where internal faces have unit area), are open as well. 
For graphs with bounded isometric path complexity (including hyperbolic graphs), IPC admits a constant factor approximation 
algorithm [10]. It would be interesting to explore if 𝑘-Geodesic Center admits an additive approximation algorithm on graphs 
with bounded isometric path complexity? Finally, investigating the approximability or fixed-parameter tractability of 𝑘-Geodesic 
Center on weighted graphs are interesting directions.
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