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Abstract

For an integer k ≥ 1, the objective of k-Geodesic Center is to Ąnd a set C of k isometric

paths such that the maximum distance between any vertex v and C is minimised. Introduced by

Gromov, δ-hyperbolicity measures how treelike a graph is from a metric point of view. Our main

contribution in this paper is to provide an additive O(δ)-approximation algorithm for k-Geodesic

Center on δ-hyperbolic graphs. On the way, we deĄne a coarse version of the pairing property

introduced by Gerstel & Zaks (Networks, 1994) and show it holds for δ-hyperbolic graphs. This

result allows to reduce the k-Geodesic Center problem to its rooted counterpart, a main idea

behind our algorithm. We also adapt a technique of Dragan & Leitert, (TCS, 2017) to show that for

every k ≥ 1, k-Geodesic Center is NP-hard even on partial grids.

2012 ACM Subject ClassiĄcation Theory of computation → Graph algorithms analysis; Theory of

computation → Approximation algorithms

Keywords and phrases Hyperbolicity, approximation algorithms, Isometric paths, Minimum eccent-

ricity shortest paths.
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1 Introduction

Given a graph G, the k-Geodesic Center problem asks to Ąnd a collection C of k isometric

paths such that the maximum distance between any vertex and C is minimised. This problem

may arise in determining a set of k "most accessible" speedy line routes in a network and

can Ąnd applications in communication networks, transportation planning, water resource

management and Ćuid transportation [24]. The decision version of this problem asks, given a

graph G and two integers k and R, whether there exist a collection C of k isometric paths

such that any vertex of G is at distance at most R from C.

k-Geodesic Center is related to several algorithmic problems studied in the literature.

k-Geodesic Center is a generalisation of Minimum Eccentricity Shortest Path

(MESP) where given an integer R, the objective is to decide if there exists an isometric

path P such that the maximum distance between any vertex and P is at most R [24].

Clearly, 1-Geodesic Center is equivalent to MESP. If, instead of isometric paths, we

asks whether there exists a subset of k vertices of eccentricity at most R, we obtain the

decision version of k-center which is one of the most studied facility location problem in

the literature [30, 31, 35, 41, 42]. The solution of a k-Geodesic Center can be thought

of as a relaxation of k-Center. k-Geodesic Center is also related to Isometric Path

Cover, where the objective is to Ąnd the minimum number of isometric paths that contains

all vertices of the input graph. Study of the algorithmic aspects of Isometric Path Cover

has garnered much attention recently [11, 25, 27, 13].

All the three problems (i.e., IPC, MESP, and k-Center) are NP-hard for general graphs

but are known to admit exact polynomial time algorithms when the given graph G is a tree
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[11, 24, 43]. This raises the question about the complexity of these problems when the input

graph is close to a tree? In this paper, we consider the graph parameter δ-hyperbolicity [29],

which measures how treelike a graph is from a metric point of view. See Section 2 for a

formal deĄnition. Graphs with constant δ-hyperbolicity are called hyperbolic graphs. From a

practical perspective, the study of δ-hyperbolicity of graphs is motivated by the fact that

many real-world graphs are tree-like [1, 2, 32] or have small δ-hyperbolicity [8, 26, 40]. From

a theoretical perspective, many popular graph classes like interval graphs, chordal graphs,

αi-metric graphs [22], graphs with bounded tree-length [21], link graphs of simple polygons

[16] have constant δ-hyperbolicity.

When k is part of the input, k-Geodesic Center remains NP-hard even on chordal

graphs. This follows from the fact that Isometric Path Cover remains NP-hard on chordal

graphs [12]. Since chordal graphs have hyperbolicity at most 1, it follows that k-Geodesic

Center remains NP-hard even on graphs with hyperbolicity at most 1.

Polynomial time approximation algorithms with an error (additive or multiplicative)

depending only on the δ-hyperbolicity of G exist for MESP [39], k-Center [18, 26], and

Isometric Path Cover [12]. Motivated by the above results, in this paper, we provide an

additive O(δ)-approximation algorithm1 for k-Geodesic Center on δ-hyperbolic graphs

for arbitrary k. The same algorithmic approach leads to an exact polynomial time algorithm

in case of trees.

▶ Theorem 1. Let G be a δ-hyperbolic graph and k be an integer. Then, there is a polynomial

time O(δ)-additive approximation algorithm for k-Geodesic Center on G.

Our algorithm has mainly two stages. In the Ąrst stage, we solve the ŞrootedŤ version

of (2k − 1)-Geodesic Center, where we require that all isometric paths in the solution

have a common end-vertex. Then to reduce the number of isometric paths, we use the

shallow pairing property of δ-hyperbolic graphs. See DeĄnition 6. Intuitively, this property

ensures that the 2k-many end-vertices of the 2k − 1 isometric paths obtained in the Ąrst

stage can be ŞpairedŤ to obtain k many isometric paths which together provide an additive

O(δ)-approximation algorithm for k-Geodesic Center. We think that the shallow pairing

property could also be interesting in itself and for other algorithmic applications.

We also adapt a technique of Dragan & Leitert, (TCS Š17) to show that for every k ≥ 1,

k-Geodesic Center is NP-hard even on partial grids. A graph is a partial grid if it is a

subgraph of (k × k)-grid for some positive integer k.

▶ Theorem 2. For every integer k ≥ 1, k-Geodesic Centre is NP-hard even on partial

grids.

Related Works To the best of our knowledge, the computational complexity of k-Geodesic

Center for arbitrary k have not been studied before. Therefore, we begin by surveying the

relevant results on 1-Geodesic Center i.e., the MESP problem. Dragan & Leitart [24] gave

several constant factor approximation algorithms for MESP with varying running times on

general graphs. In an another paper [23], the authors proposed polynomial time algorithms

for MESP on graph classes like chordal graphs and distance hereditary graphs. In fact the

authors proved that, MESP admits an O(nγ+3)-time algorithm on graphs with projection

1 A feasible solution for a minimization problem is said to be additive α-approximate if its objective
value is at most the optimum value plus α. An additive α-approximation algorithm for a minimization
problem is a polynomial time algorithm that produces an additive α-approximate solution for every
instance of the input.
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gap at most γ, and n vertices. The parameter projection gap generalizes the notion of

δ-hyperbolicity. Their result implies that MESP admits an O(n4δ+4)-time algorithm on

graphs with δ-hyperbolicity at most δ, and n vertices. We do not know if MESP admits a

Ąxed parameter algorithm with respect to δ-hyperbolicity. The same authors also proposed

additive approximation algorithms for graphs with bounded tree-length. Fixed parameter

tractability of MESP with respect to various graph parameters like modular width, distance

to cluster graph, maximum leaf number, feedback edge set, etc. have been also studied

recently [5, 34]. As noted by Kučera and Such‘y [34], the Ąxed parameter tractablility of

MESP with respect to tree-width is an interesting open problem. (Tree-width measures how

far a graph is from a tree from a structural point of view.) Relation of MESP with other

problems like the minimum distortion embedding on a line [24] and k-laminar problem [6]

have been established.

Dragan & Leitart [23] observed that MESP admits an additive O(δ log n)-approximation

algorithm on graphs with δ-hyperbolicity at most δ and n vertices. Their proof uses

the fact that the tree-length of δ-hyperbolic graphs are at most O(δ log n). As the best

known bound for tree-length of δ-hyperbolic graphs is O(δ log n), this method seems not

directly provide constant error in case of hyperbolic graph. Then, in the PhD Thesis of

A.O. Mohammed [39], an O(δ)-approximation algorithm for MESP on δ-hyperbolic graphs

have been proposed. Other examples include fast additive O(δ)-approximation algorithms

for Ąnding the diameter, radius, and all eccentricities [16, 17, 18] as well as packing and

covering for families of quasiconvex sets [15]. Theorem 1 adds k-Geodesic Center in

the list of problems admitting an additive approximation algorithm depending only on the

δ-hyperbolicity of the input graph. Recently, the computational complexity of maximum

independent set of planar δ-hyperbolic graphs have been studied [33].

Organisation: In Section 2 we introduce some terminologies. In Section 3, we introduce

the notion of shallow pairing and prove its existence in δ-hyperbolic graphs. In Sections 4

and 5, we prove Theorems 1 and 2, respectively.

2 Preliminaries

Basic notations: For two vertices u, v ∈ V (G), σ(u, v) shall denote an (u, v)-isometric path

in G and the length (i.e., the number of edges) in σ(u, v) is denoted as d(u, v), the distance

between u and v. If an isometric path P of G has a vertex r as end vertex, then P is called

an r-path.

For two sets S1, S2 ⊆ V (G) of vertices, d(S1, S2) = min¶d(u, v) : u ∈ S1, v ∈ S2♢ is the

distance between S1 and S2. For convenience, if one subset of vertices is a singleton, we

abbreviate d(¶v♢, S) by d(v, S). For an integer k and a set of vertices S, the k-neighborhood

(or k-ball) around S, denoted as Bk (S), is the set of all vertices v such that d(v, S) ≤ k. For

an integer R, a collection C of isometric paths of G is an R-cover of G if

⋃

P ∈C

BR (V (P )) = V (G)

For an integer k, the symbol R∗
k shall denote the minimum integer for which there is a

R∗
k-cover C of G with ♣C♣ = k. If every path in C is an r-path, then C is an (r, R)-cover of G.

For an integer R, and a vertex r, a subset S ⊆ V (G) is a (r, R)-packing if the R-neighborhood

of any r-path P contains at most one vertex of S, i.e., ♣BR (V (P )) ∩ S♣ ≤ 1. Note that

if S is an (r, R)-packing of G then any (r, R)-cover of G has size at least ♣S♣. Indeed, the

R-neighborhood of any r-path covers at most one vertex in S. Hence, it is not possible to
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Figure 1 A δ-thin geodesic triangle

cover S with less than ♣S♣ r-paths.

DeĄnitions related to δ-hyperbolicity: Let (X, d) be a metric space. A geodesic

segment joining two points x and y from X is a map ρ from the segments σ(a, b) of length

♣a − b♣ = d(x, y) to X such that ρ(a) = x, ρ(b) = y, and d(ρ(s), ρ(t)) = ♣s − t♣ for all

s, t ∈ σ(a, b). A metric space (X, d) is geodesic if every pair of points in X can be joined by

a geodesic. We will denote by σ(x, y) any geodesic segment connecting the points x and y.

Introduced by Gromov [29], δ-hyperbolicity measures how treelike a graph is from a

metric point of view. Recall that a metric space (X, d) embeds into a tree network (with

positive real edge lengths), if and only if for any four points u, v, w, x the two larger of the

distance sums d(u, v) + d(w, x), d(u, w) + d(v, x), and d(u, x) + d(v, w) are equal. A metric

space (X, d) is called δ-hyperbolic if the two larger distance sums differ by at most 2δ. For a

metric space (X, d), the Gromov product of two points x, y with respect to a third point z is

deĄned as

(x♣y)z =
1

2
(d(x, z) + d(z, y) − d(x, y))

Equivalently, a metric space (X, d) is δ-hyperbolic if for any four points u, v, w, x,

(u♣w)x ≥ min ¶(u♣v)x , (v♣w)x♢ − δ.

A connected graph G = (V, E) equipped with standard graph metric dG is δ-hyperbolic if

(V, dG) is a δ-hyperbolic metric space. The δ-hyperbolicity δ(G) of a graph G is the smallest

δ such that G is δ-hyperbolic.

There exists several equivalent deĄnitions of δ-hyperbolic metric spaces involving different

but comparable values of δ. In the proof of Theorem 1, we will use the deĄnition employing

δ-thin geodesic triangles. A geodesic triangle ∆ (x, y, z) is a union σ(x, y)∪σ(x, z)∪σ(y, z) of

three geodesic segments connecting these vertices. Let mx be the point of the geodesic σ(y, z)

located at distance αy := (x♣z)y from y. Then mx is located at distance αz := (x♣y)z from

z because αy + αz = d(y, z). Analogously, deĄne the points my ∈ σ(x, z) and mz ∈ σ(x, y)

both located at distance αx := (y♣z)x from x; see Figure 1.

There exists a unique isometry φ which maps the geodesic triangle ∆ (x, y, z) to a star

T (x, y, z) consisting of three solid segments σ(x′, m′), σ(y′, m′), and σ(z′, m′) of length αx,

αy, and αz, respectively. This isometry maps the vertices x, y, z of ∆ (x, y, z) to the respective

leaves x′, y′, z′ of T (x′, y′, z′) and the points mx, my, and mz to the center m of this tripod.

Any other point of T (x′, y′, z′) is the image of exactly two points of ∆ (x, y, z) . A geodesic

triangle ∆ (x, y, z) is called δ-thin [3] if for all points u, v ∈ ∆ (x, y, z) , φ(u) = φ(v) implies

d(u, v) ≤ δ.
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The following result shows that the δ-hyperbolicity of geodesic space can be approximated

by the maximum thinness of its geodesic triangles.

▶ Proposition 3 ([3, 9, 29]). Geodesic triangles of any geodesic δ-hyperbolic space are 4δ-thin.

Conversely, geodesic space with δ-thin triangles are δ-hyperbolic.

Every graph G = (V, E) equipped with its standard distance dG can be transformed into

a geodesic space (X, d) by replacing every edge e = (u, v) by a solid segment [u, v] of length

1. These segments may intersect only at their common ends. Then (V, dG) isometrically

embeds naturally in (X, d). The thinness τ(G) of a graph G is the smallest integer δ, such

that all geodesic triangles of the geodesic space arising from G are δ-thin. When thinness of

a graph is δ, then it is also called a δ-thin graph.

Subdivisions and partial grids: For a graph G, its ℓ-subdivision, denoted as Gℓ, is

obtained by replacement of all its edges by paths of a Ąxed length ℓ ≥ 1. An equal subdivision

of G is an ℓ-subdivision for some ℓ ≥ 1. The vertices of G in Gℓ are the original vertices. We

shall use the following result.

▶ Lemma 4 ([12]). Let G be a planar graph with maximum degree 4. Then there exists a

partial grid graph H, which is an equal subdivision of G and contains at most O(♣V (G)♣3)

vertices.

3 Pairings and shallow pairings

In this section we Ąrst recall the deĄnition of the pairing property following the terminology

of [4]. Then, we introduce a coarse version of this property, called shallow pairing property2,

and show that this relaxed property holds for δ-hyperbolic graphs.

Given a connected graph G, a proĄle of length n is any sequence π = (x1, . . . , xn) of n

vertices of G. The total distance of a vertex v of G is deĄned by Tπ(v) =
∑n

i=1
d(v, xi). A

pairing P is a partition of an even proĄle π of length n = 2k, into k disjoint pairs. For a

pairing P , deĄne Dπ(P ) =
∑

¶a,b♢∈P d(a, b). The notion of pairing was deĄned by Gerstel

and Zaks [28]; they also proved the following weak duality between the functions Tπ and Dπ:

▶ Lemma 5 ([28]). For any even proĄle π of length n = 2k of a connected graph G, for any

pairing P of π and any vertex v of G, Dπ(P ) ≤ Tπ(v) and the equality holds if and only if

v ∈ ⋂

¶a,b♢∈P I(a, b).

We say that a graph G satisĄes the pairing property if for any even proĄle π there exists

a pairing P of π and a vertex v of G such that Dπ(P ) = Tπ(v), i.e., the functions Tπ and

Dπ satisfy the strong duality. Such a pairing is called a perfect pairing. By Lemma 5, the

pairing property of [28] coincides with the intersecting-intervals property of [36]. It was

shown in [28] that trees satisfy the pairing property. More generally, it was shown in [37]

and independently in [19] that cube-free median graphs also satisfy the pairing property.

It was proven in [36] that the complete bipartite graph K2,n satisĄes the pairing property.

As observed in [36], the 3-cube is a simple example of a graph not satisfying the pairing

property.

In general, δ-hyperbolic graphs do not satisfy the pairing property, but, as shown below,

they satisfy some coarse variant of the pairing property. Before deĄning this variant, let us

Ąrst deĄne the notion of γ-shallow pairing

2 The notion of approximate (shallow) pairing in hyperbolic graphs was deĄned by Victor Chepoi, who
also asked the question about their existence.
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▶ DeĄnition 6 (γ-shallow pairing). Let G be a graph and π be an even proĄle of length 2k. A

γ-shallow pairing of π is a pairing P such that, there exists a vertex v with (x♣y)v ≤ γ for

every ¶x, y♢ ∈ P.

In the deĄnition of a perfect pairing P , the vertex v belongs to every interval between a pair

of vertices in P. As the following lemma shows, in the deĄnition of a γ-shallow pairing Pγ ,

the vertex v is at distance at most γ + τ(G) from every isometric path between a pair of

vertices in Pγ .

▶ Lemma 7. Let G be a δ-thin graph, π be an even proĄle of length 2k and P be a γ-shallow

pairing of π. Then there exists a vertex v such that d(v, σ(x, y)) ≤ γ + δ for every geodesic

σ(x, y) with ¶x, y♢ ∈ P.

Proof. By deĄnition of a γ-shallow pairing, there exists a vertex v such that (x♣y)v ≤ γ

for every ¶x, y♢ ∈ P. For any pair of vertices ¶x, y♢ ∈ P, consider the geodesic triangle

∆(x, y, v) and let σ(v, x), σ(v, y), and Q be the sides of this triangle. Let x′, y′ be the

points of σ(v, x) and σ(v, y), respectively, located at distance (x♣y)v from v. Since G is

δ-thin, d(x′, y′) ≤ δ, moreover d(x′, z′) ≤ δ and d(y′, z′) ≤ δ, where z′ is the point of Q at

distance (y♣v)x from v and at distance (x♣v)y from y. Since, (x♣y)v ≤ γ, we conclude that

d(v, Q) ≤ d(v, z′) ≤ d(v, x′) + d(x′, z′) ≤ γ + δ. ◀

We say that a graph G satisĄes the γ-shallow pairing property if for any even proĄle π there

exists a γ-shallow pairing P of π.

The existence and the computation in polynomial time of a (2δ + 1

2
)-shallow pairing in a

δ-thin graph G can be obtained using the concept of Ąber that was introduced in [15]. For a

vertex u ∈ V (G) and a proĄle π, the Ąber of x with respect to a vertex u is the set of vertices

Fu(x) = ¶y ∈ π : (x♣y)u ≥ 2δ + 1♢.

From Claim 1 and 2 of [15], the following lemma holds.

▶ Lemma 8. For any graph G and any even proĄle π of length 2k, there is a vertex v ∈ V (G)

such that ♣Fv(x)♣ ≤ k for any vertex x ∈ π.

Lemma 8 is useful to prove the following result:

▶ Proposition 9. Any δ-thin graph G satisĄes the (2δ+ 1

2
)-shallow pairing property. Moreover,

for any δ-thin graph G with n vertices and m edges, and any even proĄle π of length 2k, a

(2δ + 1

2
)-shallow pairing of π can be computed in O(mn2) time.

Proof. First, we will prove that the vertex v whose existence is guaranteed by Lemma 8 can

be calculated efficiently. Indeed, an O(mn2) time algorithm was given in [14] to compute

the thinness δ = τ(G) of a graph G with n vertices and m edges. The matrix of distances

between every pair of vertices can be computed in O(mn) time. Then, for every vertex

u ∈ V (G), it is possible to compute in O(k2) time the Gromov products (x♣y)u for every pair

of vertices x, y ∈ π. Within the same running time, it is possible to also compute the Ąbers

Fu(x) for every x ∈ π. Indeed, it suffices to add y to Fu(x) and x to Fu(y) when we compute

a value (x♣y)u exceeding 2δ + 1

2
. If the size of a Ąber Fu(x) becomes larger than k then we

can abort and try the next vertex u. The procedure stops once we have found a vertex v such

that Fv(x) ≤ k for every vertex x ∈ π. By Lemma 8, this happens for at least one vertex

v ∈ V (G). Hence, it is possible to Ąnd in O(mn + nk2) time a vertex v such that ♣Fv(x)♣ ≤ k

for every x ∈ π. Let H be the graph deĄned on the vertices of π by adding an edge between
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two vertices x and y whenever (x♣y)v ≤ 2δ + 1

2
. By the choice of v, every vertex of H has

degree at least k. By DiracŠs theorem, H is Hamiltonian and thus has a perfect matching M.

Such a perfect matching can be computed in O(
√

nm) time [7, 38]. The pairing deĄned by

the end-vertices of edges in M is a (2δ + 1

2
)-shallow pairing of π that can be computed in

O(mn2) time. Indeed, the running time is dominated by the algorithm that computes the

thinness of G. ◀

In the next section, for any pairing P, we will denote by S(P ) a collection of isometric

paths, one for each pair of vertices in P, i.e., S(P ) := ¶σ(x, y) : ¶x, y♢ ∈ P♢ .

4 Additive approximation algorithm

In this section, we prove Theorem 10 which implies Theorem 1 by Proposition 3.

▶ Theorem 10. Let G be a δ-thin graph with m edges, n vertices and k be an integer.

Then, Algorithm 3 is a O(mn2 log n)-time (6δ + 1)-additive approximation algorithm for

k-Geodesic Center on G.

We provide a brief outline of the proof for the above theorem and organisation of this

section. A collection C of isometric paths is ŞrootedŤ if all the paths in C have a common

end-vertex. First we show in Section 4.1, that the rooted version of the k-Geodesic Center

problem where we require that the collection of isometric paths is rooted can be solved in

polynomial time up to an additive 2δ error in δ-thin graphs. For that, we use a primal dual

algorithm and a dichotomy to Ąnd an integer R such that there is a collection of 2k − 1

isometric rooted paths of eccentricity R + 2δ and no such collection has eccentricity smaller

than R. Then in Section 4.2, we show that any collection C of k isometric paths can be

transformed into a rooted collection C′ of size 2k − 1 such that the eccentricity of C′ is at

most the eccentricity of C plus δ. From this observation and the choice of R, we conclude

that no collection of k isometric paths has eccentricity smaller than R − δ. To transform the

rooted collection returned by the primal-dual algorithm into a non rooted collection of size k,

we also need a converse result. For that, using the (2δ + 1

2
)-shallow pairing property of δ-thin

graphs, in Section 4.3, we show that any rooted collection C′ of 2k − 1 isometric paths can

be transformed into a non rooted collection C of k isometric paths such that the eccentricity

of C is at most the eccentricity of C′ plus 3δ + 1. We complete the proof in Section 4.4 as

follows: the rooted collection of eccentricity R + 2δ computed by our primal-dual algorithm

can be transformed into a collection of size k and eccentricity R + 5δ + 1. Since there is no

such collection with an eccentricity less than R − δ, the collection of eccentricity R + 5δ + 1

is optimal up to a 6δ + 1 error.

4.1 An algorithm for the Rooted k-Geodesic Center problem

In this Section, we present an algorithm that, given a δ-thin graph G, computes an integer R

such that no collection of 2k − 1 rooted isometric paths has eccentricity smaller than R and

there is a collection of 2k − 1 isometric rooted paths of eccentricity R + 2δ. Our description

of this algorithm proceeds in two steps. First, we describe Algorithm 1. Given a graph G,

a root r ∈ V (G) and integer R, Algorithm 1 outputs either an (r, R + 2δ)-cover of G of

size 2k − 1 or a (r, R)-packing of size 2k. Then, Algorithm 2 uses Algorithm 1 to perform

a dichotomy. For every vertex u ∈ V (G), Algorithm 2 computes the smallest value Ru for

which Algorithm 1 outputs a cover. We show that R := min¶Ru : u ∈ V (G)♢ is an integer

such that no collection of 2k − 1 rooted isometric paths has eccentricity smaller than R and
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Algorithm 1

Input : A δ-thin graph G, r ∈ V (G), R ∈ N, an integer k ≤ ♣V (G)♣

Output : (r, R + 2δ)-cover of G of size 2k − 1 or an (r, R)-packing of size 2k.

1 X = V (G); i = 0;

2 while i ≤ 2k − 1 and X ̸= ∅ do

3 Let vi ∈ X be a vertex with d(r, vi) ≥ d(r, z) for all z ∈ X;

4 Let σi be any (r, vi)-isometric path;

5 Xi = ¶u ∈ X : ∃ an r-path P such that d(u, P ) ≤ R and d(vi, P ) ≤ R♢

6 X = X \ Xi;

7 P = P ∪ ¶vi♢;

8 C = C ∪ ¶σi♢.

9 i = i + 1;

10 if X = ∅ then

11 return C;

12 else

13 return P

there is a collection of 2k − 1 isometric rooted paths of eccentricity R + 2δ. We start with

the following technical lemma.

▶ Lemma 11. Let σ(u, v) ∪ σ(v, w) ∪ σ(u, w) be a geodesic triangle with d(w, σ(u, v)) ≤ R.

Then, (u♣v)w ≤ R.

Proof. Let y be a vertex of σ(u, v) at distance at most R from w. Let y′ be the vertex of

∆(u, v, w) such that φ(y) = φ(y′). Without loss of generality, we can assume that y′ ∈ σ(v, w).

By triangle inequality, d(w, v) = d(w, y′)+d(y′, v) ≤ d(w, y)+d(y, v). Since d(v, y′) = d(v, y),

we get d(w, y′) ≤ d(w, y). Hence, (u♣v)w ≤ d(w, y′) ≤ d(w, y) ≤ R. ◀

▶ Lemma 12. Algorithm 1 either returns an (r, R)-packing of size 2k or an (r, R + 2δ)-cover

of G of size at most 2k − 1.

Proof. First assume that Algorithm 1 returns a subset of vertices P. Suppose there exists

two vertices ¶vi, vj♢ ⊆ P with i < j such that (a) vi, vj were included in P at the ith and jth

iteration of Algorithm 1, and (b) there exists an r-path P such that ¶vi, vj♢ ⊆ BR (V (P ))∩P.

But then vj ∈ Xi and therefore was removed from X in the ith iteration, a contradiction.

Now assume that Algorithm 1 returns a collection of r-paths C. For a vertex u ∈ V (G),

let vi ∈ P be the vertex such that u ∈ Xi when u was removed from X. By deĄnition of Xi,

there exists an r-path P such that d(u, P ) ≤ R and d(vi, P ) ≤ R. Let x be the end-vertex of

P distinct from r. Let σi be the r-path added to C by Algorithm 1 during the ith iteration

and σ(r, u) be any isometric path between r and u. We distinguish two cases (see Figure 2).

Case 1. First suppose that (u♣x)r ≤ (vi♣x)r. Let mi, m′
i, m′′

i be the points of σi,

P and σ(r, u) at distance (u♣x)r from r. Since d(u, σ(r, x)) ≤ R, Lemma 11 implies

d(u, m′′
i ) = (r♣x)u ≤ R. Hence, the δ-thinness of the geodesic triangles σ(r, u)∪σ(u, x)∪P

and σi ∪ σ(vi, x) ∪ P implies d(u, mi) ≤ d(u, m′′
i ) + d(m′′

i , m′
i) + d(m′

i, mi) ≤ R + 2δ.

Case 2. Now, assume that (vi♣x)r ≤ (u♣x)r. Let mi, m′
i, m′′

i be the vertices of σi, P and

σ(r, u) at distance (vi♣x)r from r. By the choice of vi, d(r, mi) + d(mi, vi) = d(r, vi) ≥
d(r, u) = d(r, m′′

i ) + d(m′′
i , u). Since d(r, mi) = d(r, m′′

i ), we deduce that d(m′′
i , u) ≤

d(mi, vi). Since d(vi, σ(r, x)) ≤ R, Lemma 11 implies d(m′′
i , u) ≤ d(mi, vi) = (r♣x)vi

≤ R.
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(u|x)r

vi

x

r

mi

u
m′

i

m′′
i

≤ δ ≤ δ
d(u,m′′

i ) ≤ R

d(u,m′′
i ) ≤ R

(x|vi)r

m′′
i

vi

x

u

m′
i

mi

r

≤ δ

≤ δ

Case 1. (u♣x)r ≤ (vi♣x)r Case 2. (u♣x)r > (vi♣x)r

Figure 2 Illustrations for the two cases in the proof of Lemma 12.

Algorithm 2

Input : A δ-thin graph G, an integer k ≤ ♣V (G)♣.

Output : An integer R and an (u, R + 2δ)-cover of size 2k − 1 such that there is no

(v, R′)-cover with R′ < R.

1 for v ∈ V (G) do

2 Let Rv be the smallest R integer for which Algorithm 1 returns a (v, R + 2δ)-cover Cv of

size 2k − 1.

/* The above steps can be implemented by using Algorithm 1 in combination

with a binary search on Rv ∈ ¶0, 1, . . . , ♣V (G)♣♢. */

3 Let u ∈ V (G) such that Ru = min¶Rv : v ∈ V (G)♢.

4 return (Cu, Ru).

Using the thinness of geodesic triangles σ(r, u) ∪ σ(u, x) ∪ P and σi ∪ σ(vi, x) ∪ P, we

derive that d(u, mi) ≤ d(u, m′′
i ) + d(m′′

i , m′
i) + d(m′

i, mi) ≤ R + 2δ.

We conclude that any vertex u ∈ V (G) is at distance at most R+2δ from some path in C. ◀

▶ Lemma 13. Algorithm 2 returns an integer R and a (u, R + 2δ)-cover Cu of G of size

2k − 1 such that, there is no (v, R′)-cover of size 2k − 1 with R′ < R.

Proof. Let (Cu, Ru) be the output of Algorithm 2. Since Ru = min¶Rv : v ∈ V (G)♢ is the

minimum integer R for which Algorithm 1 returns (u, R+2δ)-cover Cu, Algorithm 1 returns a

(v, R′)-packing of size 2k for any R′ < Ru and any v ∈ V (G). Hence, there is no (v, R′)-cover

of size 2k − 1 with R′ < R. ◀

4.2 From non rooted to rooted collection of paths

In the following lemma, we show that if there is an R-cover of size k of a δ-thin graph then

there is a rooted (r, R + δ)-cover of size 2k − 1 of G, for some r ∈ V (G).

▶ Lemma 14. Let C be an R-cover of a δ-thin graph G with ♣C♣ = k, XC the set of end-vertices

of paths in C and r ∈ XC . Then, any collection of isometric paths Cr = ¶σ(r, x) : x ∈ XC \ ¶r♢♢
is an (r, R + δ)-cover of G.
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x

r

r
′

x
′

mx

mr

⌊(r|x′)x⌋ ⌈(r|r′)x⌉

≤ δ

≤ δ

Figure 3 Illustration of the notations used in Proof of Lemma 15.

Proof. For a vertex u ∈ V (G), let P = σ(v1, v2) ∈ C be a path such that d(u, P ) ≤ R and

w ∈ V (P ) be a vertex with d(u, w) ≤ R. Let P1, P2 ∈ Cr where Pi = σ(r, vi). Since the

geodesic triangle P ∪ P1 ∪ P2 of G is δ-thin, either d(w, P1) ≤ δ or d(w, P2) ≤ δ. Therefore,

either d(u, P1) ≤ R + δ or d(u, P2) ≤ R + δ. Hence, Cr is a (r, R + δ)-cover of G. ◀

4.3 From rooted to non rooted collection of paths

Conversely, the next lemma shows that, from a set of rooted isometric paths of a δ-thin

graph of size 2k − 1 and eccentricity R, it is possible to construct a (R + 3δ + 1)-cover of G

of size k.

▶ Lemma 15. Let r be a vertex of a δ-thin graph G. For integers R and k, let Cr be an

(r, R)-cover of G with ♣Cr♣ = 2k − 1. Let πr be a proĄle of length 2k containing all end

vertices of the paths in Cr and Pr be a (2δ + 1

2
)-shallow pairing of πr. Then, S(Pr) is a

(R + 3δ + 1)-cover of G of size k.

Proof. Let u ∈ V (G) and P = σ(r, x) ∈ Cr be an r-path with d(u, P ) ≤ R. Let ¶x′, r′♢ ⊆ πr

be the vertices such that ¶x, x′♢ ∈ Pr and ¶r, r′♢ ∈ Pr. By deĄnition of a (2δ + 1

2
)-shallow

pairing, there is a vertex m such that (x♣x′)m ≤ 2δ + 1

2
and (r♣r′)m ≤ 2δ + 1

2
which imply

the following inequalities:

d(x, m) + d(m, x′) − d(x, x′) ≤ 4δ + 1 ⇒ d(x, x′) ≥ d(x, m) + d(m, x′) − (4δ + 1)

d(r, m) + d(m, r′) − d(r, r′) ≤ 4δ + 1 ⇒ d(r, r′) ≥ d(r, m) + d(m, r′) − (4δ + 1)

Combining the above inequalities we derive:

d(x, x′) + d(r, r′) ≥ (d(x, m) + d(m, r′)) + (d(x′, m) + d(m, r)) − (8δ + 2) ≥ d(x, r′)

+ d(x′, r) − (8δ + 2) (1)

Adding d(r, x) to both sides of (1) we get:

d(r, x) + d(x, x′) − d(r, x′) ≥ d(r, x) + d(x, r′) − d(r, r′) − (8δ + 2)

which further implies:

(r♣x′)x ≥ (r♣r′)x − (4δ + 1) (2)
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Algorithm 3

Input : A δ-thin graph G, an integer k ≤ ♣V (G)♣.

Output : A collection of k isometric paths with eccentricity at most R∗

k + (6δ + 1)

1 Let Cu be the (u, Ru)-cover of G returned by Algorithm 2 with G and k as input.

2 Let π be the even proĄle consisting of u and every other end vertex of the u-paths in Cu.

3 Computes a (2δ + 1

2
)-shallow pairing P of π.

4 return S(P ).

Recall that P = σ(r, x) ∈ Cr. Let mx be the point of the geodesic P such that d(x, mx) =

⌊(r♣x′)x⌋ and mr be the point of the geodesic P such that d(x, mr) = ⌈(r♣r′)x⌉. Let z be the

vertex of P with d(u, z) ≤ R. Consider the following cases.

If z lies in the (x, mx)-subpath of P , consider any isometric path σ(r, x′). Since the

geodesic triangle P ∪ σ(r, x′) ∪ σ(x, x′) is δ-thin, we have that d(z, σ(x, x′)) ≤ δ. Hence,

d(u, σ(x, x′)) ≤ d(u, z) + d(z, σ(x, x′)) ≤ R + δ.

If z lies in the (r, mr)-subpath of P , consider any isometric path σ(r′, x). Since the

geodesic triangle P ∪ σ(r, r′) ∪ σ(r′, x) is δ-thin, we have that d(z, σ(r, r′)) ≤ δ. Hence,

d(u, σ(r, r′)) ≤ d(u, z) + d(z, σ(r, r′)) ≤ R + δ.

Otherwise, z must lie in the (mr, mx)-subpath of P . Due to inequality (2) we have that

d(mr, mx) ≤ 4δ + 2. This implies either d(z, mx) ≤ 2δ + 1 or d(z, mr) ≤ 2δ + 1. Since

the geodesic triangles P ∪ σ(r, x′) ∪ σ(x, x′) and P ∪ σ(r, r′) ∪ σ(x, r′) are δ-thin, we have

d(mx, σ(x, x′)) ≤ δ and d(mr, σ(r, r′)) ≤ δ. If d(z, mx) ≤ 2δ + 1 then d(u, σ(x, x′)) ≤
d(u, z) + d(z, mx) + d(mx, σ(x, x′)) ≤ R + 3δ + 1. Otherwise, d(z, mr) ≤ 2δ + 1 and

d(u, σ(r, r′)) ≤ d(u, z) + d(z, mr) + d(mr, σ(r, r′)) ≤ R + 3δ + 1.

In all three above cases, either d(u, σ(x, x′)) ≤ R + 3δ + 1 or d(u, σ(r, r′)) ≤ R + 3δ + 1. We

conclude that, for any u ∈ V (G), the collection S(Pr) contains an isometric path Q such

that d(u, Q) ≤ R + 3δ + 1, i.e., S(Pr) is a (R + 3δ + 1)-cover. ◀

4.4 Proof of Theorem 10

Let G be a connected δ-thin graph. Let C∗ be a R∗
k-cover of G, πC∗ the proĄle containing

the end-vertices of paths in C∗ and r ∈ πC∗ . Consider the set C∗
r = ¶σ(r, x) : x ∈ πC∗ \ ¶r♢♢.

Due to Lemma 14, we have

C∗
r is a (r, R∗

k + δ) -cover of G. (3)

Now let (Cu, Ru) be the output of Algorithm 2. By Lemma 13, there is no (r, R′)-cover of

size 2k − 1 with R′ < Ru. Due to (3), there exists a (r, R∗
k + δ)-cover of G of size 2k − 1.

Hence, Ru ≤ R∗
k + δ and Cu has eccentricity at most Ru + 2δ ≤ R∗

k + 3δ. Let πu be the

proĄle consisting of u and every other end vertex of the u-paths in Cu. Observe that πu is an

even proĄle of length of 2k. By Proposition 9, it is possible to compute in O(mn2)-time a

(2δ + 1

2
)-shallow pairing P ′ of πu. Due to Lemma 15, S(P ′) is an (R∗

k + 6δ + 1)-cover of size

k. This completes the proof of Theorem 10. Algorithm 3 describes our complete algorithm

for k-Geodesic Center on δ-thin graphs.

Clearly, the running times of Algorithm 1 and Algorithm 2 are O(k(n+m)) and O(nk(n+

m) log n), respectively. Due to Proposition 9, computing a shallow pairing takes O(mn2)-time.

Therefore, the total running time of Algorithm 3 is O(mn2 log n).
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4.5 The special case of trees

In case of trees, the same algorithmic approach leads to an exact polynomial time algorithm.

Indeed, since trees are 0-hyperbolic, Lemma 13 implies that Algorithm 2 computes a rooted

(r, R)-cover C of size 2k − 1 such that there is no (r′, R′)-cover with R′ < R. By Lemma 12,

an optimal R∗-cover of size k can be transformed into a rooted (r′, R∗)-cover of size 2k − 1.

Hence, R∗ ≥ R. Since trees satisfy the pairing property, any (r, R)-cover of size 2k − 1 can be

transformed into an R-cover of size k. This implies R ≥ R∗. Hence, in case of trees, R = R∗

and the solution returned by Algorithm 3 is an optimal R∗-cover of size k.

5 NP-hardness for partial grids

In this section we prove Theorem 2. Our proof is an adaptation of the NP-hardness of

1-Geodesic Center on planar bipartite graphs proved by Dragan & Leitert (Corollary 8,

[24]). First we prove the following lemmas.

▶ Lemma 16. Let G be a graph and H = Gℓ for some ℓ ≥ 1. Then for integers m, k, if G

has an m-cover of size k then H has an (mℓ + ⌊ℓ/2⌋)-cover of size k.

Proof. Let C be an m-cover of G of size k and C′ be a set of paths in H which are ℓ-subdivision

of the paths in C. Clearly, all paths in C′ consists of isometric paths in H. Let u be an

original vertex of H and P ∈ C be a path such that d(u, V (P )) ≤ m in G. Let P ′ ∈ C′ be

the ℓ-subdivision of P . Clearly, d(u, V (P ′)) ≤ mℓ. Now consider a vertex u ∈ V (H) which

is not a vertex of G. Hence there exists an original vertex u′ ∈ V (H) with d(u, u′) ≤ ⌊ℓ/2⌋.

Let P ∈ C be a path such that d(u′, V (P )) ≤ m in G and P ′ ∈ C′ be the ℓ-subdivision of P .

Then d(u, V (P ′)) ≤ d(u, u′) + d(u′, V (P ′)) ≤ mℓ + ⌊ℓ/2⌋. ◀

Let G be a graph and H = Gℓ for some ℓ ≥ 1. For an isometric path P of H between

two original vertices u, v, let G(P ) denote the (u, v)-isometric path in G such that P is an

ℓ-subdivision of G(P ). Intuitively, G(P ) is the original isometric path whose ℓ-subdivision

created P in H.

▶ Lemma 17. Let G be a graph and let H = Gℓ for some ℓ ≥ 1. Let P be an isometric path of

H between two original vertices u, v. Let w be an original vertex of G such that d(w, V (P )) <

(r + 1)ℓ for some positive integer r. Then, for Q = G(P ) we have d(w, V (Q)) ≤ r.

Proof. Let w′ ∈ V (P ) be a vertex which is closest to w in H and P ′ be an (w, w′)-isometric

path in H. Clearly, w′ is an original vertex and therefore G(P ′) exists. Observe that, the

number of original vertices in P ′ is at most r + 1. (Otherwise length of P ′ is at least (r + 1)ℓ

in H which is a contradiction.) Hence length of G(P ) is at most r in G. ◀

Dragan & Leitert [24] reduced the NP-complete Planar Monotone 3-SAT [20] to

show that 1-Geodesic Center is NP-hard on bipartite planar subcubic graphs. Given an

Planar Monotone 3-SAT instance I, the authors constructed a planar bipartite subcubic

graph B (I) and an integer m′ with the following properties.

B (I) has an isometric path with eccentricity at most m′ if and only if I is satisĄable;

there are two special cut vertices v0, vn of B (I) such that any isometric path with

eccentricity at most m′ will contain v0 and vn.

To prove our result, we modify the graph B (I) slightly. First construct a gadget as

follows. Take a path P of length 2k and let the vertices of P be u1, u2, . . . , u2k+1. For each
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j ∈ [2, 2k], take a new path Qj of length m′ and make one of the end-vertex of Qj adjacent

to uj . Let T be the union of P and Qj , j ∈ [2, 2k − 1]. Now make the vertex v0 adjacent to

u1.

We call the modiĄed graph B′
k (I). It is easy to verify that a set P of isometric paths in

B′
k (I) is an m′-cover if and only if the following holds:

There are k − 1 isometric paths in B′
k (I) whose vertices completely lie in T .

There is a special isometric path P in B′
k (I) containing v0, vn such that P has eccentricity

m′ in B (I).

The above discussion implies that B′
k (I) has an m′-cover of size k if and only if B (I)

has an m′-cover of cardinality one. Moreover, B′
k (I) is planar and has maximum degree at

most 3. Now we construct a H = Pk (I) by applying Lemma 4 on G = B′
k (I) and ℓ be the

integer such that H = Gℓ. We prove that G has an m′-cover of cardinality k if and only if

H has an (m′ℓ + ⌈ℓ/2⌉)-cover of cardinality k.

If G has an m′-cover of cardinality k, then Lemma 16 implies that H has an (m′ℓ + ⌈ℓ/2⌉)-

cover of cardinality k. Now assume that H has an (m′ℓ + ⌈ℓ/2⌉)-cover C of cardinality k.

Let Tℓ be the induced subgraph of Pk (I) isomorphic to the ℓ-subdivision of T . The structure

of Tℓ implies that there will be k − 1 isometric paths whose vertices lies completely in Tℓ.

Let Bℓ denote the subgraph of Pk (I) isomorphic to the ℓ-subdivision of B (I). Since the

original vertices v0 and vn are still cut vertices in Pk (I), there is a special path P ∈ C such

that all vertices in Bℓ is at a distance at most m′ℓ + ⌈ℓ/2⌉ from P . Now apply Lemma 17 to

conclude that all vertices of B (I) which also belongs to B′
k (I) is at distance m′ from G(P ).

Therefore, the set C′ = ¶G(P ) : P ∈ C♢ is an m′-cover of G.

The above discussion implies that Pk (I) has an (m′ℓ + ⌈ℓ/2⌉)-cover of cardinality k if

and only if I is satisĄable. This completes the proof.

6 Conclusion

Constant factor approximability of k-Geodesic Center in general graphs for k ≥ 2 remains

open. From both application and theoretical point of views, approximability of k-Geodesic

Center on planar graphs is an important open question. An approximation scheme even

for MESP on planar graphs is open. Studying whether k-Geodesic Center (for arbitrary

k) is Ąxed-parameter tractable with respect to tree-width or hyperbolicity are interesting

research questions. Polynomial solvability of k-Geodesic Center in superclasses of trees

(e.g. outerplanar graphs), solid grids (i.e., partial grids where internal faces have unit area),

are open as well. For graphs with bounded isometric path complexity (including hyperbolic

graphs), IPC admits a constant factor approximation algorithm [10]. It would be interesting

to explore if k-Geodesic Center admits an additive approximation algorithm on graphs

with bounded isometric path complexity? Finally, investigating the approximability or

Ąxed-parameter tractability of k-Geodesic Center on weighted graphs are interesting

directions.
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