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Abstract

Background Oral epithelial dysplasia (OED) is a potentially malignant histopathological

diagnosis given to lesions of the oral cavity that are at risk of progression to malignancy.

Manual grading of OED is subject to substantial variability and does not reliably predict

prognosis, potentially resulting in sub-optimal treatment decisions.

Method We developed a Transformer-based artificial intelligence (AI) pipeline for the

prediction ofmalignant transformation fromwhole-slide images (WSIs) of Haematoxylin and

Eosin (H&E) stained OED tissue slides, named ODYN (Oral Dysplasia Network). ODYN can

simultaneously classify OED and assign a predictive score (ODYN-score) to quantify the risk

of malignant transformation. The model was trained on a large cohort using three different

scanners (Sheffield, 358 OED WSIs, 105 control WSIs) and externally validated on cases

from three independent centres (Birmingham and Belfast, UK, and Piracicaba, Brazil; 108

OED WSIs).

Results Model testing yielded an F1-score of 0.96 for classification of dysplastic vs non-

dysplastic slides, and an AUROC of 0.73 for malignancy prediction, gaining comparable

results to clinical grading systems.

Conclusions With further large-scale prospective validation, ODYN promises to offer an

objective and reliable solution for assessingOEDcases, ultimately improving early detection

and treatment of oral cancer.

Oral epithelial dysplasia (OED) presents a significant challenge in the realm
of oral pathology, where accurate diagnosis and early detection are para-
mount for effective intervention and prevention of malignant progression.
OED is a potentially malignant histopathological diagnosis encompassing
various lesions of the oral mucosa, typically manifesting as white (leukopla-
kia), red (erythroplakia) or mixed red-white (erythroleukoplakia) lesions1,2.

Histopathological grading of Haematoxylin and Eosin (H&E) stained
tissue using the World Health Organisation (WHO, 20173) classification
system remains the current accepted practice for diagnosis and risk strati-
fication of OED lesions. This is a three-tier system for grading OED into
mild, moderate and severe grades based on the presence, severity and
location of a wide range of cytological and architectural histological features

A full list of affiliations appears at the end of the paper. e-mail: n.m.rajpoot@warwick.ac.uk

Plain language summary

Oral epithelial dysplasia (OED) is a condition

where cells in the mouth show abnormal

changes that could lead to cancer. The

standard method of diagnosis involves

looking at a tissue sample (biopsy) under a

microscope. However, this method of

diagnosis andpredictionof cancer risk canbe

uncertain, resulting in differences in

interpretation. In this study, we developed a

computer-based tool called “ODYN” to help

improve both diagnosis and cancer risk pre-

diction. ODYN examines images of biopsy

samples, identifies abnormal areas, and cal-

culates a score that estimates the risk of

cancer development. We show that this tool

has similar accuracy to the conventional

diagnostic criteria, without human involve-

ment. With further testing, ODYN could pro-

vide a more objective way to assess OED,

helping doctors make better treatment deci-

sions and improving early cancer detection.
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(28 in total4,5). By its nature, this approach suffers from significant intra- and
inter-observer variability and has poor predictive value for malignant
transformation risk, potentially impacting on patient management. An
alternate binary grading system, categorising lesions as low- or high-risk,
basedon thenumber of cytological andarchitectural features (as listed in the
WHOcriteria) aimed to improve the reproducibility of grading6,7. However,
studies have shown significant variability and unreliability in grading using
both systems, highlighting the need for more objective and reproducible
methods that can better predict malignant transformation risk in OED8,9.

To address challenges in subjectivity and misclassification of pre-
cancerous and cancerous lesions, there is a growing interest in leveraging
advanced technologies, particularly deep learning (DL), which has seen
extensive use in medical image analysis over the past decade10–12. Several
state-of-the-art models, such as U-Net13 and DeepLab14, have been devel-
oped to perform image classification and segmentation. These models
typically use convolutional neural networks (CNN), such as ResNet15, as
feature extractors. Within digital pathology, weakly supervised methods
have became popular choices for the analysis of histology images, enabling
slide-level classification based on patch-level predictions. These methods
typically divide WSIs into smaller patches, before using CNNs to extract
patch-level features16–18. However, despite their success, CNN-basedmodels
have limitations such as high computational overhead and difficulty in
capturing long-range dependencies in images, when being used for either
segmentation or classification.

Transformers have gained widespread attention in recent years as they
have been successfully applied in several natural language processing and
computer vision tasks such as classification19–21. A typical Transformer
encoder consists of a multi-head self-attention (MSA) layer, a multi-layer
perceptron (MLP), and a layer normalisation (LN). The MSA layer
empowers Transformers to capture long-range dependencies,making them
a strong candidate for semantic segmentation in medical images22–24.
Transformers, therefore, have the potential to overcome some of the lim-
itations of traditional CNNs. However, only a handful of methods have
applied Transformers for semantic segmentation in medical images22,25.
Their application in histology has primarily been constrained to classifica-
tion tasks26,27, with semantic segmentation left relatively unexplored. This
raises the question of whether Transformers can be harnessed for semantic
segmentation of histological images.

In this study, we aimed to develop a weakly supervised, DL pipeline
that could reliably and objectively segment and classify OED, whilst
predicting the risk of malignant transformation in OED, using WSIs of
H&E-stained OED slides. Specifically, we achieve this using interpretable
nuclear features from dysplastic regions on the WSI. Moreover, we
conduct a rigorous evaluation of the performance of our pipeline by
comparing it to other state-of-the-art methods. To demonstrate the
robustness and generalisability of our approach, we have developed our
model using a large cohort with extended validation on unseen datasets
acquired from three national and international centres (Birmingham and
Belfast, UK, and Piracicaba, Brazil).

Methods
Study cohorts
Development and internal validation cohort. The training cohort
consists of a retrospective sample of histology tissue sections (dating 2008
to 2016, with minimum five-year follow-up data) collected from the Oral
and Maxillofacial Pathology archive at the School of Clinical Dentistry,
University of Sheffield, UK (referred to as the internal centre, hereafter).
During the process of case selection, a Consultant Pathologist (SAK)
conducted an initial microscopic inspection of the archived diagnostic
slides to confirm the suitability of each case for inclusion. Newly cut 4 µm
sections of the selected cases were obtained from the original formalin
fixed paraffin embedded blocks and stained with H&E for analysis. The
collection, retrieval and staining of sections were conducted between
2020 and 2023 by the same clinicians using standardised protocols,
ensuring consistency in slide preparation.

A purposive sampling method was employed, selecting consecutive
cases from the pathology archive within the specified time period. In total,
509 slides were collected from406 patients. The slides were digitised to high-
resolution WSIs at 40× objective power using one of three scanners:
NanoZoomer S360 (Hamamatsu Photonics, Japan; 0.2258 mpp), Aperio
CS2 (Leica Biosystems, Germany; 0.2520 mpp), Pannoramic 1000 (P1000,
3DHISTECH Ltd, Hungary; 0.2426 mpp). Inclusion criteria required suf-
ficient epithelial tissue, high-quality staining, and complete follow-up data
(42 cases did not meet these criteria). Exclusion criteria included cases with
ulceration, overlying candidal infection, HPV-related OED, or verrucous
lesions (based on morphology on H&E). Cases with clinical oral lichen
planus (OLP) or coincidental OLP were also excluded. Cases with insuffi-
cient tissue, poor staining quality, or incomplete follow-up data were also
excluded.Carewas taken to ensure a reasonablemixof gradeswere included.

The resulting cohort comprised 358 WSIs (n = 277 patients) with a
confirmed histological diagnosis of OED and 105 WSIs (n = 81 patients)
confirmed as non-dysplastic (controls). Due to incomplete follow-up data
forfive patientswithOED(7WSIs), these caseswere only used for algorithm
training and excluded from clinical outcome analysis. Thus, the final cohort
included 351 WSIs (n = 272 patients) with confirmed diagnosis of OED of
which 64 patients (79 WSIs) exhibited malignant transformation. Slides
from the same subjects were assigned to the same fold during algorithm
training/testing. An overview of the dataset and a CONSORT diagram are
given in the Supplementary Information (Table S1 and Fig. S1, respectively).

Clinical follow-up data for the OED cohort included patient age (at
time of diagnosis), sex, intraoral site, OED grade (using binary and WHO
2017 systems) and transformation status. Transformation was defined as
the progressionof a dysplastic lesion toOSCCat the same clinical sitewithin
the follow-up period, and transformation timewasmeasured inmonths. To
ensure diagnostic consistency, all cases were evaluated by at least two cer-
tified pathologists (PMS, PMF, DJB, KH), who provided an initial diagnosis
based on the WHO grading system (between 2008–2016). To confirm the
WHO (2017) grade and assign binary grades, the cases were blindly re-
evaluated by SAK and a clinician with a specialist interest and expertise in
OED analysis (HM).

Amongst the 358 OED WSIs, HM exhaustively delineated regions of
interest (ROI) representative of dysplasia in a large subset of 260OEDWSIs,
using in-built annotation tools in the QuPath® software28. Of the 105 non-
dysplastic control WSIs, HM additionally manually delineated the entire
epithelium in a subset of 96 WSIs28.

Independent validation cohorts. The ODYNmodel was tested on three
external datasets acquired from:

i. Precision Medicine Centre, Patrick G. Johnston Centre for Cancer
Research, Queen’s University Belfast, UK (47 WSIs)

ii. Institute of Head and Neck Studies and Education, Institute of Cancer
and Genomic Sciences, University of Birmingham, UK (42 WSIs)

iii. Oral Diagnosis Department, Semiology and Oral Pathology Areas,
Piracicaba Dental School University of Campinas (UNICAMP), São
Paulo, Brazil (19 WSIs)

Owing to the limited size of these datasets, we combined them into a
single multi-institutional external test set. Prior to the inclusion of external
cases in the study, all WSIs were checked for suitability. Slides of poor
quality, insufficient epithelium and cases positive for Candida Albicans or
suggestive of Human Papilloma Virus infection were excluded. The WSI
cohorts fromBirmingham and Belfast were scanned at 40× objective power
using a Pannoramic 250 (P250, 3DHISTECH Ltd., Hungary; 0.1394 mpp)
and Aperio AT2 (Leica Biosystems, Germany; 0.2529 mpp) whole-slide
scanner, respectively, to obtain digital WSIs. The Piracicaba cases were
scanned at 20× objective power by an Aperio CS (Leica Biosystems, Ger-
many; 0.4928 mpp) scanner. The same clinical follow-up information was
collected as that for the development/internal cohort. The external dataset
did not include any control cases. Due to incomplete follow-up data for
three patients with OED (3WSIs), these cases were only used for algorithm
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validation and excluded from clinical outcome analysis. Thus, the final
cohort included 105WSIs (from 105 patients), amongst which 44 patients
(44 WSIs) exhibited malignant transformation. A summary of this cohort
and a CONSORT diagram are provided in the Supplementary Information
(Table S1 and Fig. S1, respectively). For model training, HM exhaustively
delineated ROIs of dysplasia in 30 cases each from both Birmingham and
Belfast, and an additional 18 cases from Piracicaba, using the QuPath®
software.

Inclusion and ethics statement. Ethical approval for the study was
obtained from the NHS Health Research Authority West Midlands (18/
WM/0335), and experiments were conducted in compliance with the
Declaration of Helsinki. Data collected was fully anonymised. Written
consent was not required as data was collected from surplus archived
tissue.

Analytical workflow
Dysplasia segmentation. Since dysplastic changes may not be
widespread across the entire tissue section in a slide, the first step of
developing the DL pipeline involved identification and localisation of
the dysplastic tissue regions for semantic segmentation. To achieve
this, we trained a Transformer, based on Trans-UNet22, to auto-
matically detect and segment the different dysplastic regions in each
WSI across the training dataset. The model processes input images of
size 512 × 512 (at 1.0 micron per pixel, mpp, resolution) and outputs
a dysplasia segmentation map. Manually annotated ROIs were used
as ground truth during training, focusing on areas with confirmed
dysplasia in OED cases and the entire epithelium in non-dysplastic
controls. These large ROIs typically spanned the entire tissue section
in a slide, encompassing both annotated dysplastic epithelium and
normal epithelium where present.

For internalmodel testing, the datasetwas split at 80/20, and controlled
for both scanner type andOEDgrade.This resulted in206OEDand75non-
dysplastic control WSIs in the training set, and 54 OED and 21 non-
dysplastic control WSIs in the internal testing set, with ground truth
annotations.Note, a higher proportionof controlswere kept in the test set to
ensure high specificity of OED segmentation in the non-dysplastic control
sample. After tessellating the WSIs and region masks into smaller patches
(512 × 512 pixels, 184 pixels overlap, 10×magnification, 1.0mpp), a total of
19,063 OED and 11,756 non-dysplastic patches were generated for model
training/validation on the internal discovery cohort. This totalled 6,341
patches with ground truth annotations from the 78 WSIs in the external
cohort. Various stain augmentation algorithms were tested during the
development of the final model, using the TIAToolbox29.

OED Classification. A pretrained CNN-based HoVer-Net+30,31 model
was used to segment the epithelium and the individual nuclei across each
WSI. To classify OED, the proportion of the epitheliummask (generated
by HoVer-Net+) that was segmented as dysplastic (using Trans-UNet)
was calculated. This proportion, referred to as the dysplasia-epithelium
ratio (REpith), was used to classify slides as dysplastic vs. non-dysplastic,
based on an empirically determined threshold.

The threshold for REpithwas selected based on its ability to achieve the
highest classification performance (measured by F1-score and AUROC) on
the training set of 281 WSIs used for training the Trans-UNet dysplasia
segmentation model. This threshold was subsequently validated, internally
on the remaining 182WSIs from Sheffield, and externally on all 108WSIs.
For transparency, the distribution of REpith values across different OED
grades and transformation outcomes was analysed, and boxplots were
generated to illustrate these distributions.

HoVer-Net+ was used solely for inference in this task and was not
further fine-tuned, given its state-of-the-art performance in epithelium and
nuclear segmentation and classification. The model has been extensively
pre-trained onOEDdata30,31, which ensured its robustness and reliability for
this application.

Malignant transformation prediction (ODYN-scoring). TheWSIs were
tessellated into smaller patches (512 × 512 pixels, with 256 pixels overlap
at 0.5 mpp) using tissue in the dysplastic regions alone. The nuclear
segmentations from HoVer-Net+ were used to generate a total of 168
nuclear-based morphological and spatial features for each (dysplastic)
patch. See the Supplementary Information, pp 7, for a list of the features
used. These patch-level features were used as input to anMLP to calculate
a risk-score for malignant transformation (ODYN-score). Thus, the
ODYN-score indicated whether the algorithm predicted the case to have
transformed (high-risk) or not transformed (low-risk). The MLP model
had three layers with 168 nodes in the input layer, 64 nodes in the hidden
layer, and 2 nodes in the output layer. It used a leaky ReLU activation
function and dropout (0.2) after the hidden layer. The MLP was trained
by Monte Carlo iterative-draw-and-rank sampling (IDaRS16), using a
symmetric cross-entropy loss function and theAdamoptimiser. This loss
function was chosen as it has been shown previously to help overcome
errors associated with weak labels16,32. IDaRS sampling was performed
with parameter values of k = 5 for top predictive patches and r = 45
random patches, using a batch size of 256. On inference, the trainedMLP
calculated a prediction score for each patch in the dysplastic regions of the
WSI, which can be considered the likelihood of a tile belonging to the
positive class in the classification task (i.e. transformation). Slide-level
scores were then obtained by taking the average prediction score across
the top 50% ranked tiles.We used nuclear featureswith the aimofmaking
the model interpretable. However, we additionally provided comparison
to a ResNet34 classifier (trained with Macenko stain augmentation),
using deep features, to show the impact on performance (see Supple-
mentary Information, Table S3).

Statistics and reproducibility
For the evaluation of OED segmentation, on both internal and external
testing, large ROIs centred on the annotated tissue section were generated.
Dysplasia segmentation performance (aggregated across all ROIs) was
measured by calculating the F1-score, Recall and Precision. For internal
testing of controls, a singlemeasure of specificity forOEDsegmentationwas
reported, since a single incorrectly predicted pixel (e.g. incorrectly predicted
asOED), would result in an F1-score, Recall, and Precision values of 0; thus,
not giving an accurate representation of the model performance. For the
evaluation ofOEDclassification (dysplastic vs non-dysplastic) the F1-score,
Recall, and Precision across all slides were measured. An area under the
receiving operating characteristic (AUROC) score was also calculated for
internal testing.

We used repeated five-fold cross-validation in our ODYN-scoring
internal experiments based on the internal cohort. For each fold of cross-
validation, we held one fold back for testing, and used the remaining four
folds with a 90/10 split of data for training/validation. Experiments were
repeated three times with random seeds. We then tested our model exter-
nally, by evaluating each model from internal cross-validation (i.e. all 15
folds) on the external data, and ensembling their predictions.

For the evaluation of the ODYN-scoring pipeline, we provide an
AUROC score and an area under the precision-recall curve (AUPRC) score
across all slides. Survival analyses were additionally conducted to assess the
prognostic significance of the ODYN-score in predicting transformation-
free survival. Kaplan-Meier curves were generated, and log-rank tests were
used to determine the statistical significance of grading (for ODYN-score,
WHO and binary grades). We used concordance index (C-index) to mea-
sure the rank correlationbetweenpredicted risk scores andpatients’ survival
time. The reported C-index is themean over each repeat of the experiment,
whilst the p-value is calculated by two times the median p-value (from the
log-rank test) over all repeats, to get a conservative estimate. A multivariate
Cox proportional hazards model was employed, incorporating the ODYN-
score, sex and age (and lesion site for internal testing), to predict
transformation-free survival.We additionally performed this analysis using
the binary and WHO grades in place of the ODYN-score for further
comparison.Transformationswere right censored at eight years across these
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analyses to ensure consistency between internal and external cohorts. We
used the hazard ratio (HR) and p-value output from the multivariate ana-
lyses as furthermetrics for evaluation. For reporting,we focus on the p-value
from the multivariate analyses, being a more conservative and robust esti-
mate. However, for completeness we also provide the log-rank p-value with
the Kaplan-Meier curves.

Finally, we generated nuclear counts and area ratios in the ten top-
ranked tiles (as correctly predicted by iterative draw and rank sampling for
ODYN-scoring). For nuclear counts, we studied dysplastic epithelial nuclei,
normal epithelial nuclei, ‘other’nuclei fromwithin the epithelium (i.e. intra-
epithelial lymphocytes, IELs), and ‘other’ nuclei outside the epithelium (i.e.
peri-epithelial lymphocytes, PELs). For area ratios, we studied the ratio of
the patch that was ‘other’ tissue, dysplastic epithelium, and normal epi-
thelium.We used Shapiro-Wilk tests to check for normality in counts/areas
in each analyses. We then performed two-tail Mann-Whitney U tests (with
false discovery rate, FDR correction for multiple comparisons) between
patches from cases that ODYN correctly predicted to transform vs does not
transform, to determine statistical significance. We additionally calculated
effect sizes for these tests (rank-biserial correlation coefficient rrb).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
In this retrospective multi-centric study, we propose an innovative weakly
supervised method for predicting the progression of OED lesions to

malignancy. We additionally aimed to produce a model that classifies oral
tissue slides as being dysplastic vs non-dysplastic. We achieved this by
analysing H&E-stained WSIs obtained from oral tissue biopsies, using a
CNN, a Transformer and an MLP, in what we have called our Oral DYs-
plasia Network, 'ODYN' (see Fig. 1).

Dysplasia segmentation
In many cases of OED, histological atypia is not present across the entire
tissue section, and thus, the first step of this work was to identify only the
regions where dysplastic changes were present. We trained a Transformer
(basedonTrans-UNet22) todetect and segment the different dysplastic areas
in each WSI. Internal testing of the ODYN dysplasia segmentation model
demonstrated an F1-score of 0.81 (Recall = 0.85, Precision = 0.77) on OED
cases and a specificity of 1.00 on non-dysplastic controls. On external
testing, the ODYN model achieved a F1-score of 0.71 (Recall = 0.76, Pre-
cision = 0.66). Further, stain augmentation (ODYN-SA, in Supplementary
Information, Table S2) did not improve model performance. The results of
the ODYN model were superior to that of other state-of-the-art methods
including U-Net13, HoVer-Net+30,31, DeepLabV3+33, Efficient-UNet34, and
Swin-UNet25 (see Supplementary Information, Table S2). Examples of
dysplasia segmentation heatmaps are shown in Fig. 2.

OED classification
Next, we used a pretrained CNN, HoVer-Net+30,31, to simultaneously seg-
ment the epithelium and segment/classify nuclear instances in WSIs. For
OED classification, we calculate the proportion of the epithelium mask
(output fromHoVer-Net+) that was segmented as dysplastic (output from

Fig. 1 | Overview of the ODYN pipeline. The top left panel shows the study data,

whilst the top right panel shows an overview of the ODYN pipeline. The first stage

(bottom left) takes an input oral tissue WSI and segments various tissue/cell types.

This is done via HoVer-Net+ for epithelial and nuclei segmentation, and Trans-

UNet to locate the dysplastic areas of the slide. The second step (bottom middle)

diagnoses the input tissue as OED or normal by calculating the ratio of the

epithelium that is predicted to be dysplastic. If this is above a threshold (found on

model training), then the slide is classified as OED. Finally, the third stage (bottom

right) gives a prognosis, i.e. predicts whether the case will become cancerous. To do

this, we generate patch-level nuclear features within the dysplastic regions alone and

use these within a multi-layer perception (MLP) to predict malignant

transformation.
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the dysplasia segmentation Trans-UNet model). We used an empirically
determined threshold to classify slides as being dysplastic vs. non-dysplastic.
On internal testing, we achieved an F1-score of 0.96 (AUROC= 0.93, Recall
= 0.94, Precision = 0.97). The performance remained high on external
testing, gaining an F1-score = 0.96 (Recall = 0.93, Precision = 1.00), showing
the robustness and generalisability of the proposed method.

To further explore the variability of REpith, we analysed its distribution
across OED grades and transformation outcomes. Boxplots illustrating
these distributions can be seen in Fig. 3, providing additional insights into
how this threshold correlates with prognostic outcomes. Shapiro-Wilk tests
found the score to be not normally distributed across internal (p < 0.001)
and external (p = 0.01) testing. To compare these scores across cases, for
transformation status and binary grade, we used non-parametric Mann-
Whitney U tests with rank-biserial correlation coefficient rrb, as effect size.
For the WHO grade, we used Spearman’s corelation ρ, with p-values cal-
culated via permutation tests. Unless otherwise specified, all continuous
variables are reported as medians (M) with interquartile ranges (IQR).

On internal testing, we found the REpith to be significantly associated
with transformation (non-transformed: M= 0.26 (IQR = 0.17–0.35);
transformed: 0.39 (0.24–0.55); rrb = 0.34, p < 0.001), binary grade (low-risk:
0.24 (0.15–0.33); high-risk: 0.36 (0.26–0.52); rrb = 0.42, p < 0.001), and
WHO grade (ρ = 0.44, p < 0.001). Similarly on external testing, REpith was
significantly associated with transformation (non-transformed: 0.20
(0.15–0.32); transformed: 0.35 (0.22–0.45); rrb = 0.37, p = 0.001), binary
grade (low-risk: 0.19 (0.13–0.31); high-risk: 0.32 (0.18–0.44); rrb = 0.36,
p = 0.002), and WHO grade (ρ = 0.31, p < 0.001).

Malignant transformation prediction
Wegeneratedpatch-levelmorphological features in thedysplastic regionsof
OED cases, which were used as input to anMLP to calculate a risk-score for
malignancy progression (the ODYN-score). On internal cross-validation,
we attained an AUROC of 0.71 for predicting malignant transformation,
which remained relatively constant on external validation, rising to 0.73 (see
Table 1). These scores are competitive to existing clinical grading systems
including WHO (2017) and binary grades. However, it must be noted that
the binary grading system had a higher AUPRC of 0.72 when compared to
theODYN-score. For a complete evaluation, we also compared ourODYN-

score to the other grading systems througha survival analysis (see Fig. 4).On
internal testing, our ODYN-score gained a comparable C-index of 0.66 and
hazard ratio of 3.86, when compared to the other grading systems, and was
shown to be significant (p < 0.001). On external testing, the ODYN-score
(C-index = 0.63) again attained comparable performance to both the binary
grading system (C-index = 0.62) and WHO grading system (G1 stratifica-
tion; C-index = 0.61), with all three being significant. The ODYN-score
continues to surpass the WHO G2 stratification in terms of C-index and
hazard ratio on both internal and external testing. Overall, these results
show the prognostic significance and utility of the ODYN-score, being
comparable to that of a pathologist’s binary grade for predicting
transformation-free survival.

Feature analysis
For our feature analysis, we compared both nuclear counts and area ratio in
the top ten patches from cases that ODYN predicted to transform (i.e. true
positives, TPs) against those correctly predicted to not transform (i.e. true
negatives, TNs). This analysiswas performedon the external data alone, and
boxplots are given in the Supplementary Information, Fig. S2. The nuclear
counts andarea ratioswere found tonot benormallydistributedbyShapiro-
Wilk tests (all p < 0.001), and thus we used non-parametricMann-Whitney
U tests in the following analyses with a rank-biserial correlation coefficient
rrb effect size. Unless otherwise specified, all continuous variables are
reported as medians (M) with interquartile ranges (IQR).

The nuclear count analysis found a significantly higher number of
‘other’ nuclei within the non-epithelial tissue (TN: M = 56 (IQR = 24–104);
TP: 183 (93–254); rrb = 0.63, p < 0.001), in TPs when compared to TNs. It
also showed a significantly higher number of ‘other’ nuclei within the epi-
thelium (i.e. intra-epithelial lymphocytes, IELs) in TNs when compared to
TPs, however with a weak effect size (TN: 16 (8–29); TP: 8 (0–25);
rrb =−0.27, p < 0.001). It also displayed a significantly higher number of
both dysplastic epithelial nuclei (TN: 128 (85–163); TP: 29 (0–94);
rrb =−0.65, p < 0.001) and normal epithelial nuclei (TN: 39 (12–72); TP: 0
(0–17); rrb =−0.63, p < 0.001)within TNswhen compared to TPs. The area
ratio analysis found a significantly higher number of ‘other’ tissue in TPs
when compared to TNs (TN: 0.13 (0.03–0.32); TP: 0.63 (0.20–0.97);
rrb = 0.59, p < 0.001). Finally, it also showed a significantly higher number of

Fig. 2 | Dysplasia segmentation heatmap using the

ODYN model. a Severe OED (binary grade: high-

risk) which transformed; bMildOED (binary grade:

low-risk) which did not transform. The green line

depicts the ground truth dysplasia segmentation.
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both dysplastic epithelium (TN: 0.15 (0.05–0.26); TP: 0.04 (0.00–0.17);
rrb =−0.36, p < 0.001) and normal epithelium (TN: 0.36 (0.19–0.56); TP:
0.05 (0.00–0.36); rrb =−0.49, p < 0.001) within TNs compared to TPs.

Discussion
Several studies have explored the application ofmachine learning, including
DL, to study OED. The general focus of these methods has been to segment
the epithelium (and the nuclei), either manually or via DL models30,35,36.
These segmentations have then been used in further DL models to predict
grade or transformation31,35,37 or for pathologist-curated features based on
digital images38. However, no previous studies have fully integrated seg-
mentation of dysplastic regions into a unified pipeline to further classify
OED cases and predict their malignant transformation.

In this study, we introduce ODYN, a Transformer-based pipeline that
integrates OED segmentation, classification and malignant transformation
prediction into a single automated framework. Unlike previous studies,
which focus on individual tasks such as segmentation or transformation
prediction, ODYN combines these steps into a unified workflow. This
pipeline has been developed using the largest andmost diversemulticentric
OED dataset to date, digitised using six different scanners. The results
obtained through rigorous testing and validation demonstrate the effec-
tiveness of ourmodels in various aspects ofOED analysis.We highlight that
ODYN is the first model to specifically focus on dysplasia segmentation for
downstream prediction of malignant transformation, a key clinical out-
come in OED.

The ODYN dysplasia segmentation performance has consistently
outperformed other state-of-the-art DL models. We found only one other

study to attempt dysplasia segmentation in OED36. The authors used a
DeepLabV3+model and evaluated it at the patch level onmoderate/severe
cases from a single centre. Our study improved on this, using a new
Transformer-based architecture evaluated at the WSI-level on all types of
OED (mild,moderate and severe) frommultiple centres, gaining higher F1-
scores. Furthermore, the ODYN model has demonstrated good gen-
eralisability across external unseen datasets, indicating its robustness and
applicability in diverse clinical settings. This highlights the potential of
Transformer-based architectures in accurately delineating regions of dys-
plasia in H&E-stained WSIs of oral epithelial tissue and reinforces the
clinical value of ODYN’s unified pipeline. However, while non-dysplastic
controls were included in internal testing to comprehensively assess the
dysplasia detector’s performance, non-dysplastic control cases were una-
vailable for external testing, and we acknowledge this as a limitation of our
study. Despite this, ODYN’s ground-breaking approach has the potential to
redefine the landscape of OED diagnosis by providing more precise and
consistent results.

ODYN has also demonstrated promising results for OED classifica-
tion. In this study, we used the predicted dysplastic proportion of the epi-
thelium in aWSI to determine a diagnosis ofOED.We chose thismethod to
classify aWSI as dysplastic, rather than classifying aWSI as dysplastic solely
based on the presence of any predicted dysplasia. We made this choice
because our model predictions often included small areas of false positives.
This decision to define a threshold proved to be successful on both internal
and external testing. The high precision and recall achieved in classifying
OED indicate the potential for automated diagnosis, which has the potential
to increase diagnostic efficiency. Moreover, the dysplasia-epithelium ratio

Fig. 3 | The distribution of dysplasia-epithelium ratios acrossOEDcases based on

transformation and grade. Boxplots showing the distribution of dysplasia-

epithelium ratios in OED cases according to: transformation status (left), where

transforming cases are red and not transforming are cyan; binary grade (middle),

where low-risk cases are cyan and high-risk cases are red; and WHO grade (right),

wheremild cases are cyan,moderate orange, and severe are red. The top row (a) is for

internal testing and the bottom row (b) is for external testing.
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(REpith) showed strong correlations with clinically relevant outcomes,
includingOEDgrade and transformation status.This highlights its potential
not only as a diagnostic tool but also as a prognostic biomarker, further
underscoring the utility of ODYN in clinical practice.

The application of ODYN-produced segmentationmaps in predicting
malignant transformation represents a significant advancement in com-
putational pathology. Notably, this approach outperforms theOMTscoring
pipeline proposed by Shephard et al.31 with a substantial improvement in
AUROC score (see Supplementary Information, Table S3 for comparative
results). However, some comments must be made regarding model per-
formance on external testing. Despite the AUROC and AUPRC remaining
high forODYN, there was a substantial drop in C-index. This dropwas also
seen for theWHO and binary grades, suggesting that this may be attributed
to differences between internal and external datasets (i.e. a domain shift).An
analysis of the data used for external testing showed a substantially different
transformation-free survival rate for external centres. We see only 23% of
cases to transform on internal testing. In contrast, nearly 42% of cases
transformed in the external cohorts. This variation in the number of events
is a clear indication of a type II prior (domain) shift between internal and
external cohorts39 (see Supplementary Information, Fig. S3, for Kaplan-
Meier transformation-free survival curves), and is the clinical reality of
retrospective cohorts.

Further, on external validation, low-risk ODYN cases demonstrated a
22% malignant transformation rate, highlighting a potential limitation of
the model. While the ODYN-score primarily relies on cytonuclear features
of atypia, recent evidence suggests that architectural changes, often over-
looked in traditional dysplasia grading, play a critical role in predicting
malignant transformation40,41. These findings align with reports that lesions
with minimal cytonuclear atypia but significant architectural abnormalities
can carry a comparable risk of progression as those with pronounced
cytonuclear changes. Future models could be enhanced by incorporating
architectural features to improve prognostic accuracy.

The provided approach offers a significant level of explainability; a
crucial aspect for translating computational models to clinical practice.
Our model used morphological/spatial features within (and around)
dysplastic areas to generate a prediction, thus emulating the features used
by the pathologist in OED grading. Our feature analysis allowed the
exploration of different nuclear types within dysplastic vs normal epi-
thelium. These analyses showed, unsurprisingly perhaps, that more
dysplastic nuclei were present in the patches that were predicted to
transform (vs not transform). Corroborating this, they additionally
showed cases that were correctly predicted to not transform to have more
normal epithelial tissue (and nuclei). Moreover, cases that transformed
exhibited increased ‘other’ nuclei in the connective tissue. We posit that
this elevated density of ‘other’ nuclei around the epithelium within
transforming cases likely indicates the presence of peri-epithelial lym-
phocytes (PELs). Furthermore, emerging evidence from Bashir et al.35

highlights a higher density of PELs in cases undergoing malignant
transformation. These findings align with previous research, noting
increased immune cell infiltration in tongue lesions progressing to
OSCC42 and identifying distinct immune-related subtypes in moderate
and severe OED43.

We believe that the application of cutting-edge DL techniques, such as
the ODYN pipeline, has huge translational potential which could help
improve the accuracy andobjectivity ofOEDdiagnosis and grading. By fully
integrating segmentation, classification, and transformation prediction in a
single pipeline, ODYN simplifies clinical workflows while providing robust
results. In addition to this, AI-based pipelines can improve prognostic
reliability for prediction of cancer risk to improve patient outcomes. Future
research should explore the scalability of theODYNmodel to accommodate
a broader range of oral conditions (such as those which can mimic OED)
and tissue variations to assess whether it can accurately discriminate OED
from other similar appearing conditions whilst still accurately predicting
malignancy risk. This will enhance the clinical utility of the model and
ultimately help provide more personalised patient care.T
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Fig. 4 | Kaplan-Meier transformation-free survival curves. Internal testing is on

the left and external testing is on the right. The top row (a, b) isWHO grade G1 (i.e.

Mild vs Moderate/Severe OED), second row (c, d) is WHO grade G2 (i.e. Mild/

Moderate vs Severe OED), followed by the Binary grade (e, f) and the ODYN-score

(g, h). Confidence intervals supplied are generated by the standard deviation of the

model output over repeated runs of the experiment. All cases are right censored at

eight years (96 months).
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The authors acknowledge challenges and opportunities for future
research based on this study. A potential challenge highlighted by this work
is the need to address the interpretability of DL models in clinical practice.
We have therefore used an interpretable model for transformation predic-
tion that considers known histological features (e.g. shape and size varia-
tions of nuclei) to generate predictions from dysplastic ROIs. We provide
heatmaps for each slide to help explain model decisions. We believe such
approaches can enhance trust and acceptance amongst healthcare
professionals.

We acknowledge that strict inclusion criteria were necessary to ensure
data quality and reliability for model training. However, we recognise that
this approachmay limit immediate clinical translation. Future validation in
larger and more heterogeneous datasets, including cases with minor arte-
facts is required. Future work could also explore the incorporation of
automated methods to identify and manage such issues, potentially redu-
cing attritionwhile preserving data quality. These steps will help address the
balance between ensuring robust model training and achieving broader
clinical applicability.

The authors additionally acknowledge limitations related to the ret-
rospective nature of the study. It would have been of interest to further
explore themodel performance for predictingOEDrecurrence.However, as
there is no standardised treatment protocol for OED, there may have been
variations in patient management between centres, and it is also difficult to
reliably know the difference between true recurrence and field change. We
wouldhave additionally liked to incorporate social risk factors (e.g. smoking,
alcohol consumption) in the multivariable modelling, however, it was not
possible to acquire consistent information between the different centres.
These issues could be addressed by a future prospective validation study.
Despite this, the external validation of our models across multiple centres
and scanners is a notable strength of this study. Future research could
explore the application of ODYN in evenmore diverse clinical settings and
expand its utility to other histopathological tasks beyondOEDanalysis.We
suggest testing the method on other head and neck precancerous lesions,
such as laryngeal dysplasia, as an interesting future direction of research.

In conclusion, our study signifies a substantial leap forward in the field
of digital oral pathology, offering a powerful tool inODYNfor the detection,
segmentation, and classification of OED, which we have made publicly
available. This technology, underpinned by DL and Transformer-based
architectures, showcases the potential of computational pathology to
revolutionise the diagnosis and management of OED. The model’s excep-
tional performance in both internal and external testing, along with its
ability to improve transformation prediction, underscores its potential to
impact clinical practice positively. By addressing challenges and continuing
to refine the model, we envision ODYN playing an important role in
improving the diagnosis and management of OED and potentially other
head and neck precancerous lesions in the future.

Data availability
We are unable to share the whole slide images and clinical data due to
restrictions in the ethics applications. The source data for Fig. 3 is found
within Supplementary Data 1, and for Fig. 4 is in Supplementary Data 2.

Code availability
In the spirit of reproducibility, we have made the inference code for our
pipeline available online, with model weights44.
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