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Abstract: Let X be a Calabi–Yau threefold with an elliptic fibration. We investigate
the non-linear Riemann–Hilbert problems associated to the Donaldson–Thomas theory
of fibre classes, and relate them to the Borel sum of the A-model topological string free
energy for such classes.

1. Introduction

There has been a great deal of interest recently in applying techniques from resurgence
analysis to study non-perturbative effects in topological string theory. A central object in
the theory is the free energy, which is a formal series in the topological string coupling
λ. More precisely, the A-model closed string free energy of a Calabi–Yau (CY) threefold
X (in the holomorphic limit) is a series of the form

F(λ, Q) =
∑

g≥0

Fg(Q) λ2g−2, (1.1)

where Fg(Q) coincides with the generating function for genus g Gromov-Witten (GW)
invariants of X . In studying non-perturbative effects it has been very fruitful to consider,
where possible, the Borel sum of the free energy [3,14–16,18]. The latter depends on a
choice of a ray r ⊂ C∗, with the Borel sum for different choices being related by Stokes
jumps. These jumps are conjecturally related to the Donaldson–Thomas (DT) invariants
of X .

One (non-compact) CY threefold that has been much-studied from this point of
view is the resolved conifold. The Borel summability of its A-model free energy was
established in [3,17,22]. The resulting non-perturbative free energy is closely related
to the log of the triple sine function sin3(z | ω1, ω2, ω3)

1 [20]. The Stokes behaviour

1 The multiple sine functions are in turn defined in terms of the multiple gamma functions of Barnes [4].
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of the Borel sums was completely described in [3] and shown to be controlled by the
corresponding DT invariants.

These ideas make contact with a closely related area of research which aims to use
the DT invariants of a CY3 category to construct a geometric structure on the space of
stability conditions [6–8,10,11]. The geometric structure goes by the name of a Joyce
structure, and is built from solutions to a collection of non-linear Riemann–Hilbert
(RH) problems. These problems involve piecewise holomorphic functions on C∗, with
discontinuities prescribed by the DT invariants along a collection of rays, and fixed
asymptotics at 0 and ∞. The existence and uniqueness of solutions for such problems
is not known in general, but several examples have been worked out in detail [6,9,10].

In the case of the resolved conifold the RH problems have unique solutions [1,9],
which are closely related to the Borel sums of the free energy. More precisely, this
statement holds after appropriately fixing the constant term in the asymptotics at ǫ = 0.
The solutions are then given by functions Y r

i (ǫ | ω1, ω2), with i = 1, 2, where r =
R>0 · ζ ⊂ C∗ is a ray, and ǫ ∈ Hr lies in the open half-plane Hr ⊂ C centered on r .
They can be repackaged in terms of functions τ r (ǫ | ω1, ω2) satisfying the equations

∂

∂ωi

log τ r (ǫ | ω1, ω2) =
1

2π i
·

∂

∂ǫ
log Y r

i (ǫ | ω1, ω2). (1.2)

It is these functions τ r (ǫ | ω1, ω2) which are closely related to the Borel summation of
the free energy along the ray r [2,3,9].

The goal of this paper is to address similar questions for compact CY threefolds
with elliptic fibrations. We study the Borel sums of the A-model free energy and its
relation to the RH problem defined by the DT invariants. We only consider the part of
the free energy of X corresponding to fibre classes, i.e. classes β ∈ H2(X, Z) satisfying
π∗(β) = 0. Similarly we only consider DT invariants for coherent sheaves supported
on the fibres of π .

The rest of the introduction contains a detailed summary of our main results. In
general we find a similar situation to that of the resolved conifold, although our results
are not as complete. One significant additional difficulty is that whereas in the case of the
resolved conifold the set of Stokes directions is a closed subset of the circle, for the Borel
sums considered in this paper the Stokes directions are everywhere dense. Nonetheless,
we find that the free energy is again Borel summable at least along almost all non-
Stokes rays, and we construct natural solutions to a weak version of the RH problem
which ignores the asymptotics at ∞. Moreover, the two stories are again related by the
equation (1.2).

1.1. Borel sum of the free energy. In order to state our results in more detail let us briefly
recall the basics of Borel summation. Consider a formal power series F(ǫ) =

∑
i≥1 aiǫ

i .

The Borel transform is the series f (η) =
∑

i≥1 aiη
i−1/(i − 1)!. For simplicity let us

assume that f (η) is the Taylor expansion of a meromorphic function on C which we
also denote by f (η). We consider rays r ⊂ C∗ of the form r = R>0 · ζ with ζ ∈ C∗.
Such a ray is called a Stokes ray if it contains a pole of f (η), otherwise it is a non-Stokes
ray. For a given ǫ ∈ C∗ the series F(ǫ) is said to be Borel summable along a non-Stokes
ray r ⊂ C∗ if the integral

Fr (ǫ) =

∫

r

e−η/ǫ f (η)dη (1.3)



Resurgence and Riemann–Hilbert problems Page 3 of 31   132 

exists. The Borel sum is then defined to be the value of this integral. In practice, given
a non-Stokes ray r ⊂ C∗, we shall only consider the Borel sum for ǫ lying in the open
half-plane Hr = {z ∈ C : Re(z/ζ ) > 0} centered on r .

We will be interested in applying Borel summation to the fibre-class free energy of
the A-model topological string on an elliptic CY threefold X .

Assumption 1.1. By an elliptic CY threefold we mean a smooth projective threefold X ,
with trivial canonical bundle, equipped with a flat map π : X → B whose general fibre
is a genus 1 curve. We always assume that B is smooth, that the singular fibers of π are
reduced and irreducible, and that π has a section. We further assume that the DT/GW
correspondence holds for X .

Under these assumptions the GW invariants of X in the fibre classes were computed
in [21, Section B.3]. See Appendix A for a more detailed discussion. This leads to an
expression

FGW(λ | τ) = −e(X) ·
∑

g≥2

B2g G2g−2(τ )

4g(2g − 2)

(
λ

2π

)2g−2

(1.4)

for the g ≥ 2 part of the fibre-class free energy. It is a formal series in λ whose coefficients
depend on a Kähler parameter τ ∈ C satisfying Im(τ ) > 0. More precisely, τ is the
pairing of the complexified Kähler class B + iω ∈ H2(X, C) with the fundamental class
β ∈ H2(X, Z) of a smooth fibre of π . The expression involves the Bernoulli numbers
B2g , the Eisenstein series G2g−2(τ ), and the topological Euler characteristic e(X).

It will be convenient to set 2π iǫ = λ/2π and view FGW(λ | τ) as a formal series in ǫ.
Furthermore, in order to relate the Borel summations of FGW(ǫ | τ) to the RH problem
below, we consider instead

FGW(ǫ | ω1, ω2) := FGW(ǫ/ω1 | ω2/ω1), (1.5)

where ǫ, ω1, ω2 ∈ C∗ and Im(ω2/ω1) > 0. All our results about FGW(ǫ | ω1, ω2) then
specialize to results about (1.4) by simply taking ω1 = 1 and ω2 = τ . Our main result
concerning the Borel summation of FGW(ǫ | ω1, ω2) is as follows:

Theorem 1.2. Fix ω1, ω2 ∈ C∗ with Im(ω2/ω1) > 0.

(i) The Borel transform of FGW(ǫ | ω1, ω2) is the Taylor expansion of a meromorphic

function on C with double poles at the points a1ω1 + a2ω2 with (a1, a2) ∈ Z2 \ {0}
and no other poles.

(ii) For almost all non-Stokes rays r ⊂ C∗ the series FGW(ǫ | ω1, ω2) is Borel summable

along r provided ǫ lies in the corresponding open half-plane Hr ⊂ C∗.

⊓⊔

More precisely, given a non-Stokes ray r ⊂ C∗, there is a unique real number
α ∈ R\Q such that ±(ω1 + αω2) ∈ r . We show that the Borel sum Fr

GW(ǫ | ω1, ω2)

exists and defines a holomorphic function of ǫ ∈ Hr whenever α does not lie in the
measure-zero subset of R \Q consisting of Liouville irrationals. For a general non-
Stokes ray r ⊂ C∗ we can still associate a meaningful holomorphic function of ǫ ∈ Hr

by using integrals along certain detour paths (see Sect. 2.4). These integrals reduce to the
Borel sums from Theorem 1.2 whenever the ray r corresponds to an element α ∈ R\Q

which is not a Liouville irrational.
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1.2. DT invariants and the RH problem. Let π : X → B be an elliptic CY threefold
satisfying Assumptions 1.1. We consider the full triangulated subcategory D(π) ⊂
Db Coh(X) of the bounded derived category of coherent sheaves consisting of objects
whose set-theoretic support is contained in a finite union of fibres of π . The Chern
character defines a homomorphism

ch : K0(D(π)) → N (π) ⊂ H∗(X, Z), (1.6)

whose image N (π) = Zγ1 ⊕ Zγ2 is a free abelian group of rank 2. It is convenient to
choose the generators γ1, γ2 ∈ N (π) so that if E is a rank r , degree d vector bundle
supported on a smooth fibre of π then ch(E) = −dγ1 + rγ2.

Given a pair of complex numbers ω1, ω2 ∈ C∗ with Im(ω2/ω1) > 0 there is a
natural stability condition on the category D(π), uniquely defined up to the action of the
even shifts, whose central charge Z : K0(D(π)) → C is the composition of the Chern
character (1.6) with the map

Z : N (π) → C, Z(a1γ1 + a2γ2) = a1ω1 + a2ω2. (1.7)

A calculation of Toda [23, Thm. 6.9] shows that the corresponding DT invariants are


(a1γ1 + a2γ2) = −e(X), (a1, a2) ∈ Z2 \ {0}. (1.8)

In [5] it was explained how to associate a RH problem to the data of the lattice N (π),
the central charge (1.7), and the DT invariants (1.8). We will recall the details of this
construction in Sect. 3 below. Here we will simply state the resulting RH problem and
discuss its solution. A ray r ⊂ C∗ will be called a Stokes ray if it contains a point of
the form Z(γ ) with 0 �= γ ∈ N (π), otherwise r will be called non-Stokes. As before,
given a ray r ⊂ C∗, we denote by Hr ⊂ C∗ the open half-plane centered on it.

Problem 1.3. For each non-Stokes ray r ⊂ C∗ find holomorphic functions Y r
i : Hr →

C∗ for i = 1, 2 such that the following statements hold.

(RH1) If � ⊂ C∗ be a convex sector whose boundary consists of non-Stokes rays r1, r2

taken in clockwise order then

Y
r2

i (ǫ) = Y
r1

i (ǫ) ·
∏

γ=a1γ1+a2γ2∈Z−1(�)

(
1 − e−Z(γ )/ǫ

)−ai ·e(X)

(1.9)

for ǫ ∈ Hr1 ∩ Hr2 with 0 < |ǫ| ≪ 1.
(RH2) As ǫ → 0 in any closed subsector of Hr we have Y r

i (ǫ) → 1.

(RH3) There is an N > 0 such that as ǫ → ∞ in Hr there is a bound |ǫ|−N < |Y r
i (ǫ)| <

|ǫ|N .

It is easy to see that if this problem has a solution then it is unique. We shall instead
consider what we call the weak RH problem in which we drop condition (RH3). The
resulting solution is then unique up to simultaneous multiplication of the functions Y r

i
for all rays r ⊂ C∗ by an arbitrary pair of holomorphic functions Pi : C → C∗ satisfying
Pi (0) = 1.

In order to motivate our solution of the weak RH problem, consider again the holo-
morphic functions Fr

GW(ǫ | ω1, ω2) from Sect. 1.1 and define

τ r
GW(ǫ | ω1, ω2) := exp(Fr

GW(ǫ | ω1, ω2)). (1.10)
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As before, for a general non-Stokes ray r it is understood that the above expression
is defined via detour paths. Furthermore, let HGW(ǫ | ω1, ω2) be the formal series in ǫ

without constant term satisfying

∂

∂ǫ
HGW(ǫ | ω1, ω2) = FGW(ǫ | ω1, ω2). (1.11)

When looking for solutions of the RH problem related to τ r
GW(ǫ | ω1, ω2) via (1.2), it

is then natural to consider Borel summations of 2π i · ∂
∂ωi

HGW(ǫ | ω1, ω2). Our second

main result is then as follows:

Theorem 1.4. Fix ω1, ω2 ∈ C∗ with Im(ω2/ω1) > 0. Then there exists a solution

Y r
i (ǫ | ω1, ω2) of the weak RH problem such that log Y r

i (ǫ | ω1, ω2) is the Borel sum of

2π i ∂
∂ωi

HGW(ǫ | ω1, ω2) along r for almost all non-Stokes rays r . Furthermore,

∂

∂ωi

log τ r
GW(ǫ | ω1, ω2) =

1

2π i
·

∂

∂ǫ
log Y r

i (ǫ | ω1, ω2) (1.12)

for all non-Stokes rays r . ⊓⊔

1.3. Further remarks. Our results leave several natural challenges and questions for
future research. For almost all rays r ⊂ C∗ our solution to the weak RH problem can be
expressed (3.14) as an integral

Y r
i (ǫ) = exp

(
−

e(X)

2π i

∫

r

Li1(e
−η/ǫ)

∂

∂ωi

h(η | ω1, ω2)dη

)
, (1.13)

where h(η | ω1, ω2) is closely related to the log of the Jacobi theta function, and is
defined in terms of the Weierstrass sigma function by the equation

h(u | ω1, ω2) = log σ(u | ω1, ω2) − log(u) − 1
2

G2(ω1, ω2)u
2.

An obvious challenge is to upgrade Theorem 1.4 by constructing a solution to the full
Riemann–Hilbert problem. This would involve understanding the behaviour of the inte-
gral (1.13) in the limit ǫ → ∞.

In the case of the resolved conifold, the Borel sum of the free energy along a particular
ray can be re-expressed [3, Theorem 2.1] in terms of the Barnes triple sine function. It
is natural to ask whether the integral (1.13) can also be re-expressed in some more
convenient form, and whether it can be related to known special functions.

A very interesting property of the solution to the RH problem in the case of the
resolved conifold is an unexpected symmetry exchanging the parameter ǫ ∈ C∗ with
the central charge parameter corresponding to the class of a point. A possible relation to
S-duality in string theory was discussed in [3, Section 6]. For the RH problem considered
in this paper the analogous symmetry would exchange the parammeters ǫ and ω2. Since
the solutions to the RH problem already have an obvious SL2(Z) symmetry acting on
the parameters ω1, ω2, this perhaps hints at a possible connection with modular forms
for SL3(Z).
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1.4. Structure of the paper. In Sect. 2 we introduce some modified Weierstrass elliptic
functions and summarize the results from complex analysis that we will need. In Sect. 3
we apply the contents of Sect. 2 to prove our main results, Theorems 1.2 and 1.4. The
proofs of the results in Sect. 2 can be found in Sects. 4 and 5. Section 4 is concerned
with the properties of the Borel transforms, whereas Sect. 5 deals with the proof of Borel
summability and the existence of closely related integrals along detour paths.

2. Summary of the Relevant Complex Analysis

In this section we collect the precise statements of the results from complex analysis
which will be applied to prove Theorems 1.2 and 1.4 in Sect. 3. The proofs for the results
in this section can be found in Sects. 4 and 5.

2.1. Elliptic functions. Define the region

R = {(ω1, ω2) ∈ (C∗)2 : Im(ω2/ω1) > 0}. (2.1)

A point (ω1, ω2) ∈ R defines a lattice

�(ω1, ω2) = Zω1 + Zω2 ⊂ C. (2.2)

We set �∗(ω1, ω2) = �(ω1, ω2) \ {0}. For an even integer n ≥ 2 we introduce the
Eisenstein series

Gn(ω1, ω2) =
∑

ω∈�∗(ω1,ω2)

1

ωn
=

∑

0 �=(a1,a2)∈Z2

1

(a1ω1 + a2ω2)n
. (2.3)

This series is absolutely convergent for n > 2, while for n = 2 it is only conditionally
convergent. We define G2 by the Eisenstein summation

G2(ω1, ω2) :=
∑

a1∈Z\{0}

1

(a1ω1)2
+

∑

a2∈Z\{0}

∑

a1∈Z

1

(a1ω1 + a2ω2)2
. (2.4)

The resulting functions Gn(ω1, ω2) are holomorphic on R for all n ≥ 2. These are
related to the Gn(τ ) appearing in (1.4) via Gn(τ ) = Gn(1, τ ).

We recall the Weierstrass elliptic functions. The functions ℘(u | ω1, ω2) and ζ(u | ω1,

ω2) are meromorphic functions of u ∈ C with poles of order 2 and 1 respectively at the
lattice points �(ω1, ω2). The function σ(u | ω1, ω2) is an entire function of u ∈ C with
simple zeroes at the lattice points. There are relations

ζ(u | ω1, ω2) =
∂

∂u
log σ(u | ω1, ω2), ℘ (u | ω1, ω2) = −

∂2

∂u2
log σ(u | ω1, ω2),

(2.5)

and a Laurent expansion at u = 0

log σ(u | ω1, ω2) − log(u) = −
∑

g≥3

G2g−2(ω1, ω2)

2g − 2
· u2g−2. (2.6)
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We introduce minor modifications

h(u | ω1, ω2) = log σ(u | ω1, ω2) − log(u) − 1
2

G2(ω1, ω2)u
2, (2.7)

ζ̃ (u | ω1, ω2) =
∂

∂u
h(u | ω1, ω2) = ζ(u | ω1, ω2) − u−1 − G2(ω1, ω2) u, (2.8)

℘̃(u | ω1, ω2) = −
∂2

∂u2
h(u | ω1, ω2) = ℘(u | ω1, ω2) − u−2 + G2(ω1, ω2),(2.9)

which are holomorphic near u = 0. Below we shall need the related functions

f(u | ω1, ω2) = 2ζ̃ (u | ω1, ω2) − u℘̃(u | ω1, ω2), (2.10)

ki (u | ω1, ω2) =
∂

∂ωi

h(u | ω1, ω2), (2.11)

which have poles precisely at the nonzero lattice points �∗(ω1, ω2). These are double
poles in the case of f and simple poles in the case of ki . Later we will need the parity
properties

f(−u | ω1, ω2) = −f(u | ω1, ω2), ki (−u | ω1, ω2) = ki (u | ω1, ω2) (2.12)

which follow immediately from the expansion (2.6).

2.2. Borel transforms. Our starting point is the following formal power series in ǫ

H(ǫ | ω1, ω2) =
∑

g≥2

B2g G2g−2(ω1, ω2) (2π i)2g ǫ2g−1

4g(2g − 1)(2g − 2)
. (2.13)

The coefficients are holomorphic functions of (ω1, ω2) ∈ R involving the Bernoulli
numbers B2g and the Eisenstein series (2.3). We then consider the formal power series

F(ǫ | ω1, ω2) =
∂

∂ǫ
H(ǫ | ω1, ω2), Ki (ǫ | ω1, ω2) =

∂

∂ωi

H(ǫ | ω1, ω2). (2.14)

We denote by f (η | ω1, ω2) and ki (η | ω1, ω2) the Borel transforms of these series. They
are power series in η with coefficients which are holomorphic functions of (ω1, ω2) ∈ R.

Note that F(ǫ | ω1, ω2) is related to the previous FGW(ǫ | ω1, ω2) from (1.5) by

FGW(ǫ | ω1, ω2) = −
e(X)

(2π i)2
· F(ǫ | ω1, ω2). (2.15)

In particular, for FGW(λ | τ) given in (1.4)

FGW(λ | τ) = −
e(X)

(2π i)2
· F(ǫ | 1, τ ), 2π iǫ =

λ

2π
. (2.16)

We choose to work with F(ǫ | ω1, ω2) rather than directly with FGW(λ | τ) for two
reasons. On the one hand, the change of variables from λ to ǫ and the rescaling by
−e(X)/(2π i)2 eliminates certain awkward factors from the Borel sums and the positions
of the poles of the Borel transform. On the other hand, the introduction of the variables
ω1, ω2 facilitates the relation with the RH problem.

Let us fix a point (ω1, ω2) ∈ R. The following result is proved in Sect. 4.
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Proposition 2.1. (i) The Borel transforms f (η | ω1, ω2) and ki (η | ω1, ω2) have posi-

tive radius of convergence and hence define holomorphic functions in a neighbour-

hood of η = 0.

(ii) These functions extend to meromorphic functions of η ∈ C with poles precisely at

the nonzero lattice points �∗(ω1, ω2). The poles are double poles in the case of f

and simple poles in the case of ki .

(iii) There are explicit expressions

f (η | ω1, ω2) =
∑

m≥1

1

m3
f

( η

m
| ω1, ω2

)
, (2.17)

ki (η | ω1, ω2) =
∑

m≥1

1

m2
ki

( η

m
| ω1, ω2

)
, (2.18)

which converge absolutely and uniformly for η in compact subsets of C.

⊓⊔

The Borel transform of H(ǫ | ω1, ω2) also has positive radius of convergence, but the
holomorphic continuation of the resulting function h(η | ω1, ω2) is more complicated
due to the presence of logarithmic singularities, and we will not directly consider this
function here.

2.3. Irrationality measure. To define the Borel sum of the series (2.14) we must consider
a Laplace-type integral of the form (1.3). Note that a ray r ⊂ C∗ is non-Stokes precisely
if it contains no points of the lattice �(ω1, ω2) ⊂ C. Since a non-Stokes ray still comes
arbitrarily close to points of �(ω1, ω2), when trying to control the growth of such
integrals we encounter some basic notions from Diophantine approximation which we
now recall.

The irrationality measure μ(α) of a real number α ∈ R [12, Definition E.1] is defined
to be the infimum μ(α) = inf R(α) of the set

R(α) =
{
d ∈ R>0 | 0 < |α − p/q| < 1/qd for at most finitely many p, q ∈ Z, q > 0

}
.

(2.19)

If R(α) = ∅ we set μ(α) = ∞. In this case α is known as a Liouville irrational. We will
use the following well-known properties of μ(α).

Theorem 2.2. (i) if α ∈ Q then μ(α) = 1,

(ii) if α ∈ R \ Q then μ(α) ≥ 2,

(iii) if α ∈ R \ Q then

μ

(
aα + b

cα + d

)
= μ(α) for all

(
a b

c d

)
∈ GL2(Z), (2.20)

(iv) the subset {α ∈ R : μ(α) > 2} has measure zero.

Proof. If α ∈ Q then it is easy to check that μ(α) ≥ 1, while μ(α) ≤ 1 follows from
Liouville’s theorem, which states that algebraic numbers of degree n satisfy μ(α) ≤ n.
Part (ii) follows immediately from the Dirichlet approximation theorem, while (iv) is a
Theorem due to Khinchin [19], whose proof is essentially an application of the Borel-
Cantelli Lemma. We could not find a direct reference for part (iii) so we include a proof
in Appendix B. ⊓⊔
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Given a point (ω1, ω2) ∈ R we can define the irrationality measure μ(r) ∈ [1,∞]
of a ray r ⊂ C∗ as follows. If ±ω2 ∈ r we define μ(r) = 1. Otherwise there is a unique
α ∈ R such that ±(ω1 + α · ω2) ∈ r and we define μ(r) = μ(α). Part (iii) of Theorem
2.2 ensures that the resulting notion depends only on the lattice �(ω1, ω2) ⊂ C rather
than the specific generators ω1, ω2. Part (i) shows that μ(r) = 1 precisely if r contains
a lattice point, and part (iv) that almost all rays have μ(r) = 2.

2.4. Borel sums and integrals along detour paths. Let us again fix a point (ω1, ω2) ∈ R.
Recall that a ray r ⊂ C∗ is non-Stokes precisely if it contains no lattice points. The
following results about Borel summation are proved in Sect. 5.2.

Theorem 2.3. Let r ⊂ C∗ be a non-Stokes ray with μ(r) < ∞ and take ǫ ∈ Hr .

(i) The integrals

Fr (ǫ | ω1, ω2) =

∫

r

e−η/ǫ f (η | ω1, ω2)dη, K r
i (ǫ) =

∫

r

e−η/ǫki (η | ω1, ω2)dη,

(2.21)

are absolutely convergent and depend holomorphically on ǫ ∈ Hr . In particular, the

series F(ǫ | ω1, ω2) and Ki (ǫ | ω1, ω2) are Borel summable along the ray r .

(ii) The Borel sums can be re-expressed as absolutely convergent integrals

Fr (ǫ | ω1, ω2) =

∫

r

Li2(e
−η/ǫ)f(η | ω1, ω2)dη, (2.22)

K r
i (ǫ | ω1, ω2) =

∫

r

Li1(e
−η/ǫ)ki (η | ω1, ω2)dη, (2.23)

where Lik(z) denotes the k-th polylogarithm.

Note that equation (2.22) follows from (2.17) and the following formal rearrange-
ments, which are justified in the proof of Theorem 2.3:

∫

r

e−η/ǫ
∑

m≥1

1

m3
f

( η

m

)
dη =

∑

m≥1

∫

r

e−η/ǫ 1

m3
f

( η

m

)
dη

=
∑

m≥1

∫

r

1

m2
e−mη/ǫf(η) dη

=

∫

r

∑

m≥1

1

m2
e−mη/ǫf(η) dη

=

∫

r

Li2(e
−η/ǫ)f(η) dη.

(2.24)

Similar remarks apply to (2.23).

Consider now an arbitrary non-Stokes ray r ⊂ C∗. For any 0 < δ ≪ min{|ω1|, |ω2|}
there is a uniquely-defined detour path r(δ) which combines the ray r with arcs of angle
< π taken from discs of radius δ centered on points of �∗(ω1, ω2) (see Fig. 1). The
following proposition is proved in Sect. 5.3.
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Fig. 1. The vectors denote the generators ω1 and ω2 of the lattice �(ω1, ω2). The discs are centered at the
points in �(ω1, ω2)∗ and have radius δ > 0 small enough that they do not intersect. The bold path r(δ)

is determined by the direction of the non-Stokes ray r , and takes a detour along the boundary of any disc
intersected by r . These detours traverse arcs of the boundary of angle < π

Proposition 2.4. Let r ⊂ C∗ be a non-Stokes ray with respect to the lattice �(ω1, ω2).

Then there is D > 0 such that for all 0 < δ < D the integrals

Fr(δ)(ǫ | ω1, ω2) =

∫

r(δ)

Li2(e
−η/ǫ)f(η | ω1, ω2)dη, (2.25)

K
r(δ)
i (ǫ | ω1, ω2) =

∫

r(δ)

Li1(e
−η/ǫ)ki (η | ω1, ω2)dη, (2.26)

are absolutely convergent for all ǫ ∈ Hr . The resulting integrals depend holomorphically

on ǫ ∈ Hr , and are independent of δ. Moreover

Fr(δ)(ǫ | ω1, ω2) = Fr (ǫ | ω1, ω2), K
r(δ)
i (ǫ | ω1, ω2) = K r

i (ǫ | ω1, ω2) (2.27)

whenever μ(r) < ∞. ⊓⊔

Thus in the case of a non-Stokes ray r ⊂ C∗ satisfying μ(r) = ∞ we can use (2.25)
and (2.26) to define substitutes for the functions (2.21), although these are no longer
directly related to the Borel sums of the series F(ǫ | ω1, ω2) and Ki (ǫ | ω1, ω2).

Finally, we record how the integrals corresponding to different rays are related to
each other. This proposition is proved at the end of Sect. 5.4.
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Proposition 2.5. Let � ⊂ C∗ be a convex sector whose boundary consists of two rays

r1 and r2 taken in clockwise order. Assume the rays r1, r2 are non-Stokes with respect to

the lattice �(ω1, ω2). Then for ǫ ∈ Hr1 ∩ Hr2 and small enough δ > 0 we have

K
r2(δ)
i (ǫ | ω1, ω2) − K

r1(δ)
i (ǫ | ω1, ω2) = 2π i

∑

ω∈�∩�∗(ω1,ω2)

ai · log(1 − e−ω/ǫ)

Fr2(δ)(ǫ, ω1, ω2) − Fr1(δ)(ǫ, ω1, ω2) = 2π i
∑

ω∈�∩�∗(ω1,ω2)

∂

∂ǫ

(
ǫ Li2(e

−ω/ǫ)
)
,

(2.28)

where we write ω = a1ω1 + a2ω2. ⊓⊔

3. Free Energy, DT Invariants and the RH Problem

In this section we use the analytic results of the previous section to prove our main
results. As in the introduction we consider a smooth projective CY threefold with an
elliptic fibration π : X → B satisfying Assumptions 1.1.

3.1. Free energy and its Borel sums. Recall from (1.4) that the g ≥ 2 part of the GW
generating function in the fibre classes is given by the formal power series in λ

FGW(λ | τ) = −e(X) ·
∑

g≥2

B2g G2g−2(τ )

4g(2g − 2)
·

(
λ

2π

)2g−2

, (3.1)

whose coefficients depend on a Kähler parameter τ ∈ C satisfying Im(τ ) > 0. As before,
we set 2π iǫ = λ/2π , and via the change of variables (1.5) consider FGW(ǫ | ω1, ω2) as
a function of ǫ ∈ C∗ and (ω1, ω2) lying in the region

R = {(ω1, ω2) ∈ (C∗)2 : Im(ω2/ω1) > 0}. (3.2)

Recall from (2.15) that FGW(ǫ | ω1, ω2) and F(ǫ | ω1, ω2) are related by a rescaling by
−e(X)/(2π i)2. The following result then follows immediately by combining Proposition
2.1 and Theorem 2.3.

Theorem 3.1. Fix (ω1, ω2) ∈ R.

(i) The Borel transform of the series FGW(ǫ | ω1, ω2) is a meromorphic function on C

with double poles at the non-zero lattice points �∗(ω1, ω2) and no other poles.

(ii) Suppose a non-Stokes ray r ⊂ C∗ satisfies μ(r) < ∞ with respect to the lattice

�(ω1, ω2). Then the Borel sum Fr
GW(ǫ | ω1, ω2) exists for all ǫ ∈ Hr .

⊓⊔

Theorem 3.1 together with part (iv) of Theorem 2.2 implies that for almost all non-
Stokes rays r ⊂ C∗ the Borel sum of FGW(ǫ | ω1, ω2) exists for ǫ ∈ Hr . Combining
Proposition 2.5 with (2.15) gives the following result relating the Borel sums along
different rays.
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Proposition 3.2. Fix (ω1, ω2) ∈ R. Let � ⊂ C∗ be a convex sector whose boundary

consists of two rays r1 and r2 taken in clockwise order. Assume the rays r1, r2 are

non-Stokes and satisfy μ(ri ) < ∞ with respect to the lattice �(ω1, ω2). Then

F
r2

GW(ǫ | ω1, ω2) − F
r1

GW(ǫ | ω1, ω2) = −
e(X)

2π i
·

∑

ω∈�∩�∗(ω1,ω2)

∂

∂ǫ

(
ǫ Li2(e

−ω/ǫ)
)

(3.3)

for all ǫ ∈ Hr1 ∩ Hr2 . ⊓⊔

This matches previous results on the Stokes jumps of the Borel sum of free energies
and their relation to DT invariants. See for example [3, Equation 4.55] or [18, Equation
1.1 and 1.4].

3.2. Stability conditions and DT invariants. We consider the full triangulated subcate-
gory D(π) ⊂ Db Coh(X) of the bounded derived category of coherent sheaves consist-
ing of objects whose set-theoretic support is contained in a finite union of fibres of π .
The Chern characters of such objects can be viewed as elements

ch(E) = (ch2(E), ch3(E)) ∈ N (π) = N1(π) ⊕ N0(X), (3.4)

where N1(π) ⊂ N1(X) consists of curve classes contracted by π . The group N0(X) is
freely generated by the class of a point, which it is convenient to denote by −γ1. The
assumption that π has integral fibres implies that N1(π) is freely generated by the class
γ2 of a fibre. Then

ch : K0(D(π)) → N (π) = Zγ1 ⊕ Zγ2, (3.5)

sends a rank r , degree d bundle supported on a smooth fibre of π to the class −dγ1 +rγ2.
The Riemann-Roch theorem shows that for any objects A, B ∈ D(π) we have

χ(A, B) :=
∑

i∈Z

dimC HomX (A, B[i]) = 0.

Thus the Euler form for the category D(π) is identically zero, and we therefore also
equip the group N (π) with the zero form 〈−,−〉 = 0.

The definition of the subcategory D(π) ensures that the standard t-structure on
Db Coh(X) induces a t-structure on D(π). The heart A(π) ⊂ D(π) consists of co-
herent sheaves on X whose set-theoretic support is contained in a finite union of fibres
of π . Fix an element τ ∈ C with Im(τ ) > 0. Then, as in [23, Example 2.3 (iii)], there
is a unique stability condition on the category D(π) whose heart is the subcategory
A(π) ⊂ D(π), and whose central charge Z : K0(D(π)) → C is the composition of the
Chern character (3.5) with the map

Z : N (π) → C, Z(a1γ1 + a2γ2) = a1 + a2τ.

There is a standard action of the group C on the space of stability conditions which
rotates the central charge and shifts the phases of the semistable objects. Applying this
to the stability conditions constructed above we obtain for each point (ω1, ω2) ∈ R, a
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stability condition, unique up to the action of even shifts, whose central charge is the
composition of (3.5) with the map

Z : N (π) → C, Z(a1γ1 + a2γ2) = a1ω1 + a2ω2. (3.6)

Since rotating stability conditions does not effect the subcategories of semistable
objects, the calculation of Toda [23, Theorem 6.9] shows that the DT invariants for any
of these stability conditions are given by


(a1γ1 + a2γ2) = −e(X), (a1, a2) ∈ Z2 \ {0}, (3.7)

where e(X) is the topological Euler characteristic of the complex projective variety X .

3.3. Riemann–Hilbert problem. Fix a point (ω1, ω2) ∈ R. The data introduced in the
previous section defines what is called a BPS structure in [5]. Namely we have a finite-
rank free abelian group N (π) equipped with a skew-symmetric form 〈−,−〉, a group
homomorphism Z : N (π) → C, and a map of sets 
 : N (π) → Z which encodes the
DT invariants. Following [5], and exactly as in [9], we now explain the steps to go from
this data to a RH problem.

Since the skew-symmetric form 〈−,−〉 on N (π) is identically zero, in order to obtain
a non-trivial RH problem we must first perform the doubling procedure of [5, Section
2.8]. To do this we introduce the dual abelian group N (π)∨ = HomZ(N (π), Z) and
consider the lattice Ŵ = N (π) ⊕ N (π)∨ equipped with the canonical skew-symmetric
pairing

〈−,−〉: Ŵ × Ŵ → Z, 〈(γ, λ), (γ ′, λ′)〉 = λ(γ ′) − λ′(γ ). (3.8)

We denote by γ ∨
i the basis element of N (π)∨ dual to γi . Thus 〈γ ∨

i , γ j 〉 = δi j . We extend
the central charge map Z : N (π) → C defined by (3.6) arbitrarily to a homomorphism
Z : Ŵ → C. The choice of this extension will play no significant role below. We also
extend the map of sets 
 : N (π) → Z to Ŵ by insisting that 
(γ ) = 0 unless γ ∈
N (π) ⊂ Ŵ.

The resulting doubled BPS structure (Ŵ, Z ,
) has several special properties identi-
fied in [5]. It is convergent because for large enough R > 0

∑

(a1,a2)∈Z2\{0}

exp(−R|a1ω1 + a2ω2|) < ∞. (3.9)

It is moreover uncoupled since {γ ∈ Ŵ : 
(γ ) �= 0} ⊂ N (π) and 〈γ1, γ2〉 = 0 for
γ1, γ2 ∈ N (π). We can then formulate a RH problem exactly as in [9]. As well as the
BPS structure (Ŵ, Z ,
) it depends on an element ξ of the twisted torus

{ξ : Ŵ → C∗ : ξ(γ1 + γ2) = (−1)〈γ1,γ2〉ξ(γ1)ξ(γ2)} (3.10)

called the constant term.

Recall from Sect. 1.2 that a ray r ⊂ C∗ is called a Stokes ray if it contains a point
of �(ω1, ω2), and otherwise a non-Stokes ray. The RH problem involves holomorphic
functions Xr

γ : Hr → C∗ for each non-Stokes ray r and each class γ ∈ Ŵ, where as
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before Hr ⊂ C∗ denotes the half-plane centered on r . Arguing as in [5, Section 5.1] we
can use the fact that (Ŵ, Z ,
) is an uncoupled BPS structure to write for each i = 1, 2

Xr
γi

(ǫ) = exp(−Z(γi )/ǫ) · ξ(γi ), Xr
γ ∨

i
= exp(−Z(γ ∨

i )/ǫ) · ξ(γ ∨
i ) · Y r

i (ǫ),

(3.11)

with Y r
i : Hr → C∗ holomorphic. For i = 1, 2 we define

ℓi : �(ω1, ω2) → Z, ℓi (a1ω1 + a2ω2) = ai . (3.12)

Choose a constant term ξ : Ŵ → C∗ satisfying ξ(γi ) = 1 for i = 1, 2. Then the RH
problem can be formulated as follows:

Problem 3.3. For each non-Stokes ray r ⊂ C∗ find holomorphic functions Y r
i : Hr →

C∗ with i = 1, 2 such that the following statements hold.

(RH1) If � ⊂ C∗ is a convex sector whose boundary consists of non-Stokes rays r1, r2

taken in clockwise order then

Y
r2

i (ǫ) = Y
r1

i (ǫ) ·
∏

ω∈�(r1,r2)∩�∗

(
1 − e−ω/ǫ

)−ℓi (ω)·e(X)
, (3.13)

for ǫ ∈ Hr1 ∩ Hr2 with 0 < |ǫ| ≪ 1.
(RH2) As ǫ → 0 in any closed subsector of Hr we have Y r (ǫ) → 1.
(RH3) There is an N > 0 such that as ǫ → ∞ in Hr there is a bound |ǫ|−N < |Y r (ǫ)| <

|ǫ|N .

If this problem has a solution then it is unique [9]. We shall instead consider what we
call the weak RH problem in which we drop condition (RH3). The resulting solutions
are unique up to multiplication of Y r

i by arbitrary holomorphic functions Pi : C → C∗

satisfying Pi (0) = 1.

3.4. Solution to the weak RH problem. We again fix a point (ω1, ω2) ∈ R. Recall the

functions K
r(δ)
i (ǫ | ω1, ω2) defined in Proposition 2.4. For each non-Stokes ray r ⊂ C∗

we define a function Y r
i : Hr → C∗ by

Y r
i (ǫ) := exp

(
−

e(X)

2π i
· K

r(δ)
i (ǫ | ω1, ω2)

)

= exp

(
−

e(X)

2π i

∫

r(δ)

Li1(e
−η/ǫ)ki (η | ω1, ω2)dη

)
.

(3.14)

The integral is absolutely convergent, holomorphic in ǫ ∈ Hr , and does not depend on
0 < δ ≪ 1 by Proposition 2.4. As before, we remark that for almost all non-Stokes rays
r we have μ(r) < ∞, and for such rays it follows from Proposition 2.4 and Theorem
2.3 that

Y r
i (ǫ) = exp

(
−

e(X)

2π i

∫

r

e−η/ǫ ki (η | ω1, ω2)dη

)
. (3.15)

Theorem 3.4. The functions Y r
i : Hr → C∗ give a solution to the weak RH problem.
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Proof. Let � ⊂ C∗ be a convex sector whose boundary consists of non-Stokes rays
r1, r2 taken in clockwise order. By Proposition 2.5 it follows that for ǫ ∈ Hr1 ∩ Hr2

Y
r2

i (ǫ) = Y
r1

i (ǫ) · exp

(
−e(X)

∑

ω∈�∩�∗

ℓi (ω) · log(1 − e−ω/ǫ)

)

= Y
r1

i (ǫ)
∏

ω∈�∩�∗

(1 − e−ω/ǫ)−e(X)·ℓi (ω)

(3.16)

so property (RH1) holds. Property (RH2) follows from the following lemma. ⊓⊔

Lemma 3.5. Fix a non-Stokes ray r ⊂ C∗ and a closed subsector Sr ⊂ Hr . Then

lim
ǫ→0, ǫ∈Sr

K
r(δ)
i (ǫ | ω1, ω2) = 0. (3.17)

Proof. Given the closed sector Sr , we can assume that δ > 0 is small enough such that

Re(η/ǫ) > 0 for all η ∈ r(δ) and all ǫ ∈ Sr . (3.18)

More precisely, given K > 0 there exists a constant C > 0 such that

Re(η/ǫ) =

∣∣∣η
ǫ

∣∣∣ cos(arg(η/ǫ)) > C ·

∣∣∣η
ǫ

∣∣∣ >
C

K
· |η| > 0 (3.19)

for all η ∈ r(δ) and ǫ ∈ Sr with |ǫ| < K . This in particular implies (using that
| log(1 − z)| < − log(1 − |z|) for |z| < 1|) that in the same range of parameters

|Li1(e
−η/ǫ)ki (η)| < − log(1 − |e−η/ǫ |) |ki (η)| < − log(1 − e−C|η|/K ) |ki (η)|.

(3.20)

Finally, by the same argument as in Proposition 5.4 one can show that

−

∫

r(δ)

log(1 − e−C|η|/K )|ki (η)||dη| < ∞, (3.21)

so by applying the dominated convergence theorem, we can interchange limits and
integrals and obtain

lim
ǫ→0, ǫ∈Sr

K
r(δ)
i =

∫

r(δ)

Li1(0)ki (η, ω1, ω2)dη = 0. (3.22)

⊓⊔

Fix a non-Stokes ray r ⊂ C∗. For ǫ ∈ Hr we define

τ r
GW(ǫ | ω1, ω2) := exp

(
−

e(X)

(2π i)2
· Fr(δ)(ǫ | ω1, ω2)

)
, (3.23)

where 0 < δ ≪ 1 and Fr(δ)(ǫ | ω1, ω2) is as in Proposition 2.4. Note that by (2.15)

τ r
GW(ǫ | ω1, ω2) = exp

(
F

r(δ)
GW (ǫ | ω1, ω2)

)
. (3.24)

In the case that μ(r) < ∞ the following result relates the Borel sum of the free energy
to the solution to the weak RH problem constructed above.
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Theorem 3.6. For each i = 1, 2 there is a relation

∂

∂ωi

log τ r
GW(ǫ | ω1, ω2) =

1

2π i
·

∂

∂ǫ
log Y r

i (ǫ | ω1, ω2). (3.25)

Proof. Using (3.23) and (3.15), showing that (3.25) holds reduces to showing that

∂

∂ωi

Fr(δ)(ǫ | ω1, ω2) =
∂

∂ǫ
K

r(δ)
i (ǫ | ω1, ω2). (3.26)

This easily follows by differentiating under the integral sign and integrating by parts
twice using (2.8), (2.9), (2.10), and (2.11). ⊓⊔

4. Borel Transforms

In this section we prove Proposition 2.1 concerning the Borel transforms of our series.
We fix a point (ω1, ω2) ∈ R throughout.

4.1. Hadamard product. Consider again the power series

H(ǫ) =
∑

g≥2

B2g G2g−2 (2π i)2gǫ2g−1

4g(2g − 1)(2g − 2)
∈ ǫC[[ǫ]]. (4.1)

from (2.13). We have suppressed the dependence on ω1, ω2 from the notation. The Borel
transform is the series

h(η) =
∑

g≥2

B2g G2g−2 (2π i)2gη2g−2

2(2g − 2)(2g)!
∈ C[[η]]. (4.2)

Following the approach of [3, Section 3.1] we can write h(η) as a Hadamard product of
series h1(η) and h2(η), where

h1(η) = −
∑

g≥2

B2g (2π i)2gη2g−2

2(2g)!
, h2(η) = −

∑

g≥2

G2g−2 η2g−2

2g − 2
. (4.3)

Using the defining generating series for the Bernoulli numbers we find that h1(η) is
the Taylor expansion at the origin of a meromorphic function on C with poles only at
the points m ∈ Z\{0}. Indeed

h1(η) = (2π i)2

(
1

2(2π iη)(1 − e2π iη)
+

1

2(2π iη)2
−

1

4(2π iη)
+

1

24

)
. (4.4)

Moreover h2(η) is the Taylor expansion at η = 0 of the function

h(η) = log σ(η) − log(η) − 1
2

G2η
2 (4.5)

introduced in Sect. 2.1. It follows from [3, Lemma 3.2] that h(η) is the Taylor expansion
at η = 0 of the function h(η) given by the anti-clockwise contour integral

h(η) =
1

2π i

∫

|s|=
1
2

h1(s) h2(η/s)
ds

s
. (4.6)

This expression is valid providing |η| < 1
2
|ω| for all nonzero lattice points ω ∈

�∗(ω1, ω2). This ensures that the singularities of h2(η/s) all lie inside the contour
|s| = 1

2
. Note that the poles of h1(s) always lie outside this contour.
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4.2. Borel transforms. Recall the formal power series F(ǫ) and Ki (ǫ) defined by (2.14).
Reall also the functions

f(η | ω1, ω2) = 2ζ̃ (η | ω1, ω2) − η℘̃(η | ω1, ω2), (4.7)

ki (η | ω1, ω2) =
∂

∂ωi

h(η | ω1, ω2). (4.8)

defined in Sect. 2.1. They are holomorphic in a neighbourhood of η = 0.

Proposition 4.1. The Borel transforms of the series F(ǫ) and Ki (ǫ) are the Taylor ex-

pansions of holomorphic functions f (η) and ki (η) defined near η = 0 by the expressions

f (η) =
1

2π i

∫

|s|=
1
2

h1(s)f(η/s)
ds

s2
, ki (η) =

1

2π i

∫

|s|=
1
2

h1(s)ki (η/s)
ds

s
.

(4.9)

Proof. The expression for ki (η) follows immediately by differentiating (4.6) under the
integral with respect to ωi . To obtain the expression for f (η) note first that if formal
series F(ǫ), H(ǫ) ∈ ǫC[[ǫ]] have Borel transforms f (η), h(η) ∈ C[[η]] respectively,
then

F(ǫ) =
d

dǫ
H(ǫ) �⇒ f (η) =

1

η

d

dη

(
η2 d

dη
h(η)

)
. (4.10)

Indeed, it is enough to check the case H(ǫ) = ǫn when the relation becomes

n ηn−2

(n − 2)!
=

1

η

d

dη

(
η2 d

dη

(
ηn−1

(n − 1)!

))
. (4.11)

Next note that (2.7) - (2.9) give

1

η

d

dη

(
η2 d

dη
h

(η

s

) )
=

1

s

(
2ζ̃

(η

s

)
−

η

s
℘̃

(η

s

))
=

1

s
f

(η

s

)
. (4.12)

The result then follows by differentiating (4.6) under the integral with respect to η. ⊓⊔

4.3. Explicit expressions. The following result completes the proof of Proposition 2.1.

Proposition 4.2. The functions f (η) and ki (η) extend to meromorphic functions of η ∈
C with poles precisely at the nonzero lattice points �∗(ω1, ω2). These poles are double

poles in the case of f and simple poles in the case of ki . There are explicit expressions

f (η) =
∑

m≥1

1

m3
· f

( η

m

)
, ki (η) =

∑

m≥1

1

m2
· ki

( η

m

)
, (4.13)

where the two series converge uniformly and absolutely in η on compact subsets of C.
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Proof. We show the result for f , since a similar argument applies to ki . For each integer
N > 0 we consider the square contour

CN =
{
s ∈ C : max

(
|Re(s)|, |Im(s)|

)
= N + 1

2

}
, (4.14)

taken with the anti-clockwise orientation. Take η ∈ C such that |η| < 1
2
|ω| for all

nonzero lattice points ω ∈ �∗(ω1, ω2).
Note that the function h1(s) has a simple pole at each point m ∈ Z \ {0} with residue

−1/2m. Moving the contour in (4.9) and using f(−η) = −f(η) therefore shows that
for any integer N > 0

f (η) −
1

2π i

∫

CN

h1(s)f(η/s)
ds

s2
=

N∑

m=1

1

m3
· f

( η

m

)
. (4.15)

On the other hand, one easily checks using the power expansion of f(η) at η = 0 that

f(η/s) = O(1/s), as |s| → ∞, (4.16)

while
∣∣∣∣

1

2(2π is)(1 − e2π is)

∣∣∣∣ <
C

N + 1
2

, for s ∈ CN , (4.17)

for some C > 0 independent of N . It then follows from (4.4) that there is some constant
D > 0 such that for all N sufficiently large

∣∣∣∣
∫

CN

h1(s)f(η/s)
ds

s2

∣∣∣∣ <
D

(N + 1
2
)2

. (4.18)

Thus the integral on the left-hand side of (4.15) tends to 0 as N → ∞, and (4.13) holds.
It remains to show that the series (4.13) defines a meromorphic function on C with

double poles exactly at the points of �∗(ω1, ω2). Note that f(η) has poles only at the
points �∗(ω1, ω2) and in particular is holomorphic at η = 0.

Let D ⊂ C be small disc centered at 0 such that D ∩ �∗(ω1, ω2) = ∅ and K ⊂ C a
compact subset. For η ∈ K and M > 0 sufficiently large we have η/m ∈ D for m ≥ M .
In particular, the functions f(η/m) are holomorphic and uniformly bounded for m ≥ M

and η ∈ K . It follows that the tail of the first sum in (4.13) (i.e. the sum for m ≥ M)
converges uniformly and absolutely on K , and hence to a holomorphic function on K .
Since any lattice point ω ∈ �∗(ω1, ω2) is a double pole of the function f(η/m) for
a finite but non-empty set of positive integers m, the resulting f (η) is a meromorphic
function with double poles at �∗(ω1, ω2). ⊓⊔

5. Borel Summability and Detour Integrals

In this section we collect the results needed to show that the series Ki (ǫ | ω1, ω2) and
F(ǫ | ω1, ω2) are Borel summable along almost all non-Stokes rays r ⊂ C∗. More
precisely, the Borel sum exists for non-Stokes rays r that, in the sense of Sect. 2.4, have
finite irrationality measure μ(r) < ∞ with respect to the lattice �(ω1, ω2). For a general
non-Stokes ray r , we define integrals along certain detour paths r(δ) which coincide with
the Borel sums when μ(r) < ∞.
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5.1. Key lemmas. We begin with the following useful lemmas:

Lemma 5.1. Fix (ω1, ω2) ∈ R and take ω = a1ω1 + a2ω2 ∈ �(ω1, ω2). Then the func-

tions ℘(η | ω1, ω2), ζ(η | ω1, ω2) and ρi (η | ω1, ω2) := ∂ωi
log(σ (η | ω1, ω2)) satisfy

℘(η + ω | ω1, ω2) = ℘(η | ω1, ω2),

ζ(η + ω | ω1, ω2) = ζ(η | ω1, ω2) + 2(a1η1 + a2η2), where ηi = ζ(ωi /2 |ω1, ω2),

ρi (η + ω | ω1, ω2) = ρi (η | ω1, ω2) − ai ζ(η | ω1, ω2) +
∑

j=1,2

a j (−ai η j + (2η + ω)∂ωi η j ).

(5.1)

Proof. The first and second identity follow from the well-known periodicity of ℘ and
quasi-periodicity of ζ . On the other hand, the σ function satisfies

σ(η + ω | ω1, ω2) = (−1)a1+a2+a1a2 e(2η+ω)(a1η1+a2η2)σ(η | ω1, ω2), (5.2)

from which the last identity follows by taking logs and derivatives with respect to ωi .
Indeed, differentiating the left-hand side of (5.2) gives

∂ωi
log(σ (η + ω | ω1, ω2)) = aiζ(η + ω | ω1, ω2) + ρi (η + ω | ω1, ω2), (5.3)

while differentiating the right hand side gives

∂ωi ((2η + ω)(a1η1 + a2η2) + log(σ (η | ω1, ω2)))

= ρi (η | ω1, ω2) +

2∑

j=1

a j (aiη j + (2η + ω)∂ωi
η j ). (5.4)

The last identity of (5.1) then follows by applying the second identity and reorganizing
terms. ⊓⊔

Recall the notion of the irrationality measure μ(α) of a real number α ∈ R, and of the
irrationality measure μ(r) of a ray r ⊂ C∗ with respect to a lattice �(ω1, ω2) introduced
in Sect. 2.4. In the following, we will use that if α ∈ R\Q and n > μ(α) then

|α − p/q| ≥ 1/qn (5.5)

for all p, q ∈ Z with q sufficiently large.

Lemma 5.2. Fix (ω1, ω2) ∈ R and let r ⊂ C∗ be a non-Stokes ray such that μ(r) < ∞
with respect to the lattice �(ω1, ω2). Then for ǫ ∈ Hr the integrals

∫

r

e−η/ǫf(η | ω1, ω2)dη,

∫

r

e−η/ǫki (η | ω1, ω2)dη, (5.6)

are absolutely convergent.

Proof. The functions f(η), ki (η) are meromorphic in η with poles only at the nonzero
lattice points �∗(ω1, ω2). The fact that r is a non-Stokes ray implies that r can be
parameterised as

η(t) = ±t (ω1 + αω2), (5.7)
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with t ∈ R≥0 and α ∈ R\Q. We assume that we are in the case with the + sign, with the
other case being completely analogous.

Fix K > 0. Since the functions f, ki are holomorphic at 0 ∈ C, the integrals over

t ∈ [0, K ] are finite. Now note that by (2.7)-(2.9), the functions ℘̃, ζ̃ and ki differ from
℘, ζ and ρi by terms that have at most polynomial growth in η(t) as t → ∞. Due to the
exponential decay of e−η(t)/ǫ for ǫ ∈ Hr as t → ∞, to show that (5.6) holds it is then
enough to check that

∫

r∞

|e−η/ǫ℘(η)dη| < ∞,

∫

r∞

|e−η/ǫζ(η)dη| < ∞,

∫

r∞

|e−η/ǫρi (η)dη| < ∞,

(5.8)

where r∞ is the segment given by η(t) for t ∈ [K ,∞). We start with the first of these
statements.

We work with the inner product on C in which ω1 and ω2 are orthonormal and
consider discs Dδ(ω) of radius 0 < δ < K centered at the points of �(ω1, ω2). We
denote the norm induced by this inner product by ||·|| to distinguish it from the canonical
norm | · |. We take δ > 0 sufficiently small so that these discs do not intersect each other.
Subdivide the ray r∞ into two sets

r∞ = rp ∪ rc (5.9)

where rp is made up of the segments of r∞ inside the discs, and rc is the complement
of rp in r∞. In particular, we can write

rp =
⋃

ω∈�∗(ω1,ω2)

rω (5.10)

where rω is the segment contained in the disc Dδ(ω).

Take a non-zero lattice point ω = a1ω1 + a2ω2 ∈ �∗(ω1, ω2) and consider

∫

rω

|e−η/ǫ℘(η | ω1, ω2)dη|. (5.11)

Using the fact that ℘ is periodic for the lattice �(ω1, ω2) and the Laurent expansion of
℘(η) at η = 0 we know that when η ∈ Dδ(ω)

℘ (η) = ℘(η − ω) =
1

(η − ω)2
+ Reg(η − ω), (5.12)

where Reg is a holomorphic function in the disc Dδ(0). So in particular we have

|℘(η)| = |℘(η − ω)| ≤
1

|η − ω|2
+ D1 ≤

1 + C · D1δ
2

|η − ω|2
=

D2

|η − ω|2
, (5.13)

where D1 > 0, C > 0 is such that | · | < C || · ||, and D2 = 1+C · D1δ
2 > 0 are constants

independent of ω. Since the canonical norm | · | is equivalent to || · ||, it follows that

|η(t) − ω|2 ≥ D3((t − a1)
2 + (tα − a2)

2) (5.14)

for some D3 > 0. Minimizing the right hand side we find
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(t − a1)
2 + (tα − a2)

2 ≥
(a1α − a2)

2

1 + α2
. (5.15)

By picking n > μ(α) and possibly increasing K > 0, we can assume that for all
ω ∈ �∗(ω1, ω2) such that rω is non-empty we have

|α − a2/a1| ≥
1

|a1|n
, (5.16)

where we again wrote ω = a1ω1 + a2ω2. Hence, overall on rω we have

|℘(η)| ≤
D2(1 + α2) · |a1|

2n−2

D3
. (5.17)

Recall that the discs Dδ(ω) are defined with respect to the inner product where ω1

and ω2 are orthonormal. The points of intersection of the ray η(t) with the boundary of
Dδ(ω) occur when

t = t±(ω) =
(a1 + αa2) ±

√
(1 + α2)δ2 − (αa1 − a2)2

(1 + α2)
. (5.18)

Note that if rω is not empty, we must have

(1 + α2)δ2 − (αa1 − a2)
2 = (1 + α2)(δ2 − dist(r, ω)2) ≥ 0, (5.19)

where dist(r, ω) denotes the distance between r and ω in the norm where ω1 and ω2 are
orthonormal. Hence, we obtain

∫

rω

|e−η/ǫ℘(η | ω1, ω2)dη| ≤ δ1|a1|
2n−2

∫ t+

t−

e−tδ2 dt

= δ1|a1|
2n−2

(
−

1

δ 2
(e−t+δ2 − e−t−δ2)

)
(5.20)

where

δ1 =
D2(1 + α2)|ω1 + αω2|

D3
> 0, δ2 =

∣∣∣ω1 + αω2

ǫ

∣∣∣ cos
(

Arg
(ω1 + αω2

ǫ

))
> 0,

(5.21)

so δ1, δ2 are constants depending only on α,ω1, ω2, δ, ǫ. Furthermore, note that

e−t−δ2 − e−t+δ2 = 2e
−δ2

a1+αa2
1+α2 sinh

(
δ2

√
δ2 − dist(r, ω)2

(1 + α2)1/2

)

≤ 2e
−δ2

a1+αa2
1+α2 sinh

(
δ2δ

(1 + α2)1/2

)
, (5.22)

so that
∫

rω

|e−η/ǫ℘(η | ω1, ω2)dη| ≤ 2
δ1

δ2
|a1|

2n−2 sinh

(
δ2δ

(1 + α2)1/2

)
e
−δ2

a1+αa2
1+α2 . (5.23)
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Now note that if η(t) = t (ω1 + αω2) intersects the disc centered at ω = a1ω1 + a2ω2,
and ω is sufficiently large in norm, then we must have a1, αa2 > 0. In particular, we
find that

∫

rp

|e−η/ǫ℘(η | ω1, ω2)dη| =
∑

ω∈�∗(ω1,ω2)

∫

rω

|e−η/ǫ℘(η | ω1, ω2)dη|

<
∑

(a1,a2)∈Z2 : ra1ω1+a2ω2
�=∅

2
δ1

δ2
|a1|

2n−2 sinh

(
δ2δ

(1 + α2)1/2

)
e
−δ2

a1+αa2
1+α2 < ∞.

(5.24)

On the other hand, on rc we simply have that due to the periodicity of ℘, the factor
℘(η) is bounded and hence the integral over rc is also finite. We then conclude that

∫

r∞

∣∣e−η/ǫ℘(η)dη
∣∣ =

∫

rc

∣∣e−η/ǫ℘(η)dη
∣∣ +

∫

rp

∣∣e−η/ǫ℘(η)dη
∣∣ < ∞ (5.25)

The argument for the convergence of
∫

r∞

∣∣e−η/ǫζ(η)dη
∣∣ (5.26)

is similar. The only difference is that now ζ is not periodic, so we must use the corre-
sponding identity in Lemma 5.1. This shows that for η(t) ∈ rω we have

ζ(η) = ζ(η − ω) + 2(a1η1 + a2η2) =
1

η − ω
+ Reg(η − ω) + 2(a1η1 + a2η2),

(5.27)

where Reg as before is a holomorphic function (independent of ω) on a disc of radius δ

centered at 0, so that

|ζ(η)| ≤
D1

|η − ω|
+ D2(|a1| + |a2|) <

D1(1 + α2)1/2 · |a1|
n−1

C
+ D2(|a1| + |a2|)

(5.28)

for some constants C, D1, D2 independent of ω = a1ω1 + a2ω2. The argument for the
convergence over rp follows as before. For the convergence over rc we again use the
quasi-periodicity of ζ from Lemma 5.1 as before to show that as we go to ∞ along rc

we have

|ζ(η)| = O(|η|). (5.29)

Finally, to show
∫

r∞

∣∣e−η/ǫρi (η)dη
∣∣ < ∞ (5.30)

we use that ∫

r∞

∣∣e−η/ǫζ(η)dη
∣∣ < ∞ (5.31)

together with Lemma 5.1 and a simple modification of the argument from before. ⊓⊔



Resurgence and Riemann–Hilbert problems Page 23 of 31   132 

5.2. Proof of the Borel summability. Given the previous lemmas, we now prove the
Borel summability of Ki (ǫ | ω1, ω2) and F(ǫ | ω1, ω2).

Proposition 5.3. Fix (ω1, ω2) ∈ R and consider a non-Stokes ray r such that μ(r) < ∞
with respect to �(ω1, ω2). Then for ǫ ∈ Hr the following integrals are absolutely

convergent

K r
i (ǫ | ω1, ω2) =

∫

r

e−η/ǫki (η | ω1, ω2)dη,

Fr (ǫ | ω1, ω2) =

∫

r

e−η/ǫ f (η | ω1, ω2)dη, (5.32)

and depend holomorphically on ǫ. In particular, the formal series Ki (ǫ | ω1, ω2) and

F(ǫ | ω1, ω2) are Borel summable along r. Additionally, we have the alternate expres-

sions

K r
i (ǫ | ω1, ω2) =

∫

r

Li1(e
−η/ǫ)ki (η | ω1, ω2)dη,

Fr (ǫ | ω1, ω2) =

∫

r

Li2(e
−η/ǫ)f(η | ω1, ω2)dη.

(5.33)

Proof. Using that along r we have |e−η/ǫ | < 1 and using that

|Li1(z)| = | log(1 − z)| < − log(1 − |z|), |z| < 1, (5.34)

to show the absolute convergence of the first expression of (5.33) it is enough to show
the convergence of the integral

−

∫

r

log(1 − |e−η/ǫ |)|ki (η)||dη|. (5.35)

Since near η = 0 we have

ki (η) = O(η) (5.36)

the integral in (5.35) has no issue near η = 0. On the other hand, as η → ∞ along r we
have

− log(1 − |e−η/ǫ |) ∼ |e−η/ǫ |, (5.37)

so by Lemma 5.2 we have that (5.35) is finite. On the other hand, by Fubini-Tonneli and
changing variables we have

−

∫

r

log(1 − |e−η/ǫ |)|ki (η)||dη| =

∫

r

∑

m≥1

|e−mη/ǫ |

m
|ki (η)||dη|

=
∑

m≥1

∫

r

|e−mη/ǫ |

m
|ki (η)||dη|

=
∑

m≥1

∫

r

|e−η/ǫ |

m2
|ki (η/m)||dη|

=

∫

r

|e−η/ǫ |
∑

m≥1

1

m2
|ki (η/m)||dη|.

(5.38)
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In the above, we have used that along the ray |e−η/ǫ | < 1, so that the series expansion
of − log(1 − z) is valid along r . Since the first integral is finite and ki (η | ω1, ω2) is
given by (2.18), it follows that the Borel sum K r

i (ǫ | ω1, ω2) is absolutely integrable.
By applying Fubini-Tonelli to the expressions without absolute values, we also get the
alternate identity in (5.33).

The argument for Fr follows similarly. Using that along r we have |e−η/ǫ | < 1 and

|Li2(z)| ≤ Li2(|z|), |z| < 1 (5.39)

to show the absolute convergence of the second expression in (5.33) it is enough to
consider

∫

r

Li2(|e
−η/ǫ |)|f(η)||dη|. (5.40)

Since Li2(1) < ∞ and the modified functions ζ̃ and ℘̃ are finite at η = 0, the integrand
does not have any issues at η = 0. Similar to the previous case, as η → ∞ along r we
have

Li2(|e
−η/ǫ |) ∼ |e−η/ǫ | (5.41)

so by Lemma 5.2 we find that (5.40) is finite. By Fubini-Tonneli and performing a change
of variables as in (5.38), we find that

∫

r

Li2(|e
−η/ǫ |)|f(η)||dη| =

∑

m≥1

∫

r

|e−mη/ǫ |

m2
|f(η)||dη|

=
∑

m≥1

∫

r

|e−η/ǫ |

m3
|f(η/m)||dη|

=

∫

r

|e−η/ǫ |
∑

m≥1

1

m3
|f(η/m)||dη|.

(5.42)

As before, for the series expansion of Li2(z) we have used that along r we have |e−η/ǫ | <

1. Since the first integral is finite, and f is given by (2.17), it follows that the Borel sum
Fr (ǫ, ω1, ω2) is absolutely integrable. By applying Fubini-Tonelli to the corresponding
expressions without absolute values, we obtain the alternate identity for Fr in (5.33).

Finally, we show holomorphic dependence in ǫ ∈ Hr for K r
i , with an identical

argument for Fr . Consider any contour ∂� ⊂ Hr . Then we clearly have

∫

∂�

(∫

r

|e−η/ǫki (η | ω1, ω2)||dη|

)
|dǫ| < ∞. (5.43)

By applying Fubini-Tonelli we can interchange the order of integration, and we find

∫

∂�

K r
i (ǫ | ω1, ω2)dǫ =

∫

∂�

(∫

r

e−η/ǫki (η | ω1, ω2)dη

)
dǫ

=

∫

r

(∫

∂�

e−η/ǫdǫ

)
ki (η | ω1, ω2)dη = 0.

(5.44)

Hence, by Morera’s theorem it follows that K r
i (ǫ | ω1, ω2) is holomorphic in ǫ ∈ Hr . ⊓⊔
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5.3. Integrals along detour paths. When μ(α) = ∞, we can still define something
meaningful. The idea is as follows:

• Give a non-Stokes ray r with μ(r) = ∞ with respect to the lattice �(ω1, ω2), let
r(δ) be the detour path defined in Sect. 2.4 for δ small enough (see figure 1).

• We then define the following expressions for ǫ ∈ Hr

K
r(δ)
i (ǫ | ω1, ω2) =

∫

r(δ)

Li1(e
−η/ǫ)ki (η | ω1, ω2)dη,

Fr(δ)(ǫ | ω1, ω2) =

∫

r(δ)

Li2(e
−η/ǫ)f(η | ω1, ω2)dη.

(5.45)

• We will then show the above expressions are independent of δ for δ small enough,
and they coincide with K r

i and Fr when μ(r) < ∞.

Proposition 5.4. Let r be a non-Stokes ray with respect to �(ω1, ω2). Then there is

D > 0 such that for all 0 < δ < D the integrals Fr(δ) and K
r(δ)
i are absolutely

convergent for ǫ ∈ Hr . These integrals depend holomorphically on ǫ ∈ Hr , and are

independent of the choice of such δ. Moreover when μ(r) < ∞ we have Fr(δ) = Fr

and K
r(δ)
i = K r

i .

Proof. We take D > 0 such that the discs of radius 0 < δ < D and centered at
�(ω1, ω2) do not intersect each other. Notice that given any parametrization η(t) of the
corresponding detour path r(δ) and ǫ ∈ Hr , we have Re(η(t)/ǫ) > 0 for t sufficiently
big, so we still have exponential decay as t → ∞.

On the other hand, the proof of the absolute convergence follows a simpler argument
than the one used in Lemma 5.2 and Proposition 5.3. Indeed, one first needs a version
of Lemma 5.2 for the detour paths r(δ). As in Lemma 5.2 we can focus on a segment
r∞(δ) given by η(t) for t ∈ [K ,∞) and K > 0 sufficiently big, and furthemore divide
r∞(δ) into two sets

r∞(δ) = rp ∪ rc (5.46)

where rc is exactly as in Lemma 5.2, and rp is now made of the arcs of the detour
path, belonging to circles of radius δ centered at the poles. The argument of the absolute
convergence over rc is exactly the same as in Lemma 5.2, while the estimates for rp are
easier, since we are now always a bounded distance from the poles. For example, when
dealing with ℘(η), using the periodicity of ℘(η) we simply have a uniform bound for
|℘(η)| along rp, while for ζ(η) and ρi (η) we use again Lemma 5.1. One can then apply
the same argument of Proposition 5.3 to show that the integrals in (5.45) are absolutely
integrable.2

Now let δ be small enough and 0 < δ′ < δ. Let rn(δ) (resp. rn(δ
′)) be the segment

of the detour path r(δ) (resp. r(δ′)) from 0 to some point between the n-th arc and the
(n + 1)-th arc. We pick the endpoint to be the same for rn(δ) and rn(δ

′) for all n > 0.
Similarly, we denote by rn the segment of r from 0 to the endpoint of rn(δ). By a

2 Note that in the case of rays r with μ(r) = ∞ we do not know that the expressions (5.33) are absolutely

integrable, and hence we cannot directly relate (5.45) to Borel sums by trying to show that K
r(δ)
i

and Fr(δ)

coincide with (5.33). This is because the argument of Proposition 5.3 requires the absolute convergence of
(5.33) to show that (5.33) match the corresponding Borel sums.
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trivial argument with contour integrals using the fact that the integrands have poles at
�∗(ω1, ω2)

K
rn(δ)
i = K

rn(δ′)
i = K

rn

i , Frn(δ) = Frn(δ′) = Frn , for all n > 0. (5.47)

When r is an arbitrary non-Stokes ray, we can use the existence of K
r(δ)
i and Fr(δ)

for all small enough δ and (5.47) to take a limit n → ∞ and obtain K
r(δ)
i = K

r(δ′)
i ,

Fr(δ) = Fr(δ′).3 Furthermore, when r is a non-Stokes ray such that μ(r) < ∞, we can

use the existence of K r
i and Fr and (5.47) to obtain K

r(δ)
i = K r

i , Fr(δ) = Fr .

Finally, the holomorphicity in ǫ ∈ Hr follows by a the same kind of argument as in
Proposition 5.3 ⊓⊔

5.4. Stokes jumps. Finally, we discuss how the previous integrals along different paths
relate to each other.

Proposition 5.5. Let r1 and r2 be two non-Stokes rays ordered in clockwise order, and

assume that Hr1 ∩ Hr2 �= ∅. Furthermore, let �(r1, r2) be the sector determined by r1

and r2. Then for ǫ ∈ Hr1 ∩ Hr2 and small enough δ we have

K
r2(δ)
i (ǫ | ω1, ω2) − K

r1(δ)
i (ǫ | ω1, ω2) = 2π i

∑

ω∈�(r1,r2)∩�∗(ω1,ω2)

ai · log(1 − e−ω/ǫ)

Fr2(δ)(ǫ, ω1, ω2) − Fr1(δ)(ǫ, ω1, ω2) = 2π i
∑

ω∈�(r1,r2)∩�∗(ω1,ω2)

∂

∂ǫ

(
ǫLi2(e

−ω/ǫ)
)
,

(5.48)

where ω = a1ω1 + a2ω2.

Proof. Consider a sequence Cn with n > 0 of discs centered at 0 and of radius Rn

with Rn → ∞ as n → ∞. We denote by An the arc of Cn contained in �(r1, r2) and
assume that An does not intersect �∗(ω1, ω2) for all n. We orient An counter-clockwise.
Furthermore, consider δ > 0 small enough such that the discs of radius δ > 0 centered
at the points of �(ω1, ω2) do not intersect. We consider detour arcs An(δ), defined
similarly to the detour rays r(δ) by taking a detour along the circles of radius δ centered
at the points of �(ω1, ω2) through the shortest length arc. Furthermore, we denote by
�n(r1, r2) the region determined by r1, r2 and An(δ), and by rn,1(δ) and rn,2(δ) the
segments of r1(δ) and r2(δ) from 0 to the intersection points with An(δ). By using that
ki (η) has a simple pole at ω = a1ω1 + a2ω2 ∈ �∗(ω1, ω2) with residue −ai we obtain
using (5.45) that

K
rn,2(δ)

i − K
rn,1(δ)

i + K
An(δ)
i = 2π i

∑

ω∈�n(r1,r2)∩�∗

ai · log(1 − e−ω/ǫ) (5.49)

3 Note that this does not show that K
r(δ)
i

= K r
i

, Fr(δ) = Fr , since for a general non-Stokes ray r we do

not know that Fr and K r
i

exist, and the existence of a limit along a sequence does not guarantee the existence
of the limit.
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where we have used that Li1(z) = − log(1 − z). Similarly, using that ℘̃ = −dζ̃ /dη and
the definition of f, we can use integration by parts on Fr(δ) to write

Fr(δ) =

∫

r(δ)

(
2Li2(e

−η/ǫ) −
d

dη
(ηLi2(e

−η/ǫ))

)
ζ̃ (η, ω1, ω2)dη

=

∫

r(δ)

(
Li2(e

−η/ǫ) +
η

ǫ
Li1(e

−η/ǫ)
)

ζ̃ (η, ω1, ω2)dη

(5.50)

where we have used that the boundary terms of the integration by parts vanish. Using
that ζ̃ has a simple pole at ω ∈ �∗(ω1, ω2) with residue 1 then shows that

Frn,2(δ) − Frn,1(δ) + F An(δ) = 2π i
∑

ω∈�n(r1,r2)∩�∗

(
Li2(e

−ω/ǫ) +
ω

ǫ
Li1(e

−ω/ǫ)
)

= 2π i
∑

ω∈�n(r1,r2)∩�∗

∂ǫ

(
ǫLi2(e

−ω/ǫ)
) (5.51)

Now note that since ǫ ∈ Hr1 ∩ Hr2 the function e−η/ǫ along An(δ) is exponentially
suppressed as n → ∞. By using a similar argument to Lemma 5.2, Proposition 5.3 and
Proposition 5.4 one then finds that

lim
n→∞

F An(δ) = lim
n→∞

K
An(δ)
i = 0 (5.52)

and hence the result follows. ⊓⊔
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Appendix A. Free Energy in Fibre Classes

Let π : X → B be an elliptic CY threefold satisfying the assumptions 1.1, and consider
the GW generating function in fibre classes of π : X → B and for genus g ≥ 2

FGW(λ | Q) =
∑

g≥2

Fg(Q)λ2g−2, Fg(Q) =

∞∑

n=0

GW(g, nF)Qd . (A.1)

http://creativecommons.org/licenses/by/4.0/
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Here GW(g, nF) denotes the GW invariant of the class nF at genus g, and F is the fiber
class of π : X → B.

In this Section we show that one can write FGW as in (1.4). The expression (A.2)
below is the same as the one written in [21, Section B.3]. We nevertheless include a
more detailed computation for completeness.

Proposition A.1. Assuming the GW/DT correspondence holds for X, we can write

FGW(λ | Q) from (A.1) as

FGW(λ | Q) = e(X)
∑

g≥2

(−1)g B2g

4g
C2g−2(Q)λ2g−2, (A.2)

where C2g−2(Q) is the analytic function in Q for |Q| < 1 given by

C2g−2(Q) = −
B2g−2

(2g − 2) · (2g − 2)!
+

2

(2g − 2)!

∑

k,n≥1

k2g−3 Qkn . (A.3)

Furthermore, setting Q = e2π iτ for Im(τ ) > 0 we have

FGW(λ | τ) = −e(X) ·
∑

g≥2

B2g G2g−2(τ )

4g(2g − 2)

(
λ

2π

)2g−2

. (A.4)

Proof. On the one hand, for g ≥ 2 and n = 0 we have the universal contribution of
constant maps on a CY threefold X [13, Theorem 4]

GW(g, 0) = −e(X)
(−1)g B2g B2g−2

4g(2g − 2)(2g − 2)!
. (A.5)

On the other hand, consider the Gopakumar-Vafa form of the Gromov-Witten generating
function

∑

g≥0, β>0

GW(g, β)Qβλ2g−2 =
∑

g≥0, β>0, k>0

GV(g, β)

k

(
2 sin

(
kλ

2

))2g−2

Qkβ ,

(A.6)

where GV(g, β) denotes the Gopakumar-Vafa invariants of the class β at genus g.
Assuming the DT/GW correspondence it is shown in [23, Section 6] that for β = nF ,
n > 0, we have

GV(0, nF) = −e(X), GV(1, nF) = e(B), GV(g, nF) = 0 for g ≥ 2.

(A.7)

Hence, restricting to the sum over fiber classes (and denoting Qn·F = Qn to simplify
notation) we find

∑

g≥0, n>0

GW(g, nF)Qnλ2g−2

= −e(X)
∑

k,n>0

1

k

(
2 sin

(
kλ

2

))−2

Qkn + e(B)
∑

k,n>0

Qkn

k
,

= e(X)
∑

k,n>0

eikλ

k(eikλ − 1)2
Qkn − e(B)

∑

n>0

log(1 − Qn).

(A.8)
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Using the generating function of Bernoulli numbers Bn and the fact that Bn = 0 for odd
n > 1, one easily finds that

eikλ

(eikλ − 1)2
=

∞∑

g=0

(2g − 1)(−1)g B2g(kλ)2g−2

(2g)!
, (A.9)

so when considering only terms with g ≥ 2 we find that

∑

g≥2, n>0

GW(g, nF)Qnλ2g−2

= e(X)
∑

g≥2

(−1)g B2g

(2g) · (2g − 2)!

⎛
⎝ ∑

k,n>0

k2g−3 Qk·n

⎞
⎠ λ2g−2

= e(X)
∑

g≥2

(−1)g B2g

4g

(
C2g−2(Q) +

B2g−2

(2g − 2) · (2g − 2)!

)
λ2g−2.

(A.10)

The expression (A.2) then follows by adding the constant map contribution (A.5).

Finally, to show (A.4) note that the Eisenstein series G2g−2(τ ) has the following expan-

sion for g ≥ 2, which is a slight rewriting of its Fourier series4

G2g−2(τ ) = 2ζ(2g − 2)

⎛
⎝1 −

(2π)2g−2(−1)g

(2g − 3)!ζ(2g − 2)

∑

k,n>0

k2g−3 Qkn

⎞
⎠ , Q = e2π iτ .

(A.11)

In the above ζ(s) denotes the Riemann ζ -function and not the Weierstrass ζ -function
that is used in the rest of the paper. From

ζ(2g − 2) =
(−1)g(2π)2g−2 B2g−2

2(2g − 2)!
, g ≥ 2, (A.12)

it then follows that

C2g−2(Q) = −
(−1)g

(2g − 2)(2π)2g−2
G2g−2(τ ) . (A.13)

Hence (A.4) follows from (A.13) and (A.2). ⊓⊔

4 In the Fourier expansion of G2g−2(τ ) a sum of the form
∑

m>0 σ2g−3(m)Qm appears, where

σ2 g−3(m) =
∑

d|m d2 g−3 and Q = e2π iτ . We simply use the fact that
∑

m>0 σ2g−3(m)Qm =
∑

k,n>0 k2g−3 Qk·n .
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Appendix B. Lemma on Irrationality Measure

Recall the definition of irrationality measure μ(α) from Sect. 2.3. Here we prove that if
α ∈ R\Q then

μ

(
aα + b

cα + d

)
= μ(α) for all

(
a b

c d

)
∈ GL2(Z). (B.1)

It it is enough to show that the result holds for the generators

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
, P =

(
1 0
0 −1

)
. (B.2)

of GL2(Z). This is obvious for the transformations α �→ α + 1 and α �→ −α corre-
sponding to T and P . Thus it remains to prove that μ(α) = μ(1/α). By the invariance
of μ(α) under α �→ −α we can assume that α > 0.
Suppose that 0 < r < μ(α). By definition of μ(α), this implies that there are infinitely
many p, q ∈ Z with q > 0 such that

|α − p/q| < 1/qr . (B.3)

For a given q > 0 there can only be finitely many p satisfying (B.3). So there must be a
sequence pn, qn ∈ Z with qn > 0 satisfying (B.3) such that qn → ∞ as n → ∞. Then

pn

qn

→ α. (B.4)

and hence pn → ∞ also. Passing to a subsequence we can assume that all pn > 0. It
follows from (B.3) and (B.4) that for some constant C > 0

∣∣∣∣
1

α
−

qn

pn

∣∣∣∣ <
1

qr−1
n pnα

=
pr−1

n

qr−1
n pr

nα
<

C

pr
n

. (B.5)

If 0 < r ′ < r then using the fact that pn → ∞ we can assume, after possibly passing

to another subsequence, that pr−r ′

n > C for all n ∈ N, and hence that

∣∣∣∣
1

α
−

qn

pn

∣∣∣∣ <
1

pr ′

n

. (B.6)

This implies that r ′ ≤ μ(1/α). Since this holds for all 0 < r ′ < r , it follows that r ≤
μ(1/α). But 0 < r < μ(α) was chosen arbitrarily so we conclude that μ(α) ≤ μ(1/α).
Repeating the argument interchanging α and 1/α gives μ(α) = μ(1/α).
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