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Abstract

We determine the restriction of Weil representations of unitary groups to maximal tori.
In the local case, we show that the Weil representation contains a pair of compatible
characters if and only if a root number condition holds. In the global case, we show
that a torus period corresponding to a maximal anisotropic torus of the global theta lift
of a character does not vanish if and only if the local condition is satisfied everywhere
and a central value of an L-function does not vanish. Our proof makes use of the
seesaw argument and of the well-known theta lifting results from U(1) to U(1). Our
results are used in [1, 2] to construct Arthur packets for G2.
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1 Introduction

Branching problems are a fascinating topic in representation theory and in the theory of
automorphic representations. The most famous examples are the Gan–Gross–Prasad
conjectures [9–11] and their refinements [16, 18, 33], extending the original conjec-
tures of Gross–Prasad [13, 14].

In this paper, we study the restriction of Weil representations of unitary groups to
maximal tori. Our results are both local and global, and they are similar in nature to
the Gan–Gross–Prasad conjectures. Let us describe the problems we concern.

Let F be a field with characteristic different than 2 and let K/F be a quadratic
étale algebra with involution x �→ xc, whose set of fixed points is F . Let V be a non-
degenerate n-dimensional hermitian space over K , and let W be a non-degenerate
one-dimensional skew-hermitian space over K .

When F is a local field, we consider the following branching problem: given a
maximal torus T of U(V) and characters α : T → C

× and β : U(W) → C
×, we

would like to investigate whether the restriction of the Weil representation of the
metaplectic group Mpψ (V, W) to T × U(W) contains the representation α ⊠ β as a
sub-quotient. Reformulating this using the theta correspondence, this is equivalent to
asking whether the space HomT (� (β) , α) is non-zero, where �(β) is the big theta
lift of β from U(W) to U(V).

Suppose that F = F is a number field and that K/F is a quadratic field extension.
For an algebraic group G, we write [G] = G (F) \G (AF). We consider the following
branching problem: given a maximal torus T of U(V) and automorphic characters
α : [T] → C

× and β : [U(W)] → C
×, we would like to investigate whether the

α-period of the global theta lift �(β) of β from U(W) (AF) to U(V) (AF) is non-zero.
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That is, we are asking whether the assignment

PT,α ( f ) =

∫

[T]
f (t) α (t)dt

is identically zero on the space �(β). In order to avoid convergence issues, we will
assume that the torus T is anisotropic in the global setting, so that the integrals in
question converge absolutely.

Notice that when V is one-dimensional, the theta lift of β is either zero or a character,
and our problems reduce to determining whether �(β) equals α or not. This problem,
of determining the theta lift from U(1) to U(1), is well understood. It dates back to
Moen [24], Rogawski [28], and Harris–Kudla–Sweet [15] in the non-archimedean
local field case, to Paul [25] in the archimedean local field case, to Minguez [22],
Fang–Sun–Xue [5] and Gan [7] in the split local case, and to Rogawski [28], Yang
[36] and Yamana [35] in the global case. See also Section 9 of [8] and the last paragraph
of Section 7 of [8].

Our technique for solving these problems in the general case, where dim V is
arbitrary, involves a seesaw identity that reduces the problems to the well-known case
discussed above. This idea has been used before by Gan and his collaborators, see for
example [6, Sections 9 and 10], [7, Section 5] and [8, Section 10].

In order to state our results, we need a classification of maximal tori in U(V). In
Section 2, we recall the classification given in [27]. Each maximal torus T ⊂ U(V)

corresponds to an étale algebra E of degree n over F and an element λ ∈ E×,
such that the space

(

VE,λ, 〈·, ·〉λ
)

is isomorphic to V as hermitian spaces, where
VE,λ = ResL E /K L E , equipped with the hermitian product 〈x, y〉λ = trL E /K (λxyc),
where L E = K ⊗F E . In this case, the maximal torus TE,λ is isomorphic to the norm
one torus of L E , that is,

L1
E =

{

x ∈ ResE/F L×
E | x · xc = 1

}

.

For some of our results, we would like to iterate over the different embeddings
L1

E →֒ U(V), modulo U(V)-conjugation. However, there are too many of these.
To tackle this obstacle, we follow an idea presented in [8, Section 3] and define the
notion of an admissible embedding i : L1

E → U(V) (Section 2.4). We show that the
set of admissible embeddings of L1

E forms a stable conjugacy class in U(V). More-
over, we construct a natural bijection between certain classes in E×/NL E /E

(

L×
E

)

and
admissible embeddings i : L1

E → U(V), up to U(V)-conjugation (Theorem 2.8):

Theorem 1.1 There exists a natural bijection between the sets

{

λ ∈ E×/NL E /E
(

L×
E

)

| VE,λ is isomorphic to V as hermitian spaces
}

and


E,V =
{

i : L1
E → U(V) | i is admissible

}

/ U(V)-conjugation.
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We now move to describe our main results. In order to make the results look
cleaner, we will no longer mention the one-dimensional skew-hermitian space W in
the introduction, but instead use a trace zero element δ that encodes the discriminant
of such space.

Suppose that F is a local field. By choosing a trace zero element δ ∈ K ×, a character
μ : K × → C

× such that μ↾F× = ωK/F is the quadratic character given by local class
field theory, and a non-trivial character ψ : F → C

×, we can lift characters of L1
F

to representations of U(V). Suppose that E is an étale algebra of degree n over F .
Let β : L1

F → C
×, and α : L1

E → C
× be characters. We give the following answer

(Theorem 5.1) to the local problem discussed above.

Theorem 1.2 Let i : L1
E → U(V) be an admissible embedding that corresponds to

the element λ ∈ E× under Theorem 1.1. Then the space

Homi
(

L1
E

)

(

�δ,V,μ,ψ (β) , α ◦ i−1
)

(1)

is non-zero if and only if the following conditions hold:

(1) Character compatibility: β = α↾
L1

F
.

(2) Root number condition: ωL E /E (λ) = εL E /E
(

αL E · μ−1 ◦ NL E /K , ψ, δ
)

.

Moreover, in this case, this Hom-space is one-dimensional.

Here, �δ,V,μ,ψ (β) is the big theta lift of β to U(V) with respect to the data (δ, μ,ψ),
see Section 3.1.2. It is either zero or irreducible in our case (since β is supercuspidal),
and therefore equals the small theta lift θδ,V,μ,ψ (β). We refer the reader to Sections
2.2.2 and 3.3 for the definition of the vector of quadratic characters ωL E /E (λ), the vec-
tor of root numbers εL E /E

(

αL E · μ−1 ◦ NL E /K , ψ, δ
)

, and other notation appearing
in the theorem.

We also show that for charactersα andβ satisfying the compatibility condition, there
exists a unique non-degenerate hermitian space H of dimension n, up to isomorphism,
and a unique admissible embedding i : L1

E → U(H), up to conjugation, such that the
space (1) attached to i is non-zero. More precisely, we show the following theorem
(Corollary 5.4).

Theorem 1.3 For every choice of E, α, and β as above, we have

∑

H∈Hern

∑

i∈
E,H

dimC Homi
(

L1
E

)

(

�δ,H,μ,ψ (β) , α ◦ i−1
)

=

{

1 β = α↾
L1

F
,

0 otherwise.

Here, H runs over representatives of classes of

Hern = {H is a non-degenerate hermitian space | dim H = n} /isomorphism,

and i runs over representatives of classes of 
E,H.
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These two local theorems are similar to the local Gan–Gross–Prasad conjectures, in
the sense that for compatible α and β, there exists a unique non-degenerate hermitian
space H of dimension n (up to isomorphism), a unique admissible embedding (up to
U(H)-conjugation) i : L1

E → U(H), such that the space attached to i is not zero, and
we pinpoint the tuple (H, i) in terms of the vector of root numbers attached to the data
defining i . In our case, the set

Vδ,E (β) =
⋃

H∈Hern

{(

�δ,H,μ,ψ (β) , α ◦ i−1
)

| i ∈ 
E,H

}

,

is analogous to the local Vogan L-packet appearing in the Gan–Gross–Prasad conjec-
tures, consisting of irreducible representations of the group and of its pure inner forms.
Here, Vδ,E consists of tuples whose first component is an irreducible representation
of a pure inner form of U(V), and whose second component is a character of a torus
(of the aforementioned pure inner form) isomorphic to L1

E .
We move to explain our global result. Let F = F be a number field and let K = K

be a quadratic field extension of F.
By choosing a trace zero element δ ∈ K

×, an automorphic character μ of A
×
K

, such
that μ ↾

A
×
F

= ωK/F is the quadratic character given by global class field theory, and a

non-trivial character ψ : F\A → C
×, we can lift automorphic characters of L1

F
(AF)

to automorphic representations of U(V) (AF). Suppose that E is an n-dimensional
étale algebra over F, such that there exists λ ∈ E

× satisfying that VE,λ is isomorphic
to V as hermitian spaces, and such that L1

E
is anisotropic (equivalently, there is no

embedding of F-algebras K →֒ E). Let β :
[

L1
F

]

→ C
× and α :

[

L1
E

]

→ C
× be

automorphic characters. Our global result (Theorem 5.6) classifies when the α-period
is identically zero on the space of the global theta lift �δ,V,μ,ψ (β) of β to U(V) (AF).
As before, and as in the global Gan–Gross–Prasad conjectures, this classification is
expressed in terms of root numbers and central values of L-functions.

Theorem 1.4 Let i : L1
E

→ U(V) be an admissible embedding corresponding to λ ∈

E
×. The α ◦ i−1-period Pi

(

L1
E

)

,α◦i−1 is non-zero on the global theta lift �δ,V,μ,ψ (β),

that is,

∫

[

L1
E

]

f (i (t)) α (t)dt 
= 0 for some f ∈ �δ,V,μ,ψ (β) ,

if and only if the following conditions hold:

(1) Character compatibility: β = α↾
L1

F
(AF)

.

(2) Root number condition: for every place v,

ωLE⊗FFv/E⊗FFv
(λ) = εLE⊗FFv/E⊗FFv

(

αv,LE⊗FFv
· μ−1

v ◦ NLE⊗FFv/K⊗FFv
, ψv, δ

)

.

(3) Central L-function value condition: the following value is non-zero

L

(

αLE⊗FAF
· μ−1 ◦ NLE/K

)


= 0.
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We refer the reader to Section 4.3 for the definition of the central L-function value
L

(

αLE⊗FAF
· μ−1 ◦ NLE/K

)

and other notation appearing in the theorem.
Notice that the first two conditions in Theorem 1.4 are equivalent to requiring that

for every place v, the conditions in Theorem 1.2 hold. It is clear that the condition
of the Hom-space not vanishing for every v is a necessary condition for the global
period to not vanish. Moreover, the root number condition implies that the global root
number equals one, i.e.,

∏

v

εLE⊗FFv/E⊗FFv

(

αv,LE⊗FFv · μ−1
v ◦ NLE⊗FFv/K⊗FFv , ψv, δ

)

= 1,

and therefore the third condition regarding the central L-value L
(

αLE⊗FAF
· μ−1 ◦

NLE/K

)

can be satisfied.
Similarly to the local case, we show in Corollary 5.8 that for characters α and β

satisfying the compatibility condition and such that the central L-function value in
question does not vanish, there exists a unique non-degenerate hermitian space H of
dimension n and a unique class i ∈ 
E,H, such that the period Pi

(

L1
E

)

,α◦i−1 does not
identically vanish on �δ,H,μ,ψ (β).

Theorem 1.5 For every choice of E, α, and β, as above, there exists a non-degenerate
hermitian space H of dimension n and an admissible embedding i : L1

E
→ U(H), such

that Pi
(

L1
E

)

,α◦i−1 is not identically zero on �δ,H,μ,ψ (β), if and only if the following

conditions hold:

(1) Character compatibility: β = α↾
L1

F
(AF)

.

(2) Central L-function value condition: the following value is non-zero

L

(

αLE⊗FAF
· μ−1 ◦ NLE/K

)


= 0.

Moreover, in this case, the class of such H and the class of i : L1
E

→ U(H) in 
E,H is
unique.

Once again, these results are similar to the global Gan–Gross–Prasad conjectures, in
the sense that for α and β satisfying the compatibility condition, the non-vanishing
of the period Pi

(

L1
E

)

,α◦i−1 is determined by a central L-function value, and in this
case there exists a unique non-degenerate hermitian space H of dimension n (up to
isomorphism) and a unique (up to U(H)-conjugacy) admissible embedding, for which
this period does not vanish. As in the local case, the set

Vδ,E (β) =
⋃

H∈Hern

{(

�δ,H,μ,ψ (β) , α ◦ i−1
)

| i ∈ 
E,H

}

,

serves as a substitute for the global Vogan packet appearing in the global Gan–Gross-
Prasad conjectures, consisting of automorphic representations of the group and its
pure inner forms.
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The results of this paper, combined with the exceptional theta correspondence of
Bakić and Savin [3] for (PU3 ⋊ Z/2Z) × G2, are used in order to construct local and
global Arthur packets for the exceptional group G2, see [1] and [2].

The paper is organized as follows. In Section 2, we recall the notion of ǫ-hermitian
spaces and the invariants attached to them. Then we discuss the classification of max-
imal tori in unitary groups associated to ǫ-hermitian spaces, and discuss the notion of
an admissible embedding. In Section 3, we recall the theta correspondence for unitary
groups over local fields. We use it to define the notion of the big theta lift for characters
of unitary groups of one-dimensional ǫ-hermitian spaces over an étale algebra. We
then explain a seesaw identity for this theta lift. This is a key ingredient needed for
our main results. We then discuss the well-known results of theta lifting from U(1)

to U(1), and use them to obtain similar results for theta lifting from U(1) to U(1) for
a one-dimensional ǫ-hermitian space over an étale algebra. In Section 4 we discuss
the global analogs of the statements in Section 3. In Section 5, we state and prove our
main theorems regarding toric periods of Weil representations of unitary groups. In
the appendix, we prove statements regarding two embeddings of a maximal torus that
are conjugate.

2 Maximal tori in unitary groups

In this section we describe how one can classify maximal tori in unitary groups,
following the results of [27]. Moreover, we introduce the notion of an admissible
embedding, which will be of importance in Section 5.

2.1 �-hermitian spaces and their corresponding unitary groups

Let F be a field. We will always assume that F has characteristic 
= 2. Let K/F be
a quadratic étale algebra with an involution, denoted x �→ xc, whose fixed points are
F . That is, K is either a quadratic field extension of F , in which case the involution
is the nontrivial Galois action on K , or K = F × F , in which case the involution is
given by (x, y) �→ (y, x) for x, y ∈ F . The latter case is known as the split case, and
the unitary groups for hermitian spaces over these two quadratic étale algebras will be
treated separately.

For ǫ ∈ {±1}, a finite dimensional ǫ-hermitian space is a finite dimensional vector
space V over K , equipped with an ǫ-hermitian form, i.e., there exists a function
〈·, ·〉 : V × V → K , such that for all w, x, y ∈ V, and α ∈ K :

(1) 〈x, y〉 = ǫ 〈y, x〉c,
(2) 〈w + x, y〉 = 〈w, y〉 + 〈x, y〉,
(3) 〈αx, y〉 = α 〈x, y〉.

If ǫ = 1, we call V hermitian, and if ǫ = −1, we call V skew-hermitian. If δ ∈ K ×

is a trace zero element, that is, trK/F (δ) = 0, consider the space (Wδ, 〈·, ·〉Wδ ) =

(V, 〈·, ·〉δ) equipped with the form defined by 〈x, y〉δ = δ 〈x, y〉. We have that the
space Wδ is a −ǫ-hermitian space. Throughout the text, hermitian spaces will always
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be denoted using the symbol V or H, and skew-hermitian spaces will always be denoted
using the symbol W.

We say that the space V is non-degenerate if for every 0 
= x ∈ V, there exists
y ∈ V, such that 〈x, y〉 
= 0. In this case, if T : V → V is a linear map, then there
exists a unique linear map T ∗ : V → V, such that

〈T x, y〉 =
〈

x, T ∗y
〉

,

for every x, y ∈ V. We call T ∗ the adjoint of T . The assignment End V → End V
mapping T �→ T ∗ is an involution, such that for any T , S ∈ End (V) and any α ∈ K ,

(αT )∗ = αcT ∗,

(T ◦ S)∗ = S∗ ◦ T ∗.

If V is a non-degenerate finite dimensional ǫ-hermitian space, we define its unitary
group to be

U(V) =
{

g ∈ ResK/F GLK (V) | 〈gx, gy〉 = 〈x, y〉 ,∀x, y ∈ V
}

.

Note that if Wδ is given as above, then U(V) = U(Wδ).
If V is a non-degenerate one-dimensional ǫ-hermitian space over K , we have that

U(V) is isomorphic to the group

K 1 =
{

x ∈ K × | xxc = 1
}

by the map sending x ∈ K 1 to the multiplication by x map mx : V → V. We refer to
the inverse of this map as the obvious isomorphism U(V) → K 1.

2.1.1 Invariants of�-hermitian spaces

Let V be a non-degenerate ǫ-hermitian space such that dimK V = n. The space V has
a natural invariant known as the discriminant, which we explain below.

Let e = {ei }
n
i=1 be a basis of V. Then the determinant of the ǫ-hermitian form 〈·, ·〉

with respect to the basis {ei }
n
i=1 is defined to be

det
(

〈·, ·〉
)

e
:= det

(〈

ei , e j
〉)

i j .

If V is hermitian, then det (〈·, ·〉)e ∈ F× and it is well-known that the class of
det(〈·, ·〉)e in F×/NK/F (K ×) is independent of the chosen basis e. Hence, we may
omit e from the notation and denote det V = det(〈·, ·〉)e ∈ F×/NK/F

(

K ×
)

. Note that
in the split case where K = F × F , we have that F× = NK/F

(

K ×
)

, and therefore
the invariant det V is always trivial.

We define the discriminant of V as

disc V := (−1)n(n−1)/2 det V.



On tori periods of Weil representations of unitary groups Page 9 of 49    49 

For a non-degenerate finite dimensional skew-hermitian space W and a trace zero
element δ ∈ K ×, we have that the space (Vδ, 〈·, ·〉Vδ ) = (W, 〈·, ·〉δ) equipped with
the form

〈x, y〉δ = δ 〈x, y〉

is a hermitian space and we define

disc W = δ− dim W disc
(

Vδ
)

∈ δ− dim W · F×/NK/F (K ×).

Suppose now that F is a local field (we allow both archimedean and non-
archimedean local fields) and that K/F is a quadratic field extension. Using the
non-trivial quadratic character ωK/F of F×/NK/F (K ×) associated to the quadratic
extension K/F by local class field theory, we can encode the discriminant as a sign.
For a hermitian space V as above we define

ǫ(V) = ωK/F (disc V).

Similarly, for a skew-hermitian space W as above we define

ǫδ (W) := ǫ
(

Vδ
)

= ωK/F

(

δdim W disc W
)

.

Note that the invariant ǫδ (W) depends on the choice of δ.

2.2 One-dimensional hermitian spaces with respect to an étale algebra

Let L be an étale algebra of degree n over K . We say that (L, σ ) is an étale algebra with
involution if σ : L → L is an involution, such that for any a ∈ K , σ(a) = ac. Given
such an étale algebra with involution, we may define the notion of an L-hermitian (or
L-skew-hermitian) space as in Section 2.1 by replacing K with L and the involution
x �→ xc with the involution σ in the definitions.

It is well-known that any étale algebra with involution is of the form L = L E =

K ⊗F E , where E is an étale algebra of degree n over F and σ : L E → L E is defined
on pure tensors by

σ(k ⊗ h) = kc ⊗ h,

for k ∈ K and h ∈ E . Henceforth we will often write σ (x) = xc for x ∈ L E .
Let E be an étale algebra as above. For any λ ∈ E×, let L E,λ = (L E , 〈·, ·〉L E,λ

) be
the one-dimensional L E -hermitian space equipped with the following form:

〈x, y〉L E,λ
= λxyc.

As before, given a trace zero element δ ∈ L×
E , we may define a one-dimensional L E -

skew-hermitian space Wδ
E,λ = (L E , 〈·, ·〉Wδ

E,λ
) by setting 〈x, y〉Wδ

E,λ
= δ 〈x, y〉L E,λ

.
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Consider the unitary group U(L E,λ), consisting of all L E -linear maps that preserve
the L E -hermitian structure on L E,λ. It is naturally isomorphic to the group of norm
one elements of L E :

L1
E =

{

x ∈ ResE/F L×
E | xxc = 1

}

.

The isomorphism is given by the map sending x ∈ L1
E to the multiplication by x

map mx : L E,λ → L E,λ. We refer to the inverse of this isomorphism as the obvious
isomorphism U(L E,λ) → L1

E . Similarly, the unitary group U(Wδ
E,λ) is also naturally

isomorphic to L1
E , and we define the notion of the obvious isomorphism U(Wδ

E,λ) →

L1
E . The group L1

E will be fundamental for defining maximal tori in unitary groups in
the next sections.

If E =
∏m

j=1 F j , where for every j , F j/F is a field extension, and λ =

(λ1, . . . , λm) ∈
∏m

j=1 F×
j , then we have that U(L E,λ) =

∏m
j=1 U(L F j ,λ j ), which

is naturally isomorphic to
∏m

j=1 L1
F j

. We also have a similar statement for the unitary

group U(Wδ
E,λ) of the skew-hermitian L E -space Wδ

E,λ.

2.2.1 The discriminant of an étale algebra

Let E be an étale algebra of degree n over F . Let e = {ei }
n
i=1 be a basis of E over F .

The determinant of the étale algebra E/F with respect to the basis e is defined to be

det
(

trE/F (·)
)

e
:= det

(

trE/F
(

ei e j
))

i, j

It turns out that the class of det
(

trE/F (·)
)

e
in F×/

(

F×
)2

does not depend on the
choice of the basis e, and hence we can define

detF (E) = det
(

trE/F
(

ei e j
))

i j ∈ F×/
(

F×
)2

.

The discriminant of the étale algebra E/F is defined as

discF (E) = (−1)n(n−1)/2 detF (E) ∈ F×/
(

F×
)2

.

Although these elements are classes of F×/
(

F×
)2

, we will always regard them as

classes of F×/NK/F
(

K ×
)

using the quotient map F×/
(

F×
)2

→ F×/NK/F
(

K ×
)

(recall that
(

F×
)2

= NK/F
(

F×
)

⊂ NK/F
(

K ×
)

).

2.2.2 Invariants of one-dimensional hermitian spaces over an étale algebra

Let λ ∈ E×. We define the discriminant of the space L E,λ as

disc L E,λ = λ ∈ E×/NL E /E
(

L×
E

)

.
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We define the discriminant of the space Wδ
E,λ as

disc Wδ
E,λ = δλ ∈ δE×/NL E /E

(

L×
E

)

.

Suppose that F is a local field. We may encode each of these invariants as a tuple
of signs. If E =

∏m
j=1 F j as before, we define a homomorphism

ωL E /E : E×/NL E /E
(

L×
E

)

→ {±1}m

as follows. For λ = (λ1, . . . , λm) ∈
∏m

j=1 F×
j let

ωL E /E (λ) =
(

ωL F1/F1 (λ1) , . . . , ωL Fm /Fm (λm)

)

,

where ωL Fj /F j is the non-trivial quadratic character if L F j is a field, and ωL Fj /F j is
the trivial character otherwise. We define

ǫ
(

L E,λ

)

= ωL E /E (λ) and ǫδ(W
δ
E,λ) = ωL E /E (λ) .

2.3 Restriction of scalars of one-dimensional hermitian spaces over LE

Let F be a field and let K/F be a quadratic field extension equipped with an involution
x �→ xc. Let E be an étale algebra of degree n over F . For any λ ∈ E×, consider the
following hermitian space over K

VE,λ =
(

ResL E /K L E , 〈·, ·〉λ
)

,

equipped with the following hermitian form

〈x, y〉λ = trL E /K 〈x, y〉L E,λ
= trL E /K

(

λxyc) ,

where x, y ∈ L E .

Proposition 2.1 We have the equalities

det VE,1 = detF (E)

and

disc VE,1 = discF (E)

in F×/NK/F
(

K ×
)

.



   49 Page 12 of 49 N. Borade et al.

Proof Choose an F-basis e = {ei }
n
i=1 for E . Then 1 ⊗F e = {1 ⊗ ei }

n
i=1 is a K -basis

for VE,1. We have that σ
(

1 ⊗ e j
)

= 1 ⊗ e j , and therefore

(〈

ei , e j
〉

1

)

i j
=

(

trL E /K
(

1 ⊗ ei e j
))

i j =
(

trE/F
(

ei e j
))

i j .

Taking the determinant, we get that

det
(〈

ei , e j
〉

1

)

i, j
= det

(

trE/F
(

ei e j
))

i j , (2)

which implies that the classes of these elements in F×/NK/F
(

K ×
)

are the same. The
class of the left hand side of (2) is det VE,1, while the class of the right hand side of (2)

is the image of detF (E) under the quotient map
(

F×
)

/
(

F×
)2

→ F×/NK/F
(

K ×
)

.
⊓⊔

Combining Proposition 2.1 with [4, Corollary 1.2.2], we have the following relation
between the determinants and discriminants of VE,λ and E .

Lemma 2.2 Let λ ∈ E×. Then we have

det VE,λ = NE/F (λ) · detF (E)

and

disc VE,λ = NE/F (λ) · discF (E) .

2.3.1 Classification of maximal tori of unitary groups

In this section, we utilize the space VE,λ and the unitary group U(L E,λ) in order
to classify the maximal tori of U(V) where V is a non-degenerate n-dimensional
hermitian space.

For any x ∈ L E , we may consider the K -linear map mx : L E → L E defined by
mx (y) = xy. For any λ ∈ E× and any x ∈ L1

E , we have that the map mx preserves
the hermitian form 〈·, ·〉λ. Let

T =
{

mx | x ∈ L1
E

}

⊂ U(VE,λ).

Consider the central simple algebra End
(

VE,λ

)

with involution S �→ S∗. It con-
tains the n-dimensional étale K -subalgebra L E realized by the embedding L E →

End
(

VE,λ

)

given by x �→ mx . Notice that

T = ResL E /F (GL1) ∩ U(VE,λ).

By [27, Proposition 2.3] we have that T is a maximal torus in U(VE,λ).
If V is a non-degenerate n-dimensional hermitian space, all maximal tori of U(V)

can be described in a similar way. First, if r : VE,λ → V is an isomorphism of hermitian
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spaces, then the map U(VE,λ) → U(V) given by g �→ r ◦ g ◦ r−1 is an isomorphism,
and therefore

TE,r =
{

r ◦ mx ◦ r−1 | x ∈ L1
E

}

is a maximal torus in U(V).
For the other direction, by [27, Proposition 2.3] if T ⊂ U(V) is a maximal torus, then

there exists an n-dimensional étale algebra E and an embedding i ′ : L E → End (V),
such that T = i ′

(

ResL E /F (GL1)
)

∩U(V), or equivalently T = i ′
(

L1
E

)

. Finally, by [4,
Proposition 1.4.1], if E is an n-dimensional étale algebra over F , then there exists an
embedding i ′ : L E → End (V) if and only if there exists λ ∈ E× and an isomorphism
of hermitian spaces r : VE,λ → V. By the proof of [4, Proposition 1.4.1], in this case
we have i ′ (x) = r ◦ mx ◦ r−1 for any x ∈ L E . We summarize these results in the
following theorem.

Theorem 2.3 For any étale algebra E of degree n over F, an element λ ∈ E× and an
isomorphism of hermitian spaces r : VE,λ → V, we have that

TE,r =
{

r ◦ mx ◦ r−1 | x ∈ L1
E

}

is a maximal torus in U(V). Conversely, any maximal torus T in U(V) can be realized
in this form.

We remark that this theorem is also true in the split case K = F × F from easier
considerations. In this case, the unitary group U(V) is isomorphic to GLn (F). We
also have in this case that L E = E × E and that

L1
E =

{(

x, x−1
)

| x ∈ E×
}

∼= E×.

Hence, the statement in the split case is equivalent to the well-known fact that maximal
tori in GLn (F) are in bijection with subgroups of the form

{

[mx ]BE | x ∈ E×
}

for
some étale algebra E of degree n over F and some F-basis BE of E , where [mx ]BE

is the matrix representing mx with respect to the basis BE . See for example [29,
Proposition 3.2.29] or [31, Section 6.1].

2.4 Admissible embeddings

Let V be a non-degenerate n-dimensional hermitian space over K . Let E be an étale
algebra of rank n over F . In this section, we define the notion of an admissible
embedding i : L1

E → U(V). We classify the set of admissible embeddings modulo
conjugation by elements of U(V). These results are needed for Section 5.

We say that an embedding i : L1
E → U(V) is admissible if there exists λ ∈ E× and

an isomorphism of hermitian spaces r : VE,λ → V, such that for any x ∈ L1
E ,

i (x) ◦ r = r ◦ mx .
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This definition is inspired by [8, Section 3].

Remark 2.4 [Uniqueness of λ and r ] Suppose that r1 : VE,λ → V and r2 : VE,λ′ → V
are isomorphisms of hermitian spaces, where λ, λ′ ∈ E×. Then we have that

r1 ◦ mx ◦ r−1
1 = r2 ◦ mx ◦ r−1

2 (3)

for every x ∈ L1
E , if and only if there exists y ∈ L×

E , such that λ = NL E /E (y) λ′ and
r1 = r2 ◦ my .

Indeed, if λ = λ′ · NL E /E (y) for y ∈ L×
E and r1 = r2 ◦ my , it is easy to check

that (3) holds. On the other hand if (3) holds, we have from Proposition 2.5 below that
r−1

2 ◦ r1 : L E → L E is an isomorphism of L E -algebras, and therefore there exists
y ∈ L E such that r−1

2 ◦ r1 = my . Since r−1
2 ◦ r1 : VE,λ → VE,λ′ is an isomorphism

of hermitian spaces, we must have that for every x1, x2 ∈ L E ,

〈x1, x2〉λ =
〈

my x1, my x2
〉

λ′ = 〈x1, x2〉NL E /E (y)λ′ ,

which implies that λ = NL E /E (y) λ′.

We say that two embeddings i1, i2 : L1
E → U(V) are conjugate if there exists

h ∈ U(V), such that for any x ∈ L1
E ,

h ◦ i1 (x) ◦ h−1 = i2 (x) .

The proof of the following property is technical and will be postponed to the
appendix (Proposition A.1).

Proposition 2.5 For j = 1, 2, let i j : L1
E → U(V) be an admissible embedding

corresponding to the data r j : VE,λ j → V, where λ j ∈ E×. Let i ′j : L E → End (V)

be the map

i ′j (x) = r j ◦ mx ◦ r−1
j .

Suppose that there exists g ∈ GL (V), such that for any x ∈ L1
E ,

i1 (x) = g ◦ i2 (x) ◦ g−1.

Then for any x ∈ L E ,

i ′1 (x) = g ◦ i ′2 (x) ◦ g−1.

The following lemma serves as a key for our classification of admissible embeddings
modulo conjugacy.

Lemma 2.6 Letλ, λ′ ∈ E×, such that VE,λ and VE,λ′ are isomorphic to V as hermitian
spaces. Let i : L1

E → U(V) be an admissible embedding corresponding to the data
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r : VE,λ → V. Let r ′ : VE,λ′ → V be an isometry. Denote by ir ′ : L1
E → U(V) the

admissible embedding

ir ′ (x) =
(

r ◦ r ′−1
)−1

◦ i (x) ◦
(

r ◦ r ′−1
)

,

with respect to the data r ′ : VE,λ′ → V. Then ir ′ is conjugate to i if and only if there
exists y ∈ L×

E , such that

λ−1λ′ = NL E /E (y) .

Proof By Proposition 2.5, the embeddings i and ir ′ are conjugate if and only the maps
i ′, i ′r ′ : L E → End (V), given by i ′ (x) = r ◦ mx ◦ r−1 and i ′r ′ (x) = r ′ ◦ mx ◦ r ′−1

are conjugate. This happens if and only if there exists h ∈ U(V), such that

r−1 ◦ h ◦ r ′ : L E → L E

is an L E -linear map.
Suppose that there exists h ∈ U(V) such that r−1 ◦ h ◦ r ′ is an L E -linear map.

Then h ◦ r ′ = r ◦ my for some y ∈ L×
E . For any x1, x2 ∈ L E , we have

〈

hr ′x1, hr ′x2
〉

V =
〈

r ′x1, r ′x2
〉

V = 〈x1, x2〉λ′ .

and

〈

rmy x1, rmy x2
〉

V =
〈

my x1, my x2
〉

λ
= 〈x1, x2〉NL E /E (y)λ .

Hence, we have for every x1, x2 ∈ L E ,

〈x1, x2〉λ′ = 〈x1, x2〉NL E /E (y)λ ,

which implies that λ′ = NL E /E (y) λ, and therefore

λ−1λ′ = NL E /E (y) ,

as required.
We move to prove the other direction. Suppose that λ′ = NL E /E (y) λ, where

y ∈ L×
E . Define h = r ◦ my ◦ r ′−1

. Then r−1 ◦ h ◦ r ′ = my is an L E -linear map. We
check that the element h we have constructed lies in the unitary group U(V). Repeating
similar steps to before, we have

〈

hr ′x1, hr ′x2
〉

V =
〈

rmy x1, rmy x2
〉

V = 〈x1, x2〉NL E /E (y)λ .

Since NL E /E (y) λ = λ′, we get

〈

hr ′x1, hr ′x2
〉

V = 〈x1, x2〉λ′ =
〈

r ′x1, r ′x2
〉

V .
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Therefore, we get that h ∈ U(V), as required. ⊓⊔

Remark 2.7 If i1, i2 : L1
E → U(V) are embeddings, we say that i1 and i2 are stably

conjugate if there exists g ∈ U(V)
(

F̄
)

, such that for any x ∈ L1
E ,

g ◦ i1 (x) ◦ g−1 = i2 (x) .

Here, F̄ is an algebraic closure of F , and we refer to Section 2.5 for the definition of
U(V)

(

F̄
)

. We have that the set of admissible embeddings i : L1
E → U(V) is a stable

conjugacy class. We will show this only in the case where K/F is a quadratic field
extension, as the other case is simpler. In this case, we choose F̄ to be an algebraic
closure of K . We have that U(V)

(

F̄
)

is naturally isomorphic to GLF̄

(

V ⊗K F̄
)

, the
group of invertible F̄-linear maps V ⊗K F̄ → V ⊗K F̄ . If i1 and i2 are admissible
embeddings corresponding to the data r1 : VE,λ1 → V and r2 : VE,λ2 → V with
λ1, λ2 ∈ E×, then for any x ∈ L1

E , we have g ◦ i1 (x) ◦ g−1 = i2 (x) , where
g = r2 ◦ r−1

1 ∈ GLK (V) (where GLK (V) is the group of invertible K -linear maps
V → V). Hence, i1 and i2 are stably conjugate.

On the other hand, if i1 : L1
E → U(V) is an admissible embedding, corresponding

to the data λ ∈ E× and r : VE,λ → V, and i2 : L1
E → U(V) is an embedding,

such that i1 and i2 are stably conjugate, then there exists an invertible F̄-linear map
g : V ⊗K F̄ → V ⊗K F̄ such that g ◦

(

i1 (x) ⊗ id F̄

)

◦ g−1 = i2 (x) ⊗ id F̄ for any
x ∈ L1

E . Since i2
(

L1
E

)

is a maximal torus in U(V), there exists an étale algebra E ′ of

rank n over F , a λ′ ∈
(

E ′
)×

, and an isomorphism of hermitian spaces r ′ : VE ′,λ′ → V,

such that the image of the map L1
E ′ → U(V) given by x �→ r ′ ◦mx ◦

(

r ′
)−1

is i2
(

L1
E

)

.
Consider the map T =

(

r−1 ⊗ id F̄

)

◦ g−1 ◦
(

r ′ ⊗ id F̄

)

: L E ′ ⊗K F̄ → L E ⊗K F̄ .
Since we have for any x ∈ L1

E , T ◦
(

mx ⊗ id F̄

)

=
(

mτ(x) ⊗ id F̄

)

◦ T for some
τ (x) ∈ L1

E ′ , by Proposition A.2 for any x ∈ L E , there exists a unique τ (x) ∈ L E ′ ,
such that T ◦

(

mτ(x) ⊗ id F̄

)

=
(

mx ⊗ id F̄

)

◦ T . It follows that τ : L E → L E ′ is an
isomorphism of étale algebras over K , that is, it is an isomorphism of rings that fixes
K . We have that for any x ∈ L1

E ,

i2 (x) ⊗ id F̄ =
(

r ′ ⊗ id F̄

)

◦ T −1 ◦
(

mx ⊗ id F̄

)

◦ T ◦
(

(

r ′
)−1

⊗ id F̄

)

=
(

r ′ ◦ mτ(x) ◦
(

r ′
)−1

)

⊗ id F̄ .

This implies that i2 is an admissible embedding with respect to the data τ−1
(

λ′
)

∈ E×

and r ′′ : VE,τ−1(λ′) → V, given by r ′′ (y) = r ′ (τ (y)), as required.

It is clear that if λ, λ′ ∈ E× are such that λ = NL E /E (y) · λ′, for some y ∈ L×
E ,

then the hermitian spaces VE,λ and VE,λ′ are isomorphic by the map VE,λ → VE,λ′

given by x �→ my x . The following theorem establishes a bijection between admissible
embeddings of L1

E modulo conjugation and certain classes λ ∈ E×/NL E /E
(

L×
E

)

.
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Theorem 2.8 There exists a natural bijection between the set

{

λ ∈ E×/NL E /E
(

L×
E

)

| VE,λ
∼= V as hermitian spaces

}

and the set


E,V =
{

i : L1
E → U(V) | i is admissible

}

/ U(V)-conjugation .

This bijection is given as follows. For any λ ∈ E× such that V ∼= VE,λ, choose an
isomorphism of hermitian spaces r : VE,λ → V and define an admissible embedding
ir : L1

E → U(V) by the formula

ir (x) = r ◦ mx ◦ r−1,

where x ∈ L1
E . The bijection sends the class [λ] ∈ E×/NL E /E

(

L×
E

)

to the conjugacy
class cλ = [ir ] ∈ 
E,V of ir .

Proof We claim that the conjugacy class of ir does not depend on the choice of r .
Indeed, if r2 : VE,λ → V is another isomorphism, then for any x ∈ L1

E

ir2 (x) =
(

r ◦ r−1
2

)−1
◦ ir (x) ◦ r ◦ r2

−1,

and we have that r ◦ r2
−1 ∈ U(V) as a composition of two isometries.

We show that λ �→ cλ is a bijection as in the theorem.
The map is injective: given λ, λ′ ∈ E×, and isomorphisms r : VE,λ → V and

r ′ : VE,λ′ → V, we have for any x ∈ L1
E ,

ir ′ (x) =
(

r ◦ r ′−1
)−1

◦ ir (x) ◦ r ◦ r ′−1
.

It follows from Lemma 2.6 that the embeddings ir and ir ′ are conjugate if and only if
(

λ′
)−1

λ ∈ NL E /E
(

L×
E

)

.
The map is surjective: let i : L1

E → U(V) be an admissible embedding correspond-
ing to the data r : VE,λ → V. We have that for any x ∈ L1

E ,

i (x) = r ◦ mx ◦ r−1.

Therefore, cλ is the conjugacy class of i , as required. ⊓⊔

Remark 2.9 When F is a non-archimedean local field and K/F is a quadratic field
extension, there exist exactly two isomorphism classes of non-degenerate hermitian
spaces of dimension n over K . The isomorphism class of such hermitian space is
determined by its discriminant. Using Lemma 2.2, we can rewrite the first set in the
proposition as

{

λ ∈ E×/NL E /E
(

L×
E

)

| disc V = NE/F (λ) discF (E)
}

.
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Remark 2.10 Let λ, λ′ ∈ E×. If F is a non-archimedean local field then, as in the
previous remark, we have that the hermitian spaces VE,λ and VE,λ′ are isomorphic if
and only if NE/F

(

λ−1λ′
)

∈ NK/F
(

K ×
)

.
If F is an archimedean local field, then the hermitian spaces VE,λ and VE,λ′ are

isomorphic if and only if the number of non-trivial components of λ and λ′ as elements
of E×/NL E /E

(

L×
E

)

is the same.

2.5 Functoriality for admissible embeddings

In this section, we explain how an admissible embedding of a torus i : L1
E → T ⊂

U(V), gives rise to a family of embeddings i (R) : L1
E (R) → U(V) (R) for any

F-algebra R.
Let R be a commutative F-algebra, and consider the ring L R = K ⊗F R, equipped

with the involution σ : L R → L R defined on pure tensors by

σ (k ⊗ h) = kc ⊗ h,

where k ∈ K and h ∈ R. Henceforth, we will write xc instead of σ (x) for x ∈ L R .
As before, one can define the notion of an ǫ-hermitian space over L R , as in Section

2.1 by replacing K with L R in the definitions.
Let (V, 〈·, ·〉V) be an ǫ-hermitian space over K . Then the space (V (R) , 〈·, ·〉V(R))

is an ǫ-hermitian space over L R , where V (R) = V ⊗F R and 〈·, ·〉V(R) is defined on
pure tensors by

〈v1 ⊗ h1, v2 ⊗ h2〉V(R) = 〈v1, v2〉V ⊗ (h1h2) ,

where v1, v2 ∈ V and h1, h2 ∈ R. We denote by U(V) (R) the group consisting of
invertible L R-linear maps that preserve the form 〈·, ·〉V(R). Suppose that E is an étale
algebra over F of degree n = dim V, and that i : L1

E → U(V) is an admissible embed-
ding corresponding to the data λ ∈ E× and r : VE,λ → V. Since r is an isomorphism of
ǫ-hermitian spaces over K , we have that the map r (R) = r ⊗idR : VE,λ (R) → V (R)

is an isomorphism of ǫ-hermitian spaces over L R .
We may define an embedding i (R) : ResE/F L1

E (R) → U(V) (R), corresponding
to the data λ ∈ E× and r (R) : VE,λ (R) → V (R), by the formula

i (R) (x) = r (R) ◦ mx ◦ r (R)−1 ,

where

ResE/F L1
E (R) =

{

x ∈ (L E ⊗F R)× | x · xc = 1
}

,

and for x ∈ (L E ⊗F R)×, the map mx : L E ⊗F R → L E ⊗F R is the multiplication
by x map. Here, as usual, x �→ xc is the involution on L E ⊗F R, defined on pure
tensors by

(y ⊗ h)c = yc ⊗ h,
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where y ∈ L E and h ∈ R.
Note that if k ∈ K 1, we always have that i (R) (k ⊗ 1) = mk⊗idR , where mk : V →

V is the map mkv = kv, i.e., the multiplication by the scalar k map. In the special
case where V is one-dimensional, and hence E = F , we get that i (R) : L1

E (R) →

U(V) (R) is an isomorphism for every R.
In the sequel, given an admissible embedding i : L1

E → U(V), we will often write
i for i (R), especially when F = F is a number field and R = AF is its ring of adeles.

3 Local theory

In this section, we recall the local theta correspondence. We use it to define a theta
correspondence for 1-dimensional L E -hermitian spaces. We then discuss a seesaw
identity satisfied by the theta lift we defined and the usual theta lift. Finally, we recall
the definition of local root numbers, and the classical results regarding theta lifting
from U(1) to U(1) in terms of them. We use these results to determine when our theta
lift for 1-dimensional L E -hermitian spaces does not vanish. These results are needed
for Section 5.

3.1 The local theta correspondence

Let F be a local field of characteristic 
= 2 and let K/F be a quadratic étale algebra. Let
V and W be non-degenerate finite-dimensional hermitian and skew-hermitian spaces
over K , respectively.

Consider the tensor product ResK/F (V ⊗K W). We equip this space with a sym-
plectic form defined on pure tensors by

〈〈v ⊗ w, v′ ⊗ w′〉〉 = trK/F
(〈

v, v′
〉

V ·
〈

w,w′
〉

W

)

,

where v, v′ ∈ V and w,w′ ∈ W.
For any non-trivial character ψ : F → C

×, we have a unique (up to isomor-
phism) irreducible (smooth) representation ωψ,F of the Heisenberg group associated
with ResK/F (V ⊗K W), such that the central character of ωψ,F is ψ . The repre-
sentation ωψ,F gives rise to an S

1-metaplectic cover Mpψ (ResK/F (V ⊗K W )) of
Sp

(

ResK/F (V ⊗K W)
)

, where S
1 ⊂ C

× is the unit circle. We denote this group
by Mpψ (V, W) for short. The representation ωψ,F above gives rise to an irreducible
representation of the metaplectic group Mpψ (V, W), which we also denote by ωψ,F .
We call ωψ,F the Weil representation associated with ψ .

We have an embedding ι : U(V) × U(W) → Sp(ResK/F (V ⊗K W)), where for
gV ∈ U(V) and gW ∈ U(W), the map ι (gV, gW) is defined on pure tensors by

ι (gV, gW) (v ⊗ w) = gVv ⊗ gWw,

where v ∈ V and w ∈ W.



   49 Page 20 of 49 N. Borade et al.

When referring to representations of U(V) (or U(W)), we will always mean
smooth admissible representations. Let us denote by Irr U(V) and Irr U(W) the set
of equivalence classes of irreducible (smooth) representations of U(V) and of U(W),
respectively.

The theta correspondence allows us to transfer irreducible representations of U(V)

to irreducible representations of U(W), and vice versa. In order to describe it, we need
a lifting of ι to the metaplectic group

ι̃ : U(V) × U(W) → Mpψ (V, W) .

The existence of such liftings, usually called splittings, is due to Kudla [19]. We
postpone the discussion regarding this splitting to the next subsection. Given such a
splitting ι̃, we may pullback ωψ,F to a representation �V,W,ι̃,ψ of U(V) × U(W).

We proceed by describing the theta correspondence. Let π be an irreducible repre-
sentation of U(V). The big theta lift �(π) is defined as follows. Consider the maximal
π -isotypic quotient of �V,W,ι̃,ψ :

(

�V,W,ι̃,ψ

)

π,U(V)
:= �V,W,ι̃,ψ/

⋂

f

ker f ,

where the intersection is over all

f ∈ HomU(V)×1
(

�V,W,ι̃,ψ , π
)

.

By construction, we have that
(

�V,W,ι̃,ψ

)

π,U(V)
is of the form π ⊗ σ , where σ is a

representation of U(W). We write �V,W,ι̃,ψ (π) for σ and call this representation the
big theta lift of π . The big theta lift �V,W,ι̃,ψ (π) satisfies the following functorial
property: for any irreducible representation τ of U(W) we have that

HomU(V)×U(W)

(

�V,W,ι̃,ψ , π ⊗ τ
)

∼= HomU(W)

(

�V,W,ι̃,ψ (π) , τ
)

.

More generally, for any subgroup H ≤ U(W) and any irreducible representation τ

of H , we have that

HomU(V)×H
(

�V,W,ι̃,ψ , π ⊗ τ
)

∼= HomH
(

�V,W,ι̃,ψ (π) ↾H , τ
)

. (4)

We move to discuss the small theta lift. Howe and Kudla proved that if the big theta
lift defined above is non-zero, then it is of finite length. It follows that �V,W,ι̃,ψ (π)

has a maximal semisimple quotient, which we denote by θV,W,ι̃,ψ (π) and call the
small theta lift of π .

The following two theorems were proved by Howe in the archimedean case [17],
by Waldspurger in the non-archimedean case for fields with residue field of odd char-
acteristic [32], and by Gan–Takeda in the non-archimedean case in general [12].

Theorem 3.1 If the big theta lift �V,W,ι̃,ψ (π) is not zero, then it has a unique irre-
ducible quotient.
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Therefore, it follows that if �V,W,ι̃,ψ (π) is not zero, then θV,W,ι̃,ψ (π) is the unique
irreducible quotient of �V,W,ι̃,ψ (π).

Moreover, if π and π ′ are irreducible representations of U(V) with the same non-
zero small theta lift, then π and π ′ are isomorphic. These results combined yield the
following statement, which is known as Howe duality.

Theorem 3.2 We have a map Irr U(V) → Irr U(W)∪{0}, given by π �→ θV,W,ι̃,ψ (π).
The restriction of this map to the set of representations with non-zero theta lift is an
injective map.

We remark that we started with an irreducible representation π of U(V) and
constructed its big and small theta lifts. Similarly, we can start with an irreducible
representation σ of U(W) and construct its big and small theta lifts. We have analo-
gous results by exchanging the roles of V and W, and of π and σ , respectively. The
above results yield the following multiplicity one theorem:

Theorem 3.3 For any π ∈ Irr U(V) and σ ∈ Irr U(W) we have

dim HomU(V)×U(W)

(

�V,W,ι̃,ψ , π ⊗ σ
)

≤ 1.

Let us mention a useful fact relating the big theta lift and the small theta lift in a spe-
cial case. By [23, Page 69, Theoreme principal], if π is supercuspidal and �V,W,ι̃,ψ (π)

is not zero, then �V,W,ι̃,ψ (π) is irreducible, and we have that it equals θV,W,ι̃,ψ (π).
In particular, if V is one-dimensional, then π is a character and hence �V,W,ι̃,ψ (π)

coincides with θV,W,ι̃,ψ (π).

3.1.1 Splitting of the embedding �

In this subsection, we discuss the details regarding the splitting provided by Kudla’s
work [19]. We will explain the data needed in order to define a splitting

ι̃ : U(V) × U(W) → Mpψ (V, W)

for the embedding

ι : U(V) × U(W) → Sp
(

ResK/F (V ⊗F W)
)

described above.
The splitting ι̃ depends on a choice of two characters χV, χW of K × such that

χW↾F×
= ωdim W

K/F and χV↾F×
= ωdim V

K/F .

For example, we can choose a character μ : K × → C
× such that μ↾F× = ωK/F

and define χV = μdim V and χW = μdim W.
Given such χV, Kudla constructs an embedding ι̃ψ,χV : U(W) → Mpψ (V, W).

Similarly, given χW, Kudla constructs an embedding ι̃ψ,χW : U(V) → Mpψ (V, W).
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It turns out that the images of ι̃ψ,χW and of ι̃ψ,χW commute. It also turns out that
the images of these embeddings have mutual center. Hence, we get a splitting ι̃ =

ι̃ψ,χV,χW : U(V) × U(W) → Mpψ (V, W), as desired.

3.1.2 Notation for theta lifts of characters of K1

We introduce another notation for lifting of characters of K 1 that uses a trace zero
element δ instead of a skew-hermitian space W.

Let δ ∈ K × be a trace zero element, and let μ : K × → C
× be a character such that

μ↾F× = ωK/F . Suppose that V is a hermitian space over K and that β : K 1 → C
× is

a character. We denote

�δ,V,μ,ψ (β) := �Wδ
F,1,V,ι̃μ,ψ

(

β ◦ i ′
Wδ

F,1

)

and

θδ,V,μ,ψ (β) := θWδ
F,1,V,ι̃μ,ψ

(

β ◦ i ′
Wδ

F,1

)

where i ′
Wδ

F,1
: U(Wδ

F,1) → K 1 is the obvious isomorphism and where ι̃μ is the splitting

associated to the characters
(

μ,μdim V
)

.

3.1.3 Theta lifting for unitary groups of 1-dimensional spaces over étale algebras

Let E be an étale algebra of rank n over F . Choose a trace zero element δ ∈ K ×. Let
λ, λ′ ∈ L×

E and consider the L E -hermitian space L E,λ and the L E -skew-hermitian
space Wδ

E,λ′ . In this section, we describe the theta correspondence for the groups

U(L E,λ) and U(Wδ
E,λ′).

As before, we write E =
∏m

j=1 F j , where for every j , F j/F is a field extension.

Then for λ = (λ1, . . . , λm) ∈ E× and λ′ =
(

λ′
1, . . . , λ

′
m

)

∈ E×, we have that

U(L E,λ) =

m
∏

j=1

U(L F j ,λ j ) and U(Wδ
E,λ′) =

m
∏

j=1

U(Wδ
F j ,λ

′
j
).

For every 1 ≤ j ≤ m, we denote V j = L F j ,λ j and W j = Wδ
F j ,λ

′
j
. Then every

character α : U(L E,λ) → C
× is equivalent to a tuple (α1, . . . , αm), where for every

j , the map α j : U(V j ) → C
× is a character. Therefore, we may use the usual local

theta correspondence to define a local theta correspondence for the groups U(L E,λ)

and U(Wδ
E,λ′). Let us describe this correspondence.

Let χL E,λ
, χWδ

E,λ′
: L×

E → C
× be multiplicative characters, such that

χL E,λ↾E×
= χWδ

E,λ′ ↾E×

= ωL E /E .
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We have thatχL E,λ
andχWδ

E,λ′
correspond to tuples

(

χV1 , . . . , χVm

)

and
(

χW1 , . . . , χWm

)

,

respectively, where for every 1 ≤ j ≤ m, χV j , χW j : L×
F j

→ C
× are characters, such

that

χV j ↾
F×

j

= χW j ↾
F×

j

= ωL Fj /F j .

Therefore, we get a splitting

ι̃ j : U(V j ) × U(W j ) → Mpψ j

(

V j , W j
)

,

where ψ j = ψ ◦ trF j /F . We write ι̃ = (ι̃1, . . . , ι̃m).
We define the big theta lift of α as above by the formula

�L E,λ,Wδ
E,λ′ ,ι̃,ψ

(α) = �V1,W1,ι̃1,ψ1 (α1) ⊗ · · · ⊗ �Vm ,Wm ,ι̃m ,ψm (αm) .

It is a representation of U(Wδ
E,λ′) (might be the zero representation).

Let ωψ,E =
⊗m

j=1 ωψ j ,F j and �L E,λ,Wδ
E,λ′ ,ι̃,ψ

=
⊗m

j=1 �V j ,W j ,ι̃ j ,ψ j . Once again,

consider the maximal α-isotypic quotient of �L E,λ,Wδ
E,λ′ ,ι̃,ψ

:

(

�L E,λ,Wδ
E,λ′ ,ι̃,ψ

)

α,U(L E,λ)
= �L E,λ,Wδ

E,λ′ ,ι̃,ψ
/
⋂

f

ker f ,

where the intersection is over all f ∈ HomU(L E,λ)×1

(

�L E,λ,Wδ
E,λ′ ,ι̃,ψ

, α

)

. Then,

similarly to before, we have that

(

�L E,λ,Wδ
E,λ′ ,ι̃,ψ

)

α,U(L E,λ)

∼= α ⊗ �L E,λ,Wδ
E,λ′ ,ι̃,ψ

(α) .

As before, for any subgroup H ⊂ U(Wδ
E,λ) and any irreducible representation τ of

H , we have that

HomU(L E,λ)×H

(

�L E,λ,Wδ
E,λ′ ,ι̃,ψ

, α ⊗ τ

)

∼= HomH

(

�L E,λ,Wδ
E,λ′ ,ι̃,ψ

(α) ↾H , τ

)

.

(5)

We make the following remark which will be useful later. Suppose that λ′ = 1. We
have the following decomposition of symplectic spaces

ResK/F
(

VE,λ ⊗K Wδ
F,1

)

=

m
⊕

j=1

ResL Fj /F

(

V j ⊗L Fj
W j

)

.
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Hence, we get a natural map (see [26, Remark 2.7])

m
∏

j=1

Mpψ j

(

V j , W j
)

→ Mpψ

(

VE,λ, Wδ
F,1

)

.

This map is not injective, but its restriction to Mpψ j

(

V j , W j
)

is injective for every j .
Therefore, we may regard ι̃ as a map

ι̃ : U(L E,λ) × U(Wδ
E,1) → Mpψ

(

VE,λ, Wδ
F,1

)

.

Furthermore, since the restriction of the Weil representation ωψ,E to Mpψ j

(

V j , W j
)

is
ωψ j ,F j , we have that the restriction of �VE,λ,Wδ

F,1,ι̃,ψ
to U(V j )×U(W j ) is �V j ,W j ,ι̃,ψ j .

This compatibility is important for the local seesaw identity, which we will describe
in the next section.

Remark 3.4 By [23, Pages 36-37, Remarque (6)], the kernel of the map
∏m

j=1

Mpψ j

(

V j , W j
)

→ Mpψ

(

VE,λ, Wδ
F,1

)

is given by all tuples (g1, . . . , gm) such that

for every j the projection of g j to Sp
(

ResL Fj /F j

(

V j ⊗L Fj
W j

))

is the identity, and

such that if t j is the projection of g j to S
1 then

∏m
j=1 t j = 1.

3.2 A local seesaw identity

3.2.1 Splitting set up

Suppose we are in the setup of Section 3.1.3 with λ′ = 1. We will consider the
following seesaw diagram:

U(Wδ
E,1)

❑❑
❑❑

❑❑
❑❑

❑❑

U(VE,λ)

��
��
��
��
��

U(Wδ
F,1) U(L E,λ).

Here U(Wδ
F,1) is realized as a subgroup of U(Wδ

E,1) diagonally, that is, an element

x ∈ K 1 ∼= U(Wδ
F,1) acts on Wδ

E,1 by the multiplication by x map mx , given by

mxw = xw, for w ∈ Wδ
E,1.

In order to write down a seesaw identity, we need to fix compatible splittings. We
explain this now.

Given characters χL E,λ
, χWδ

E,1
: L×

E → C
×, such that

χL E,λ
↾E×= χWδ

E,1
↾E×= ωL E /E ,
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we constructed a map

ι̃ : U(L E,λ) × U(Wδ
E,1) → Mpψ

(

VE,λ, Wδ
F,1

)

.

By Kudla’s construction, this splitting is of the form ι̃ = ι̃χ
Wδ

E,1
× ι̃χL E,λ

, where

ι̃χ
Wδ

E,1
: U(L E,λ) → Mpψ

(

VE,λ, Wδ
F,1

)

and ι̃χL E,λ
: U(Wδ

E,1) → Mpψ

(

VE,λ, Wδ
F,1

)

.

On the other hand, given characters χVE,λ
, χWδ

F,1
: K × → C

×, such that

χVE,λ↾F×
= ω

dimK VE,λ

K/F and χWδ
F,1↾F×

= ωK/F ,

we have a splitting

ι̃′ : U(VE,λ) × U(Wδ
F,1) → Mpψ

(

VE,λ, Wδ
F,1

)

.

Once again, by Kudla’s construction, this embedding is of the form ι̃′ = ι̃′χ
Wδ

F,1

×ι̃′χVE,λ
,

where

ι̃′χ
Wδ

F,1

: U(VE,λ) → Mpψ

(

VE,λ, Wδ
F,1

)

and ι̃′χVE,λ
: U(Wδ

F,1) → Mpψ

(

VE,λ, Wδ
F,1

)

.

We say that these splitting ι̃ and ι̃’ are compatible if they agree on the subgroup
U(L E,λ) × U(Wδ

F,1). This is equivalent to requiring the following equalities between
the characters involved:

χWδ
E,1

= χWδ
F,1

◦ NL E /K and χL E,λ
↾K ×= χVE,λ

.

We refer to the discussion in [15, Section 1] for more details.

3.2.2 The local seesaw identity

Let α : U(L E,λ) → C
× and β : U(Wδ

F,1) → C
× be characters.

Choose compatible splittings ι̃ and ι̃′ as above. Let �(β) be the big theta lift of
β to U(VE,λ) with respect to the splitting ι̃′. By (4), we have the following equality,
where we take H = U(L E,λ):

HomU(L E,λ)×U(Wδ
F,1)

(

�VE,λ,Wδ
F,1,ι̃

′,ψ , α ⊗ β

)

∼= HomU(L E,λ)

(

�(β) ↾U(L E,λ), α
)

.

Similarly, Let �(α) be the big theta lift of α to U(Wδ
E,1), with respect to the splitting

ι̃. Similarly to before, by (5), we have the following equality, where this time we take
H = U(Wδ

F,1):

HomU(L E,λ)×U(Wδ
F,1)

(

�VE,λ,Wδ
F,1,ι̃,ψ

, α ⊗ β

)

∼= HomU(Wδ
F,1)

(

�(α) ↾U(Wδ
F,1)

, β

)

.
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Since the splittings ι̃′ and ι̃ are compatible, they agree on the subgroup U(L E,λ) ×

U(Wδ
F,1). Hence, we get the following identity, which is called the local seesaw

identity:

HomU(L E,λ)

(

�(β) ↾U(L E,λ), α
)

∼= HomU(Wδ
F,1)

(

�(α) ↾U(Wδ
F,1)

, β

)

. (6)

This identity will serve as a key ingredient in the proof of our main result.

3.3 Theta lifting for unitary groups of one-dimensional spaces

In this section, we recall results regarding theta lifting of characters of U(W) to U(V),
where W and V are one-dimensional. These results are stated in terms of a relation
between the root number of a character and the discriminants of V and W. We begin
with recalling the definition of the root number of a character of K × and defining a
similar notion for a conjugate-dual character of L×

E , where E/F is an étale algebra.
We then state results of [15] and [25] regarding the non-vanishing of a theta lift of a
character of U(W). We finish with using our definition for root numbers of characters
of L×

E in order to deduce a similar statement for theta lifts of characters of unitary
groups of one-dimensional L E -skew-hermitian spaces.

3.3.1 Vector of root numbers of characters of L×
E

Let ψ : F → C
× be a non-trivial character. For any trace zero element δ ∈ K ×

we define ψδ : K → C
× by the formula ψδ (x) = ψ

(

trK/F (δx)
)

. Note that for any
x ∈ K ×, we have ψδ (xc) = ψ−1

δ (x).
For any character χ : L×

E → C
× such that χ (xc) = χ

(

x−1
)

, we will define a
vector of root numbers ε (χ,ψ, δ).

Assume first that E is a field extension of F . The étale algebra L E = E ⊗F K is
either a field or is isomorphic to E × E . Let χ : L×

E → C
× be a character as above.

If L E is a field, we set

εL E /E (χ,ψ, δ) = εTate
L E

( 1
2 , χ, ψδ ◦ trL E /K

)

,

where for a complex number s, the factor εTate
L E

(

s, χ, ψδ ◦ trL E /K
)

is the epsilon factor
defined by Tate [20, 30]. If L E = E × E , then we define εL E /E (χ,ψ, δ) = 1.

We move to the general case. Let E be a finite-dimensional étale algebra. As before,
we may write E =

∏m
j=1 F j , where F j/F is a field extension. Given a character

χ : L×
E → C

×, we may regard it as a tuple (χ1, . . . , χm), where χ j : L×
F j

→ C
×

is a character satisfying χ j (xc) = χ−1
j (x) for every j and x ∈ L×

F j
. We define

εL E /E (χ,ψ, δ) as the following tuple:

εL E /E (χ,ψ, δ) =
(

εL F1/F1 (χ1, ψ, δ) , . . . , εL Fm /Fm (χm, ψ, δ)

)

.



On tori periods of Weil representations of unitary groups Page 27 of 49    49 

Recall that for any x ∈ L×
E we have that χ(xc) = χ−1(x) and ψδ(xc) = ψ−1

δ (x).
This implies that εL E /E (χ,ψ, δ) is a tuple of signs.

3.3.2 Base change for characters of L1
E

We have an isomorphism jE : L×
E/E× → L1

E given by jE (x) = x
xc .

Given a character β : L1
E → C

×, we define a character βL E : L×
E → C

× by the
formula

βL E (x) = (β ◦ jE ) (x) = β

( x

xc

)

.

Notice that βL E (xc) = β−1
L E

(x). Therefore, if χ : L×
E → C

× is a character such

that χ ↾NL E /E
(

L×
E

)= 1, then for any x ∈ L×
E ,

(

χ−1βL E

) (

x−1
)

=
(

χ−1βL E

)

(

xc) ,

and the vector of root numbers εL E /E
(

χ−1 · βL E , ψ, δ
)

is defined.

3.3.3 Non-vanishing of theta lifts

Suppose that K/F is a quadratic field extension, and let δ ∈ K × be a trace zero element.
Let V and W be non-degenerate one-dimensional hermitian and skew hermitian spaces
over K , respectively.

The non-vanishing of a theta lift of a character of U(V) is treated separately for
the archimedean case and the non-archimedean case. When F is non-archimedean,
the statement is given by [15, Theorem 6.1]. There are subtle differences between the
versions of this result presented in [15] and the version we state below. Such differences
are explained in [8, Section 9]. When F = R, the result is given by [25, Theorem
6.1]. Once again, it is written in a different language, and we refer to [34, Section
3.2] for the translation1. Let i ′V : U(V) → K 1 and i ′W : U(W) → K 1 be the obvious
isomorphisms. Let α : K 1 → C

× be a character. The following result determines the
theta lift �V,W,ι̃,ψ

(

α ◦ i ′V
)

.

Theorem 3.5 (Epsilon Dichotomy) The theta lift �V,W,ι̃,ψ

(

α ◦ i ′V
)

with respect to the
splitting ι̃ associated to the characters (χV, χW) is non-zero if and only if

εK/F

(

χ−1
W · αK , ψ, δ

)

= ǫ (V) · ǫδ (W) .

Moreover, in this case

�V,W,ι̃,ψ

(

α ◦ i ′V
)

=
((

χ−1
W · χV

)

◦ j−1
F · α

)

◦ i ′W.

1 We warn the reader that the characters χV and χV′ in [34] are χW and χV, respectively, in our notation.
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We remark that this theorem is also true in the split case, i.e., it is true when
K = F × F . In this case, the characters χW and χV, are trivial, and all the invariants
specified in the theorem are also trivial. Hence, the condition is always satisfied. By
[5, 7, 22], we have in this case that �V,W,ι̃,ψ

(

α ◦ i ′V
)

= α ◦ i ′W, which is the same
statement as in the theorem, since the characters χV and χW are trivial.

3.3.4 Non-vanishing of theta lifts for one-dimensional spaces over an étale algebra

Let E be an étale algebra of degree n over F . Let λ ∈ E× and let δ ∈ K × be a trace
zero element. Consider the same setup as in Section 3.2. Theorem 3.5 has an obvious
extension for the spaces Wδ

E,1 and VE,λ, which will be useful for the proof of our
main result.

Let i ′V : U(L E,λ) → L1
E and i ′W : U(Wδ

E,1) → L1
E be the obvious isomorphisms.

Let α : L1
E → C

× be a character.

Theorem 3.6 The theta lift �
(

α ◦ i ′V
)

= �L E,λ,Wδ
E,1,ι̃,ψ

(

α ◦ i ′V
)

is non-zero if and

only if

εL E /E

(

χ−1
Wδ

F,1
◦ NL E /K · αL E , ψ, δ

)

= ǫ
(

VE,λ

)

· ǫδ

(

Wδ
E,1

)

= ωL E /E (λ) ,

and in this case

�
(

α ◦ i ′V
)

=

((

χ−1
Wδ

F,1
◦ NL E /K · χL E,λ

)

◦ j−1
E · α

)

◦ i ′W.

4 Global theory

We now consider the global analogs of the previous section. We introduce the global
theta correspondence and a global seesaw identity that we will need in Section 5.
Finally, we recall a result of Yamana regarding the non-vanishing of the global theta
lift.

4.1 The global theta correspondence

Let F be a number field and let K/F be a quadratic field extension with involution
x �→ xc, whose set of fixed points is F.

Let V and W be non-degenerate finite dimensional hermitian and skew-hermitian
spaces over K, respectively. As in the local case, we consider the tensor product
ResK/F (V ⊗F W). Let Sp (V, W) (F) = Sp

(

ResK/F (V ⊗K W)
)

.
Let AF be the adeles of F. For an algebraic group G defined over F, denote by

[G] = G (F) \G (AF) its automorphic quotient. Let ψ : F\AF → C
× be a non-trivial

character. Write ψ =
⊗

v ψv . For every place v of F, we denote Vv = V ⊗F Fv and
Wv = W ⊗F Fv . We also denote Kv = K ⊗F Fv .
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For almost all v, the covering

1 �� S
1

�� Mpψv
(Vv, Wv) �� Sp

(

ResKv/Fv

(

Vv ⊗Kv Wv

))

�� 1

splits uniquely over the maximal hyperspecial subgroupKv of Sp
(

ResKv/Fv

(

Vv ⊗Kv Wv

)

)

.

Let

Sp (V, W) (AF) =
∏

v

′
Sp

(

ResKv/Fv

(

Vv ⊗Kv Wv

))

be the restricted product with respect to Kv ⊂ Sp
(

ResKv/Fv

(

Vv ⊗Kv Wv

))

. Consider
the restricted product

∏′
v Mpψv

(Vv, Wv) with respect to Kv ⊂ Mpψv
(Vv, Wv). We

denote by Mpψ (V, W) (AF) the quotient of the latter restricted product by the central
subgroup

Z =

{

(zv)v ∈
⊕

v

S
1 |

∏

v

zv = 1

}

.

Then Mpψ (V, W) (AF) fits into the following exact sequence

1 �� S
1

�� Mpψ (V, W) (AF) �� Sp (V, W) (AF) �� 1.

We have that Mpψ (V, W) (AF) splits canonically over Sp (V, W) (F). Thus, we may
regard Sp (V, W) (F) as a subgroup of Mpψ (V, W) (AF) and define

[

Mpψ (V, W)
]

= Sp (V, W) (F) \ Mpψ (V, W) (AF) .

Let ResK/F (V ⊗K W) = X ⊕ Y be a polarization, and for every v let Xv =

X⊗F Fv and Yv = Y⊗F Fv . For every v, we realize the Weil representation ωψv,Fv of
Mpψv

(Vv, Wv) via its Schrödinger model, acting on the space S (Yv) consisting of
Schwartz functions on Yv . We denote by S (Y, AF) =

⊗′
v S (Yv) the restricted tensor

product and by ωψ,AF
=

⊗

v ωψv,Fv the global Weil representation of Mpψ (V, W).
For a function ϕ ∈ S (Y, AF), we consider its theta series, defined for g ∈

Mpψ (V, W) (AF) by

θ (ϕ) (g) =
∑

y∈Y

(

ωψ,AF
(g) ϕ

)

(y) .

Then it is well-known that θ (ϕ) is an automorphic form of
[

Mpψ (V, W)
]

.
The embedding ι : U(V) × U(W) → Sp (V, W) discussed in Section 3.1 has a

global analog

ι : U(V) (AF) × U(W) (AF) → Sp (V, W) (AF) .
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As in the local case, in order to describe the theta correspondence, we need a lifting
of ι to the metaplectic group

ι̃ : U(V) (AF) × U(W) (AF) → Mpψ (V, W) (AF) ,

such that the image of U(V) (F) × U(W) (F) under ι̃ lies in Sp (V, W) (F). Such a
lifting exists, and we postpone the discussion regarding the data needed in order to
construct it to the next subsection.

For a cuspidal automorphic form f : [U(V)] → C, a Schwartz function ϕ ∈

S (Y, AF), and an element gW ∈ U(W) (AF) , we denote

θι̃ (ϕ, f ) (gW) =

∫

[U(V)]
θ (ϕ) (ι̃ (gV, gW)) f (gV)dgV.

It is well-known that θι̃ (ϕ, f ) is an automorphic form of [U(W)]. Given an irreducible
cuspidal automorphic representation π of U(V), we denote

�V,W,ι̃,ψ (π) = SpanC {θι̃ (ϕ, f ) | ϕ ∈ S (Y, AF) , f ∈ π} ,

and call �V,W,ι̃,ψ (π) the global theta lift of π .
By [21, Corollary 7.3] if �V,W,ι̃,ψ (π) lies in the space of square-integrable auto-

morphic forms, then �V,W,ι̃,ψ (π) =
⊗′

v θVv,Wv,ι̃v,ψv
(πv).

4.1.1 Splitting of the embedding �

The goal of this subsection is to describe the data needed in order to construct a splitting
ι̃ : U(V) (AF) × U(W) (AF) → Mpψ (V, W) (AF) of ι. Let AK be the adeles of K,
and let ωK/F be the quadratic character attached to the field extension K/F by global
class field theory.

Similarly to Section 3.1.1, in order to construct a splitting, we need to choose
automorphic characters χV =

⊗

v χVv and χW =
⊗

v χWv of K
×\A

×
K

, such that

χW↾
A

×
F

= ωdim W
K/F

and χV↾
A

×
F

= ωdim V
K/F

.

By choosing such characters, for any place v we get an embedding ι̃ψv,χWv
: U(Vv) →

Mpψv
(Vv, Wv) and an embedding ι̃ψv,χVv

: U(Wv) → Mpψv
(Vv, Wv). We obtain

the desired embedding ι̃ = ι̃ψ,χV,χW by forming the tensor products ι̃ψ,χW =
⊗

v ι̃ψv,χWv
and ι̃ψ,χV =

⊗

v ι̃ψv,χVv
and setting ι̃ψ,χV,χW = ι̃ψ,χW × ι̃ψ,χV .

4.1.2 Notation for theta lifts of automorphic characters of
[

L
1
F

]

We introduce the global counterpart of the notation in Section 3.1.2.
Let δ ∈ K

× be a trace zero element, and let μ : K
×\A

×
K

→ C
× be an automorphic

character such that μ↾
A

×
F

= ωK/F. Suppose that V is a hermitian space over K and

that β :
[

L1
F

]

→ C
× is an automorphic character (see Section 2.5). We denote
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�δ,V,μ,ψ (β) = �Wδ
F,1,V,ι̃μ,ψ

(

β ◦ i ′
Wδ

F,1

)

,

where i ′
Wδ

F,1
: U(Wδ

F,1) (AF) → L1
F

(AF) is the obvious isomorphism and where ι̃μ is

the splitting associated to the characters
(

μ,μdim V
)

.

4.1.3 Theta lifting for unitary groups of 1-dimensional spaces over étale algebras

Similarly to Section 3.1.3, we define a theta correspondence for unitary groups of
one-dimensional spaces over an étale algebra.

We use the definitions in Section 2.2 with F = F and K = K. Let δ ∈ K
× be a

trace zero element.
If E/F is a finite field extension, then AE = E ⊗F AF. Recall that in this case, if

λ ∈ E
× and if R is a ring over F, then

U(LE,λ) (R) ∼= L1
E

(R) =
{

x ∈
(

ResLE/F L×
E

)

(R) | x · xc = 1
}

.

In particular, we have that the F-adelic points of the unitary group U(LE,λ) are the
same as the E-adelic points of the unitary group of LE,λ defined over E, which we
denote UE(LE,λ), i.e.,

U(LE,λ) (AF) = UE(LE,λ) (AE) ∼=
{

x ∈ (LE ⊗E AE)× | x · xc = 1
}

.

This relation will allow us to make use of statements about theta lifts of characters of
UE(LE,λ) (AE).

Let E/F be an étale algebra of rank n over F. As before, we write E =
∏m

j=1 F j ,

where for every j , F j/F is a finite field extension. We will assume that L1
E

is
anisotropic, i.e., we will assume that LF j is a field for every j . This is equivalent
to the assumption that there is no embedding of F-algebras K →֒ E.

As in Section 3.1.3, for λ = (λ1, . . . , λm) ∈ E
× and λ′ =

(

λ′
1, . . . , λ

′
m

)

∈ E
×, we

have that

U(LE,λ) (AF) =

m
∏

j=1

U(LF j ,λ j ) (AF) and U(Wδ
E,λ′ ) (AF) =

m
∏

j=1

U(Wδ
F j ,λ

′
j
) (AF) .

For every 1 ≤ j ≤ m, let V j = LF j ,λ j and W j = Wδ
F j ,λ

′
j
. Every automor-

phic character α :
[

U(LE,λ)
]

→ C
× is equivalent to a choice (α1, . . . , αm), where

α j :
[

U(V j )
]

→ C
× is an automorphic character for 1 ≤ j ≤ m. We will use

the usual global theta correspondence to define a theta correspondence for the adelic
groups U(LE,λ) (AF) and U(Wδ

E,λ′) (AF).

Let χLE,λ
, χWδ

E,λ′
: L×

E
\ (LE ⊗F AF)× → C

× be automorphic characters such that

χLE,λ↾
A

×
F

= χWδ
E,λ′↾A

×
F

= ωLE/E.
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By this we mean that χLE,λ
and χWδ

E,λ′
correspond to tuples

(

χV1 , . . . , χVm

)

and
(

χW1 , . . . , χWm

)

, respectively, where χV j , χW j : L×
F j

\
(

LF j ⊗F j AF j

)×
→ C

× are
automorphic characters satisfying

χV j ↾
A

×
F j

= χW j ↾
A

×
F j

= ωLF j /F j .

As in the local case, for every j , we get a splitting

ι̃ j : UF j (V j )
(

AF j

)

× UF j (W j )
(

AF j

)

→ Mpψ j

(

V j , W j
) (

AF j

)

.

Here ψ j : F j\AF j → C
× is the character ψ j = ψ◦trF j /F, where trF j /F : F j ⊗FAF →

AF is the trace map. Denote ι̃ = (ι̃1, . . . , ι̃m).
We define the global theta lift of α as above by the formula

�LE,λ,Wδ
E,λ′ ,ι̃,ψ

(α) = �V1,W1,ι̃1,ψ1 (α1) ⊗ · · · ⊗ �Vm ,Wm ,ι̃m ,ψm (αm) .

Suppose that λ′ = 1. For every j , let

ResLF j /F

(

V j ⊗LF j
W j

)

= X j ⊕ Y j

be a polarization. Let X =
⊕m

j=1 X j and Y =
⊕m

j=1 Y j . Then

ResK/F

(

VE,λ ⊗K Wδ
F,1

)

= X ⊕ Y

is a polarization. As explained in the local case, we have a natural map

m
∏

j=1

Mpψ j

(

V j , W j
) (

AF j

)

→ Mpψ

(

VE,λ, Wδ
F,1

)

(AF) ,

which is not injective, but its restriction to Mpψ j

(

V j , W j
) (

AF j

)

, for every j , is
injective. Hence, we may regard ι̃ as a map

ι̃ : U(LE,λ) (AF) × U(Wδ
E,1) (AF) → Mpψ

(

VE,λ, Wδ
F,1

)

(AF) .

Remark 4.1 Similarly to Remark 3.4, we have that the kernel of the map
∏m

j=1

Mpψ j

(

V j , W j
) (

AF j

)

→ Mpψ

(

VE,λ, Wδ
F,1

)

(AF) consists of tuples (g1, . . . , gm)

such that for every j , the projection of g j to Sp
(

ResLF j /F j

(

V j ⊗LF j
W j

))

is the

identity and such that if t j is the projection of g j to S
1 then

∏m
j=1 t j = 1.
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Let ϕ ∈ S (Y, AF) be a decomposable Schwartz function, that is, ϕ =
⊗m

j=1 ϕ j ,

where ϕ j ∈ S
(

Y j , AF j

)

. Denote for h ∈ U(Wδ
E,1) (AF),

θι̃ (ϕ, α) (h) =

∫

[U(LE,λ)]
θ (ϕ) (ι̃ (g, h)) α (g)dg.

Then θι̃ (ϕ, α) ∈ θLE,λ,Wδ
E,1,ι̃,ψ

(α). Analogously to the local case, for any (g1, h1) , . . . ,

(gm, hm) such that
(

g j , h j
)

∈ U(V j ) (AF) × U(W j ) (AF), we have

ωψ,AF
(ι̃ ((g1, . . . , gm) , (h1, . . . , hm))) ϕ

= ωψ1,AF1
(ι̃1 (g1, h1)) ϕ1 ⊗ · · · ⊗ ωψm ,AFm

(ι̃m (gm, hm)) ϕm .

This implies that for h1, . . . , hm , where h j ∈ U(W j ) (AF), we have that

θι̃ (ϕ, α) (h1, . . . , hm) = θι̃1 (ϕ1, α1) (h1) · · · · · θι̃m (ϕm, αm) (hm) . (7)

This compatibility will be important for the seesaw identity which we will discuss in
the next section.

4.2 A global seesaw identity

The goal of this section is to introduce a global seesaw identity, analogous to the local
one we described in Section 3.2. This identity will be a key ingredient for the proof
of our main global theorem.

4.2.1 Splitting setup

Similarly to Section 3.2.1, we first need set up our splittings in a way that they are
compatible. Let us be in the setup of Section 4.1.3 with λ′ = 1. We consider the
following seesaw diagram:

U(Wδ
E,1) (AF)

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

U(VE,λ) (AF)

♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

U(Wδ
F,1) (AF) U(LE,λ) (AF) .

Given automorphic characters χLE,λ
, χWδ

E,1
: (LE ⊗F AF)× → C

×, such that

χLE,λ↾
A

×
F

= χWδ
E,1↾A

×
F

= ωLE/E,

we constructed a map

ι̃ : U(LE,λ) (AF) × U(Wδ
E,1) (AF) → Mpψ

(

VE,λ, Wδ
F,1

)

(AF) .
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Similarly, given automorphic characters χWδ
F,1

, χVE,λ
: A

×
K

→ C
×, such that

χWδ
F,1↾A

×
F

= ωK/F and χVE,λ↾
A

×
F

= ω
dimK VE,λ

K/F
,

we constructed a map

ι̃′ : U(VE,λ) (AF) × U(Wδ
F,1) (AF) → Mpψ

(

VE,λ, Wδ
F,1

)

(AF) .

We say that the splittings ι̃ and ι̃′ are compatible if their restrictions to the subgroup
U(LE,λ) (AF) × U(Wδ

F,1) (AF) coincide. As in Section 3.2.1, this is equivalent to
requiring the following relations between the characters defining the splittings:

χWδ
E,1

= χWδ
F,1

◦ NLE/K and χLE,λ
↾
A

×
K

= χVE,λ
,

where NLE/K : (LE ⊗F AF)× → (K ⊗F AF)× = A
×
K

is the norm map.

4.2.2 The global seesaw identity

We are ready to state our global seesaw identity. Choose compatible splittings ι̃ and ι̃′ as

above. Let β :
[

U(Wδ
F,1)

]

→ C
× be an automorphic character, and let ϕ ∈ S (Y, AF).

Consider the element θι̃′ (ϕ, β) in the global theta lift of β from U(Wδ
F,1) (AF) to

U(VE,λ) (AF). Given an automorphic character α :
[

U(LE,λ)
]

→ C
×, we consider

the α-period of θι̃′ (ϕ, β):

∫

[U(LE,λ)]
θι̃′ (ϕ, β) (g) α (g)dg

=

∫

[U(LE,λ)]

∫

[

U(Wδ
F,1)

]
θ (ϕ)

(

ι̃′ (g, h)
)

α (g)β (h)dhdg. (8)

The latter integral converges absolutely because the automorphic quotients
[

U(LE,λ)
]

and
[

U(Wδ
F,1)

]

are compact (the former due to our assumption that L1
E

is anisotropic).

By exchanging the order of integration and using the fact that ι̃ and ι̃′ are compatible,
we get that (8) is equal to

∫

[

U(Wδ
F,1)

]

∫

[U(LE,λ)]
θ (ϕ) (ι̃ (g, h)) α (g)β (h)dgdh =

∫

[

U(Wδ
F,1)

] θι̃ (ϕ, α) (h) β (h)dh.

Hence, we obtained the global seesaw identity

∫

[U(LE,λ)]
θι̃′ (ϕ, β) (g) α (g)dg =

∫

[

U(Wδ
F,1)

]
θι̃ (ϕ, α) (h) β (h)dh.
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If ϕ is decomposable, i.e., ϕ =
⊗m

j=1 ϕ j , where ϕ j ∈ S
(

Y j , AF j

)

, we may use (7)
to decompose further and get the identity

∫

[U(LE,λ)]
θι̃′ (ϕ, β) (g) α (g)dg =

∫

[

U(Wδ
F, j )

]
β (h) ·

m
∏

j=1

θι̃ j

(

ϕ j , α
)

(h) dh.

4.3 Global theta lifts for unitary groups of one-dimensional spaces

4.3.1 Central L-function values of automorphic characters of (LE ⊗F AF)
×

In this section, we discuss the definition of the central value of an L-function associated
with an automorphic character of (LE ⊗F AF)×.

Assume first that E/F is a field extension. Then LE = E ⊗F K is a field extension
(as we assume that L1

E
is anisotropic). We have that LE ⊗F AF = ALE

, and therefore
an automorphic character of (LE ⊗F AF)× is the same as an automorphic character
of A

×
LE

. For an automorphic character χ : L×
E
\A

×
LE

→ C
×, we define

L (χ) = L
( 1

2 , χ
)

.

Next, suppose that E is an étale algebra of degree n over F, such that L1
E

is
anisotropic. As before, write E =

∏m
j=1 F j . Let χ : L×

E
\ (LE ⊗F AF)× → C

× be
an automorphic character. As before, χ corresponds to a tuple (χ1, . . . , χm), where
for every j , χ j : F

×
j \

(

LF j ⊗F AF

)×
→ C

× is an automorphic character. We define

L (χ) =

m
∏

j=1

L
(

χ j
)

.

4.3.2 Base change for characters of ResE/F L
1
E (AF)

Let us write

(LE ⊗F AF)× =
∏

v

′
(LE ⊗F Fv)

× .

Recall the definition of ResE/F L1
E

(AF) from Section 2.5. We have that

ResE/F L1
E

(AF) =
∏

v

′
ResE/F L1

E
(Fv) =

∏

v

′
(LE ⊗F Fv)

1 .

By Section 3.3.2, for every v we have an isomorphism

jE⊗FFv : (LE ⊗F Fv)
× / (E ⊗F Fv)

× → (LE ⊗F Fv)
1
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given by jE⊗FFv (x) = x
xc . Hence, the map

jE⊗FAF
: (LE ⊗F AF)× / (E ⊗F AF)× → (LE ⊗F AF)1 = ResE/F L1

E
(AF)

given by jE⊗FAF
(x) = x

xc decomposes as jE⊗FAF
=

⊗

v jE⊗FFv , and therefore is an
isomorphism.

Analogously to Section 3.3.2, given an automorphic character β :
[

L1
E

]

→ C
×, we

define an automorphic character βLE⊗FAF
: L×

E
\ (LE ⊗F AF)× → C

× by the formula

βLE⊗FAF
(x) =

(

β ◦ jE⊗FAF

)

(x) = β

( x

xc

)

.

4.3.3 Non-vanishing of global theta lifts

In this section, we recall a result regarding the non-vanishing of the global theta lift.
This result serves as an analog of Theorem 3.5. It is established using the Rallis inner
product formula. Since we do not need the generality of the Rallis inner product
formula, we will just state the non-vanishing result in the generality we need.

Let V and W be non-degenerate one-dimensional hermitian and skew-hermitian
spaces over K, respectively. Let i ′W : U(W) → L1

F
and i ′V : U(V) → L1

F
be the obvi-

ous isomorphisms. Let α :
[

L1
F

]

→ C
× be an automorphic character. The following

theorem due to Yamana follows from [35, Lemma 10.2]2.

Theorem 4.2 The global theta lift �V,W,ι̃,ψ

(

α ◦ i ′V
)

with respect to the splitting ι̃

associated to the characters (χV, χW) is non-zero if and only if the following two
conditions are satisfied.

(1) For every place v, the big theta lift �Vv,Wv,ι̃v,ψv

(

αv ◦ i ′V,v

)

does not vanish.

(2) The central L-function value L

(

χ−1
W · αK⊗FAF

)

is non-zero.

If the global theta lift is not zero, we may use the compatibility with the local theta
lift to describe it.

Proposition 4.3 If the global theta lift �V,W,ι̃,ψ

(

α ◦ i ′V
)

is not zero, then it is given
by

�V,W,ι̃,ψ

(

α ◦ i ′V
)

=
((

χ−1
W · χV

)

◦ j−1
AF

· α

)

◦ i ′W.

4.3.4 Non-vanishing of global theta lifts for one-dimensional spaces over an étale

algebra

Let E be an étale algebra of degree n over F, such that L1
E

is anisotropic, and let λ ∈ E
×.

Choose a trace zero element δ ∈ K
×. Consider the same setup as in Section 4.2. The

non-vanishing result described in Section 4.3.3 has a straightforward extension that

2 We warn the reader that in [35], G = U(W) and H = U(V) in our notation.
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allows us to determine whether the global theta lift of an automorphic character of
U(Wδ

F,1) (AF) to U(VE,λ) (AF) is non-zero. This extension will be important for our
main result.

Let i ′V : U(VE,λ) → L1
E

and i ′W : U(Wδ
E,1) → L1

E
be the obvious isomorphisms.

Let α :
[

L1
E

]

→ C
× be an automorphic character.

Theorem 4.4 The global theta lift �
(

α ◦ i ′V
)

= �LE,λ,Wδ
E,1,ι̃,ψ

(

α ◦ i ′V
)

is non-zero if

and only if the following two conditions hold:

• For every place v, the big theta lift

�LE,λ,v,Wδ
E,1,v

,ι̃v,ψv

(

αv ◦ i ′V,v

)

does not vanish.

• The central L-function value

L

(

χ−1
Wδ

F,1
◦ NLE/K · αLE⊗FAF

)

is non-zero.

Moreover, in this case, we have that

�
(

α ◦ i ′V
)

=

((

χ−1
Wδ

F,1
◦ NLE/K · χLE,λ

)

◦ j−1
E⊗FAF

· α

)

◦ i ′W.

5 Toric periods of Weil representations

In this section we prove our main results on toric periods of Weil representations.

5.1 Local problem

Let F be a local field (either archimedean or non-archimedean of characteristic 
= 2)
and let K/F be a quadratic étale algebra. Let V be a non-degenerate n-dimensional her-
mitian space over K , and let W be a non-degenerate one-dimensional skew-hermitian
space over K . Let i ′W : U(W) → K 1 be the obvious isomorphism. Fix a character
β : K 1 → C

×, and let �
(

β ◦ i ′W
)

= �W,V,ι̃,ψ (β ◦ i ′W) be the big theta lift of β ◦ i ′W to
U(V), where ι̃ is the splitting associated with the characters (χW, χV). Recall that in
this case �

(

β ◦ i ′W
)

coincides with the small theta lift θ
(

β ◦ i ′W
)

= θW,V,ι̃,ψ (β ◦ i ′W)

because β ◦ i ′W is supercuspidal.
Given a maximal torus T ⊂ U(V) and a character α′ : T → C

×, we would like to
investigate whether the space HomT

(

�
(

β ◦ i ′W
)

, α′
)

is non-zero.
By Theorem 2.3, we have that if T ⊂ U(V) is a maximal torus, then there exists

an n-dimensional étale algebra E over F , an element λ ∈ E×, and an isomorphism
r : VE,λ → V of hermitian spaces, such that
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T = TE,r =
{

i (x) = r ◦ mx ◦ r−1 | x ∈ L1
E

}

.

We formulate an answer to our question in the following theorem.

Theorem 5.1 Let E be an étale algebra of degree n over F, α : L1
E → C

× be a
character, and let i : L1

E → U(V) be an admissible embedding, corresponding to the
data λ ∈ E× and r : VE,λ → V. Then Homi

(

L1
E

)

(

�
(

β ◦ i ′W
)

, α ◦ i−1
)

is non-zero if

and only if

β =
(

χ−n
W · χV

)

◦ j−1
F · α↾K 1

and

ωL E /E (λ) = εL E /E (αL E · χ−1
W ◦ NL E /K , ψ, δ),

where δ ∈ K × is a trace zero element, such that δ = disc W
(

mod NK/F
(

K ×
))

.
Moreover, in the case that the space Homi

(

L1
E

)

(

�
(

β ◦ i ′W
)

, α ◦ i−1
)

is non-zero, it

is one-dimensional.

Proof By the choice of δ, we have that W ∼= Wδ
F,1, as hermitian spaces, where we

recall that Wδ
F,1 = (K , 〈·, ·〉Wδ

F,1
) is the one-dimensional space equipped with the

skew-hermitian form

〈x, y〉Wδ
F,1

= δxyc.

Henceforth, we will identify W with Wδ
F,1.

Let us be in the setup of Section 3.2. We will use the following seesaw diagram:

U(Wδ
E,1)

▲▲
▲▲

▲▲
▲▲

▲▲

U(V)

��
��
��
��
��
�

U(W) U(L E,λ),

where U(W) is embedded in U(Wδ
E,1) diagonally, i.e., U(W) acts on elements of Wδ

E,1

by scalar multiplication via the obvious isomorphism i ′W : U(W) → K 1.
By the local seesaw identity (6), we have that

Homi
(

L1
E

)

(

�
(

β ◦ i ′W
)

↾
i(L1

E)
, α ◦ i−1

)

∼= HomU(W)

(

�

(

α ◦ i−1
)

↾U(W)

, β ◦ i ′W

)

,

where �
(

α ◦ i−1
)

is the theta lift of α ◦ i−1 from U(L E,λ) to U(Wδ
E,1). By Theorem

3.6, we have that �
(

α ◦ i−1
)

is non-zero if and only if

εL E /E

(

χ−1
W ◦ NL E /K · αL E , ψ, δ

)

= ωL E /E (λ) ,
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and in this case

�

(

α ◦ i−1
)

=
((

χ−1
W ◦ NL E /K · χL E,λ

)

◦ j−1
E · α

)

◦ i ′
Wδ

E,1
, (9)

where i ′
Wδ

E,1
: U(Wδ

E,1) → L1
E is the obvious isomorphism. Since i ′

Wδ
E,1

is the obvious

isomorphism, we have that i ′
Wδ

E,1 ↾U(W)

agrees with i ′W.

Since the theta lift �
(

α ◦ i−1
)

is a character, given that it is not zero, we

have that the space HomU(W)

(

�
(

α ◦ i−1
)

↾U(W)
, β ◦ i ′W

)

is non-zero if and only if

�
(

α ◦ i−1
)

↾U(W) is the same as β ◦ i ′W. By (9), this is equivalent to

((

χ−1
W ◦ NL E /K · χL E,λ

)

◦ j−1
E · α

)

↾K 1
= β.

Since χL E,λ↾K×
= χV, we get that this condition is equivalent to

β =
(

χ−n
W · χV

)

◦ j−1
F · α↾K 1 ,

as required.
Finally, if HomU(W)

(

�
(

α ◦ i−1
)

↾U(W), β ◦ i ′W
)

is non-zero, it has to be one-
dimensional, since all the representations involved are characters. ⊓⊔

Remark 5.2 By substituting W = Wδ
F,1 and (χW, χV) = (μ,μn) as in Section 3.1.2,

we obtain Theorem 1.2.

Remark 5.3 If F is non-archimedean and K/F is a quadratic field extension, then
there exist exactly two isomorphism classes of non-degenerate hermitian spaces over
K of dimension n. The isomorphism class of such hermitian space is determined by its
discriminant. We may use this to determine when there exists an admissible embedding
i : L1

E → U(V) with non-zero Hom-space, where E is an arbitrary étale algebra of
degree n over F .

Let α : L1
E → C

× be a character and let λ ∈ E× be such that

ωL E /E (λ) = εL E /E (αL E · χ−1
W ◦ NL E /K , ψ, δ).

(By Theorem 5.1, this is the only possible class λ ∈ E×/NL E /E
(

L×
E

)

, such that there
exists an admissible embedding corresponding to λ with non-vanishing Hom-space).

Then there exists an admissible embedding i : L1
E → U(V) corresponding to an

isomorphism r : VE,λ → V if and only if

disc V = NE/F (λ) · discF (E) . (10)

In this case,

Homi
(

L1
E

)

(

�
(

β ◦ i ′W
)

, α ◦ i−1
)


= 0, (11)
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if and only if

β =
(

χ−n
W · χV

)

◦ j−1
F · α↾K 1 (12)

Here we used Lemma 2.2 and Theorem 5.1.
If F = R and K = C, then (10) is only a necessary condition for the existence

of an isomorphism r : VE,λ → V. Given that such isomorphism exists, we have by
Theorem 5.1 that (11) holds if and only (12) holds.

Corollary 5.4 Let E be an étale algebra of degree n over F, and let α : L1
E → C

× be
a character. Then we have that

∑

H

∑

i

dim Homi
(

L1
E

)

(

�W,H
(

β ◦ i ′W
)

↾
i(L1

E)
, α ◦ i−1

)

=

{

1 if β =
(

χ−n
W · χV

)

◦ j−1
F · α↾K 1 ,

0 otherwise,

where the sum over H is over a set of representatives of isomorphism classes of
non-degenerate hermitian spaces of degree n, and the sum over i is over a set of
representatives for 
E,H. Here, �W,H

(

β ◦ i ′W
)

is the big theta lift from U(W) to
U(H), with respect to a splitting corresponding to a prescribed choice of characters
(χW, χV).

Proof By Theorem 2.8, for a fixed non-degenerate hermitian space H of dimension n,
the set 
E,H is in bijection with λ ∈ E×/NL E /E

(

L×
E

)

, such that VE,λ
∼= H. Therefore,

we have that

∑

H

∑

i∈
E,H

dim Homi
(

L1
E

)

(

�W,H
(

β ◦ i ′W
)

↾
i(L1

E)
, α ◦ i−1

)

=
∑

λ

dim Homirλ (L1
E )

(

�W,Hλ

(

β ◦ i ′W
)

, α ◦ i−1
rλ

)

,

where the summation is over a set of representatives λ ∈ E× for E×/NL E /E
(

L×
E

)

,
where Hλ is the representative for the class of the hermitian space VE,λ, and where
irλ

: L1
E → TE,rλ

⊂ U(Hλ) is an arbitrary admissible embedding corresponding to
the data rλ : VE,λ → Hλ. Given such λ, we have by Theorem 5.1 that the space
Homirλ (L1

E )

(

�W,Hλ

(

β ◦ i ′W
)

, α ◦ i−1
rλ

)

can be non-zero only when β =
(

χ−n
W · χV

)

◦

j−1
F ·α ↾K 1 , and in this case the space is non-zero only for one class in E×/NL E /E

(

L×
E

)

,
and for that class it is one-dimensional. Therefore, we get the result. ⊓⊔

Remark 5.5 By substituting the same data as in Remark 5.2, we get Theorem 1.3.
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5.2 Global problem

Let F be a number field, and let K/F be a quadratic field extension. Let V be a non-
degenerate n-dimensional hermitian space over K, and let W be a non-degenerate
one-dimensional skew-hermitian space over K. Let i ′W : U(W) → L1

F
be the obvious

isomorphism. Fix an automorphic character β :
[

L1
F

]

→ C
× and let �

(

β ◦ i ′W
)

=

�W,V,ι̃,ψ

(

β ◦ i ′W
)

be the global theta lift of β◦i ′W to U(V) (AF), where ι̃ is the splitting
associated with the characters (χW, χV).

Given a maximal anisotropic torus T ⊂ U(V) and an automorphic character
α : [T] → C

×, we would like to investigate whether the α-period of T is identically
zero on �

(

β ◦ i ′W
)

, that is, we would like to check whether the integral

PT,α ( f ) =

∫

[T]
f (t) α (t)dt

is zero for every f ∈ �
(

β ◦ i ′W
)

.
As before, given such T, by Theorem 2.3, we may find an étale algebra E of degree

n over F, an element λ ∈ E
×, and an isomorphism r : VE,λ → V of hermitian spaces

over K, such that

T =
{

r ◦ mx ◦ r−1 | x ∈ L1
E

}

.

Analogously to the local case, we formulate an answer to this problem in the
following theorem.

Theorem 5.6 Let E be an étale algebra of degree n over F, such that L1
E

is anisotropic,
α :

[

L1
E

]

→ C
× be an automorphic character, and let i : L1

E
→ U(V) be an admissi-

ble embedding corresponding to the data λ ∈ E
× and r : VE,λ → V. Then Pi

(

L1
E

)

,α◦i−1

is not identically zero on �
(

β ◦ i ′W
)

if and only the three following conditions are sat-
isfied:

(1) β =
(

χ−n
W · χV

)

◦ j−1
AF

· α↾
L1

F
(AF)

.

(2) For every place v,

ωLE⊗FFv/E⊗FFv (λ) = εLE⊗FFv/E⊗FFv

(

αv,LE⊗FFv · χ−1
W,v ◦ NLE⊗FFv/Kv , ψv, δ

)

.

(3) The following central L-function value does not vanish:

L

(

χ−1
W ◦ NLE/K · αLE⊗FAF

)


= 0.

Here, δ ∈ K
× is a trace zero element, such that δ = disc W

(

mod NK/F

(

K
×
))

.

Remark 5.7 If Pi
(

L1
E

)

,α◦i−1 is non-zero then for every v, we must have that

Homi(LE)(Fv)

(

�
(

β ◦ i ′W
)

v
, αv ◦ i−1

v

)


= 0. (13)
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If �
(

β ◦ i ′W
)

lies in the space of square-integrable automorphic forms, then by Theo-
rem 5.1 and the compatibility between the global and local theta lifts, (13) is equivalent
to the first two conditions of the theorem. We mention that if dim V 
= 2, then
�

(

β ◦ i ′W
)

is square-integrable. When V is one-dimensional this follows from the
fact that the groups are anisotropic, and when dim V ≥ 3, this follows from [35,
Corollary 10.1 part (4)] (in the notations of [35], ρn = 1, dim V = m ≥ 3 and
0 ≤ r ≤

[m
2

]

so m − r > 1 = ρn).

Proof We will use the global seesaw identity. By our choice of δ, we have that W ∼=

Wδ
F,1 as hermitian spaces. Henceforth, we will identify W with Wδ

F,1. Let us be in the
setup of Section 4.2. Consider the following seesaw diagram:

U(Wδ
E,1) (AF)

��
��

��
��

��
��

U(V) (AF)

♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥

U(W) (AF) U(LE,λ) (AF) .

As in Section 3.2.1, U(W) is realized as a subgroup of U(Wδ
E,1) diagonally.

By the results of Section 4.2, we have that

Pi
(

L1
E

)

,α◦i−1

(

θι̃

(

ϕ, β ◦ i ′W
))

=

∫

[

U(Wδ
F,1)

]
θι̃

(

ϕ, α ◦ i−1
)

(h) β
(

i ′W (h)
)

dh, (14)

where ϕ ∈ S (Y, AF). Hence, the period Pi
(

L1
E

)

,α◦i−1 is non-zero if and only if the

global theta lift �ι̃

(

α ◦ i−1
)

from U(LE,λ) (AF) to U(Wδ
E,1) (AF) is non-zero, and

the integral (14) is non-zero. By Theorems 4.4 and 3.6, the global theta lift �ι̃ (α) is
non-zero if and only if conditions (2) and (3) hold. In this case, we have that

�ι̃

(

α ◦ i−1
)

=
((

χ−1
W ◦ NLE/K · χLE,λ

)

◦ j−1
E⊗FAF

· α

)

◦ i ′
Wδ

E,1
,

where i ′
Wδ

E,1
: U(Wδ

E,1) → L1
E

is the obvious isomorphism. Hence, by choosing ϕ

such that θι̃ (ϕ, α) 
= 0, we get from the fact that two different characters of a group
are orthogonal, that if �ι̃

(

α ◦ i−1
)

is not zero, then Pi
(

L1
E

)

,α◦i−1 is not identically zero
if and only if

β ◦ i ′W =
((

χ−1
W ◦ NLE/K · χLE,λ

)

◦ j−1
E⊗FAF

· α

)

◦ i ′
Wδ

E,1↾
U(Wδ

F,1)(AF)

.

Since i ′W and i ′
Wδ

E,1
are the obvious isomorphisms, we have that they agree on

U(Wδ
F,1) (AF), and therefore the condition is equivalent to

β =
((

χ−1
W ◦ NLE/K · χLE,λ

)

◦ j−1
E⊗FAF

· α

)

↾
L1

F
(AF)

.
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Using the relations jAF
= jE⊗FAF

↾L1
F
(AF), χLE,λ

↾
A

×
K

= χV, and the fact that

NLE/K (x) = xn for x ∈ (K ⊗F AF)×, we get this condition is equivalent to

β =
(

χ−n
W · χV

)

◦ j−1
AF

· α↾
L1

F
(AF)

,

which is condition (1). Hence, we proved the theorem. ⊓⊔

If two admissible embeddings i1, i2 : L1
E

→ U(V) are conjugate, then there exists
h ∈ U(V) such that i1 (x) = h−1i2 (x) h for every x ∈ L1

E
. For an automorphic

form f : [U(V)] → C we have that f
(

h−1g
)

= f (g), for any g ∈ U(V) (AF),
and hence we have the relation Pi1

(

L1
E

)

,α◦i−1
1

( f ) = Pi2
(

L1
E

)

,α◦i−1
2

(ρ (h) f ), where

ρ (h) represents right translation by h. Therefore, the non-vanishing of the period
Pi

(

L1
E

)

,α◦i−1 does not depend on the representative i of a class of 
E,V. The following
corollary describes when there exists a class in 
E,V with non-vanishing period, and
shows that if this class exists, it is unique.

Corollary 5.8 Let E be an étale algebra of degree n over F, such that L1
E

is anisotropic,
and let α :

[

L1
E

]

→ C
× be an automorphic character. Then there exists a non-

degenerate hermitian space H of degree n, and an admissible embedding i : L1
E

→

U(H), such that the period Pi
(

L1
E

)

,α◦i−1 is not identically zero on �W,H
(

β ◦ i ′W
)

, if

and only if the following two conditions hold

(1) β =
(

χ−n
W · χV

)

◦ j−1
AF

· α↾
L1

F
(AF)

.

(2) The following central L-function value does not vanish:

L

(

χ−1
W ◦ NLE/K · αLE⊗FAF

)


= 0.

Moreover, when these conditions hold, the isomorphism class of H as a hermitian
space, and the class [i] ∈ 
E,H are unique.

Here, �W,H
(

β ◦ i ′W
)

is the global theta lift of β◦i ′W from U(W) (AF) to U(H) (AF),
taken with respect to the splitting defined by a prescribed choice of characters
(χW, χV).

Proof By Theorem 5.6, the conditions in the theorem are necessary. Assuming these
conditions, we will show the existence and uniqueness of a non-degenerate hermitian
space H of dimension n and class [i] ∈ 
E,H, such that the period Pi

(

L1
E

)

,α◦i−1 is not
identically zero.

Let us begin with uniqueness. By Theorem 2.8, for every H, a choice of a class [i]
corresponds to an element λ ∈ E

×/NLE/E

(

L×
E

)

, such that there exists an isomorphism
of K-hermitian spaces rλ : VE,λ → H. If λ1, λ2 ∈ E

× are such that there exist
isomorphisms of hermitian spaces rλ1 : VE,λ1 → H and rλ2 : VE,λ2 → H, such that
the corresponding admissible embeddings iλ1 and iλ2 admit a non-zero period, then
by condition (2) of Theorem 5.1, we must have that for every place v,

ωLE⊗FFv/E⊗FFv (λ1) = ωLE⊗FFv/E⊗FFv (λ2) .
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This implies that for every v,

ωLE⊗FFv/E⊗FFv

(

λ2λ
−1
1

)

= 1,

and therefore for every placev, we have thatλ2λ
−1
1 ∈ NLE⊗FFv/E⊗FFv

(

(LE ⊗F Fv)
×
)

.
By the Hasse norm principle for quadratic extensions, this implies that λ2λ

−1
1 ∈

NLE/E

(

L×
E

)

. Hence, iλ1 and iλ2 are conjugate.
Suppose that H and H′ are both non-degenerate hermitian space of dimension n, and

suppose that there exist λ, λ′ ∈ E
× and isomorphisms of hermitian spaces rλ : VE,λ →

H and rλ′ : VE,λ′ → H′, such that the corresponding admissible embeddings iλ and
iλ′ admit a non-zero period. Then, as above, we get that λ′λ−1 ∈ NLE/E

(

L×
E

)

. This
implies that VE,λ is isomorphic to VE,λ′ , and therefore H is isomorphic to H′.

We move to show the existence of a non-degenerate hermitian space H of dimension
n and a class [i] ∈ 
E,H with non-zero period Pi

(

L1
E

)

,α◦i−1 . We need to find an element

λ ∈ E
× such that for every place v, condition (2) of Theorem 5.6 holds. By writing

E =
∏m

j=1 F j , where F j/F is a finite field extension, the problem is reduced to the case
where E/F is a field extension, and that LE/E is a quadratic field extension. Consider
the diagonal map �E : E

×/NLE/E

(

L×
E

)

→ (E ⊗F AF)× /NLE/E

(

(LE ⊗F AF)×
)

.
This map has co-kernel

(

(E ⊗F AF)× /NLE/E

(

(LE ⊗F AF)×
))

/
(

E
×/NLE/E

(

L×
E

))

∼=
(

(E ⊗F AF)× /E
×
)

/
(

NLE/E

(

(LE ⊗ AF)× /L×
E

))

,

which by global class field theory is isomorphic to the Galois group Gal (LE/E) ∼=

{±1}. It follows that the image of �E is the kernel of the quadratic character ωLE/E,
that is,

Im�E =

{

(xv)v ∈
∏

v

′
(E ⊗F Fv)

× /NLE/E

(

(LE ⊗F Fv)
×
)

|
∏

v

ωLE/E (xv) = 1

}

.

Since the central L-function value L

(

χ−1
W ◦ NLE/K · αLE⊗FAF

)

is non-zero, we must

have that the global root number
∏

v εLE⊗FFv/E⊗FFv

(

αv,LE⊗FFv ·χ
−1
W,v◦NLE⊗FFv/Kv , ψv, δ

)

is equal to 1. Hence, the sequence

(

εLE⊗FFv/E⊗FFv

(

αv,LE⊗FFv · χ−1
W,v ◦ NLE⊗FFv/Kv , ψv, δ

))

v

lies in the image of �E, and we can find λ ∈ E
× as desired.

⊓⊔

Remark 5.9 Similarly to Remark 5.2, by substituting W = Wδ
F,1 and (χW, χV) =

(μ,μn) as in Section 4.1.2, we get Theorem 1.5.
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Appendix A. Morphisms of norm one tori

In this appendix, we prove some technical statements regarding extensions of mor-
phisms of L1

E to L E .
Let F be an infinite field with characteristic different than 2, and let K/F be a

quadratic étale algebra, equipped with an involution x �→ xc whose set of fixed points
is F . Let 0 
= δ ∈ K be a trace zero element. Any element x ∈ K can be written
in the form x = a + bδ, where a, b ∈ F . We have that δc = −δ, and therefore
NK/F (a + bδ) = a2 − b2δ2 ∈ F .

Consider the map jK/F : K × → K 1 given by

jF (x) =
x

xc
.

Denote for b ∈ F with b2δ2 
= 1 (that is, NK/F (1 + bδ) 
= 0),

qF (b) =
jF (1 + bδ) − jF (1 − bδ)

jF (1 + bδ) + jF (1 − bδ) + 2
. (15)

Then a simple computation yields qF (b) = bδ.
Let V be an n-dimensional non-degenerate hermitian space over K . We are ready

to prove our results.

Proposition A.1 Let E be an étale algebra of degree n over F, and let λ ∈ E× be
such that VE,λ and V are isomorphic as hermitian spaces. Let r1, r2 : VE,λ → V be
isomorphisms of hermitian spaces. For j = 1, 2, let i ′j : L E → End (V) be the map

i ′j (x) = r j ◦ mx ◦ r−1
j .

Suppose that there exists g ∈ GL (V) such that for any x ∈ L1
E ,

i ′1 (x) = g ◦ i ′2 (x) ◦ g−1. (16)

Then (16) holds for any x ∈ L E .

Proof Write E =
∏m

j=1 F j , where F j/F is a field extension. Suppose first that m = 1.
Then E/F is a finite field extension and L E/E is a quadratic étale algebra, and
L E = E ⊕ Eδ. Let a, b ∈ E , and choose c ∈ F×, such that (ac)2 , c2, (bc)2 
= δ−2

(if L E/E is a field extension, any c ∈ F× satisfies this). Then

a + bδ =
qE (ac)

qE (c)
+

qE (bc)

c
. (17)

We have that

i ′j (a + bδ) = r j ◦ ma+bδ ◦ r−1
j
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and

ma+bδ = mqE (ac) ◦ mqE (c)−1 + c−1 · mqE (bc).

Therefore,

i ′j (a + bδ) = i ′j (qE (ac)) ◦ i ′j

(

qE (c)−1
)

+ c−1 · i ′j (qE (bc)) ,

and it suffices to explain why for any b ∈ F with δ2b2 
= 1, we have the equality

i ′1 (qE (b)) = g ◦ i ′2 (qE (b)) ◦ g−1. (18)

Using the definition of qE , and the fact that the assignment E → End (V) given
by x �→ i ′j (x) is an isomorphism for j = 1, 2, we get, similarly to above, that is
i ′j (qE (b)) is given by the formula

(

i ′j ( jE (1 + bδ)) − i ′j ( jE (1 − bδ))

)

◦
(

i ′j ( jE (1 + bδ)) + i ′j ( jE (1 − bδ)) + 2 idV

)−1
.

The equality (18) now follows from the fact that jE (1 ± bδ) lies in L1
E , and from the

assumption that (16) holds for elements in L1
E .

If m > 1, then by restricting to L F j , we get from the proof above that (16) holds
for every x ∈ L F j , for every 1 ≤ j ≤ m. Using linearity, this implies that (16) holds
for every x ∈ L E . ⊓⊔

Proposition A.2 Let E and E ′ be étale algebras of degree n over F. Suppose that
there exists an invertible F̄-linear map T : L E ′ ⊗F F̄ → L E ⊗F F̄ , such that for any
x ∈ L1

E there exists τ (x) ∈ L1
E ′ , such that

T ◦
(

mτ(x) ⊗ id F̄

)

◦ T −1 = mx ⊗ id F̄ . (19)

Then for any x ∈ L E there exists τ (x) ∈ L E ′ , such that (19) holds. Moreover, such
τ (x) is unique.

Proof Uniqueness follows from writing mτ(x) ⊗F id F̄ = T −1 ◦
(

mx ⊗F id F̄

)

◦ T and
applying both sides to 1 ⊗ 1 ∈ L E ′ ⊗F F̄ .

To show existence, first write E =
∏m

j=1 F j , where F j/F is a field extension.

Define for b ∈ F j with δ2b2 
= 1,

τ
(

qF j (b)
)

=
τ

(

jF j (1 + bδ)
)

− τ
(

jF j (1 − bδ)
)

τ
(

jF j (1 + bδ)
)

+ τ
(

jF j (1 − bδ)
)

+ 2
.

The fact that (19) holds for x = qF j (b), follows from (15), from the fact that qF j (b) =

bδ, and from the fact that (19) holds for elements in L1
F j

. For any a, b ∈ F j , choose

c ∈ F×, such that (ac)2 , c2, (bc)2 
= δ−2. Define
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τ (a + bδ) =
τ

(

qF j (ac)
)

τ
(

qF j (c)
) +

τ
(

qF j (bc)
)

c
.

It follows from (17) that (19) holds for x = a + bδ. Finally, extend τ to a general
element of L E =

∏m
j=1 L F j by linearity. ⊓⊔
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project. Warm thanks are also due to Petar Bakić. We would like to thank the organizers of Arizona Winter
School 2022 for an excellent event, and for giving us the opportunity to work on such project together.
Johannes Girsch was supported by EPSRC grant EP/V001930/1 and would like to thank Justin Trias for
helpful discussions about the theta correspondence. Elad Zelingher would like to thank Charlotte Chan,
Yu-Sheng Lei and Mishty Ray for their interest in this project. He would also like to take this opportunity
to thank Jialiang Zou for his friendship and for discussions about the theta correspondence and many other
topics. Finally, we would like to thank the anonymous referee for their thorough reading and their valuable
comments and suggestions that significantly improved the mathematical exposition.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alonso, R., He, Q., Ray, M., Roset, M.: Dihedral long root A-packets of p-adic G2 via theta corre-
spondence. Adv. Math., 453, (2024)
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