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The combined effect of axial stretching and cross‑
stream diffusion on the downstream transport of
solute is termed Taylor dispersion. The dispersion
of active suspensions is qualitatively distinct: vis‑
cous and external torques can establish non‑uniform
concentration fields with weighted access to shear,
modifying mean drift and effective diffusivity. It
would be advantageous to fine‑tune the dispersion
for systems such as bioreactors, where mixing or
particle separation can improve efficacy. Here, we
investigate the dispersion of active suspensions in
a vertical channel driven by an oscillatory pressure
gradient—Womersley flow—using gyrotactic swim‑
mers (bottom‑heavy cells subject to viscous torques).
Preliminary experimental results reveal interesting
dispersion phenomena that are highly dependent
on the oscillation parameters, motivating theoretical
investigation. Employing Lagrangian simulations, we
find that oscillatory flows can induce drift and increase
lateral and downstream dispersion, with periodic
mixing between left and right sides. Such flows
can also be used to separate species with different
motile behaviour. Eulerian numerical schemes typi‑
cally require an approach to averaging in orientational
space, such as generalized Taylor dispersion (GTD),
with assumptions on translational and rotational time
scales. For an oscillatory time scale commensurate
with cell dynamics, we reveal the limitations of
such approximations, beyond which the averaging
techniques collapse.
This article is part of the theme issue ‘Biological fluid

dynamics: emerging directions’.

© 2025 The Authors. Published by the Royal Society under the terms of
the Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and source
are credited.
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1. Introduction
Passive tracers in shear flow have a greater effective diffusivity, De′, than mass diffusivity alone,
due to the combined effect of downstream advection and diffusion across streamlines, a phe‑
nomenon known as Taylor dispersion [1]. Given a channel or tube of half‑width R′, mean flow
speed U′ and mass diffusivity D′ it can be shown that De′ =D′(1 + KPé2), where Pé=U′R′∕D′

is the Péclet number and K represents the scale of enhancement and is affected by geometric
parameters of the system [1,2].
Replacing passive particles with biased active particles, such as swimming bacteria and mi‑

croalgae, changes the physical system in a non‑trivialmanner. For example, somemicroalgae tend
to swim upwards, called gravitaxis, or focus at the centre of downwelling flow in response to a
combination of viscous and gravitational/sedimentary torques on the typically bottom‑heavy or
asymmetric cells, termed gyrotaxis [3]. There are a variety of other taxes that can lead to accumula‑
tion of active particles in flow [4]. This orientational bias inmotility provides dispersion behaviour
that is qualitatively distinct from that of tracers: active particles drift relative to themean flow and
their effective diffusivity is strongly dependent on the heterogeneous cell concentration relative
to the shear flow gradient [5].
Understanding the collective effect of biasedmotility on dispersion is relevant for systems such

as bioreactors that contain active bacteria or the biflagellate microalgae Chlamydomonas reinhardtii
and Dunaliella salina [6], utilized to produce materials such as biodiesel and 𝛽‑carotene. These or‑
ganisms are placed in nutrient‑rich fluids and may be exposed to light or chemical gradients to
drive population growth or illicit particular behaviour. Closed‑channel bioreactors are preferable
to reduce the risk of contamination compared with open‑channel designs [7], but there is a need
for recirculation to prevent accumulation of microorganisms in certain parts of the channel [8].
This can be relatively expensive for low‑value products [9,10]. Theoretical dispersion results are
helpful in understanding and eliminating unwanted behaviour, such as biofilm formation [11].
Oscillatory flows in channels are ubiquitous in natural environments at a variety of scales,

from cardiovascular to tidal systems. Periodic changes of shear direction enhance the diffusion
of passive particles [12], and can be used to separate gases [13] and enhance heat transfer [14]. At
low oscillation frequencies, flow profiles are reminiscent of Poiseuille flow, but higher frequen‑
cies provide a delay due to finite viscosity [15], such that the flow near the centre reverses before
feeling the effect of the walls from the diffusion of vorticity. Such flows are characterized by the
Womersley number, measuring the flow oscillations relative to viscous dissipation. It is given
by Wo=R′

√
𝛺′∕𝜈′, where 𝛺′ is the angular frequency of the oscillatory flow, 𝜇′ and 𝜈′ = 𝜇′∕𝜌′

are the dynamic and kinematic viscosities, respectively, and 𝜌′ is the fluid density. Another key
parameter is the Schmidt number, Sc= 𝜈′∕D′, the ratio of viscosity to mass diffusivity.
To date, the literature on dispersion in oscillatory flows has focused exclusively on passive

particles [12,16,17]. These studies compute the time‑dependent velocity and concentration pro‑
files in various geometries to evaluate the long‑time dispersion and investigate the transient
behaviour of the first few oscillations. Diffusion is enhanced near the wall after just a half‑cycle
of the flow, and the oscillation frequency of the time‑varying dispersion is twice the oscillation
frequency of the pressure gradient. The studies also report crossover frequencies, in which gases
with seemingly different diffusivities are transported at the same rate: geometric parameters and
the oscillation frequency can be tuned to maximize dispersion [18,19]. Importantly, as the net
flow averages to zero, a distribution of passive particles exhibits zero net drift. Recent literature
addresses oscillatory dispersion in curved [20] and annular channels [21], oscillatory dispersion
in a non‑Newtonian Casson fluid [22] and oscillatory heat dispersion with leaky boundaries [23].
Motivated by the benefits of oscillatory flows on the dispersion of passive particles, it is natural

to wonder whether there are useful applications of oscillatory flows in active suspensions as the
combination of reorientation and motility in time‑dependent shear flows can result in complex
trajectories. Measurements of the swimming trajectories of helically swimming active particles
(motileD. salina) in oscillatory linear shear flows revealed complex resonance effects that can limit
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Figure 1. (a) Schematic of the experimental set-up (side-view; seemain text). (b–i) An experiment withWo 3.58= at regular
times within two periods of the oscillatory flow, starting before the upwelling flow: (b) 𝜏p = 0, (c) 𝜏p = 𝜋∕2, (d) 𝜏p = 𝜋,
(e) 𝜏p = 3𝜋∕2, (f) 𝜏p = 0, (g) 𝜏p = 𝜋∕2, (h) 𝜏p = 𝜋 and (i) 𝜏p = 3𝜋∕2. The mean cell position drifts upwards in this
instance, with an axisymmetric cell distribution halfway between the tube walls and the central region. (j–m) The transient
behaviour for an experiment with a complex initial condition for Wo 4.52= at various complete periods of the oscillatory flow:
(j) initial distribution, (k) one period, (l) three periods and (m) six periods. The cells diffuse in the axial direction, smearing out
the initial distribution and focusing cells nearer the centre. In this case, the mean drift is downwards.

swimming progress in the plane of the shear, leading to directed motion [24]. Analysis of the dy‑
namics revealed two important non‑dimensional quantities: 𝛤, the dimensionless shear rate, and
𝛺, the driving to intrinsic frequency ratio. While there were clear resonance effects between the
amplitude of the shear via Γ and shear‑driven Jeffrey orbits for ballistic swimmers, resonance
in shear frequency via 𝛺 was only apparent for helical swimmers, which exhibit an additional
intrinsic frequency in their trajectory. Swimming behaviour coupled with more complex flows
can lead to a range of ecologically relevant phenomena, such as gyrotactic microswimmers in
travelling surface water waves resulting in sub‑surface shear trapping [25].
This article mostly describes a theoretical study, but for motivation, we provide some prelim‑

inary experimental observations on the effect of upwelling–downwelling oscillatory flows in a
channel on the dispersion of a suspension of gyrotactic swimming algae (figure 1). The biased
swimming algae respond to the flow, focusing and defocusing, and disperse in a manner qualita‑
tively dissimilar to passive tracers. In particular, the mean position of the cell distribution moves
up or down, depending on the driving frequency and amplitude of the flow. Neutrally buoyant
passive tracers diffuse but do not drift.
To establish a theoretical understanding of the system, one can use a continuum or individual‑

based description of the cells. A complete continuum model would consist of a probabilistic
formulation for coupled spatial‑orientational aspects [26]. However, such combined descriptions
are at present difficult to deal with. An alternative and widely used approach to determine
the dispersion of active particle suspensions in a tube [5,11,27,28], is to solve an appropriate
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(phenomenological) advection–diffusion equation for the cell concentration, n′, given by

𝜕n′

𝜕t′
=−∇ ⋅

[
(u′ + Vs′q)n′ −D′ ⋅∇n′

]
, (1.1)

where u′ is the fluid velocity, V s′ is the mean swimming velocity, q is the mean cell orientation
andD′ is the swimming diffusion tensor. The first term on the right‑hand side describes advection
by the flow, the second the mean swimming relative to the flow and the third the non‑isotropic
diffusion due to the distribution of cell swimming trajectories in a flow gradient. Of course, it is
then necessary to provide a coherent model for q and D′ as a function of the flow gradient, ∇u′

to complete the system. Generalized Taylor dispersion (GTD; Taylor dispersion applied to orien‑
tational space) theory for gyrotactic swimming cells in a linear shear flow [29] has been applied
to this end, the solutions of which are used for q andD′ in equation (1.1). However, there are sig‑
nificant disadvantages of this approach in the oscillatory flow regime, particularly with regard to
assumptions on the relative size of temporal and spatial scales. Systems without oscillatory flows
are described in terms of a flow time scale R′∕U′ or swimming time scale R′2d′r∕V s′

2, where d′r is
the rotational diffusivity. In general for these systems, the swimming time scale is much less than
the flow time scale.With the oscillating flow, the oscillation time scale is 1∕𝛺′. Aswe demonstrate,
the GTD approach breaks down if the flow varies on a time scale commensurate with or smaller
than that of the reorientation of the cells and/or if spatial flow gradients vary on a scale that is
smaller than the spatial scale of cell translation over these times.
Even if it is possible to establish a suitable continuum description (see [26]) that can deal with

the appropriate time scales and complex interactions of swimmers at boundaries, we face dis‑
tinct computational issues in attempting to find numerical approximations for the oscillatory
dispersion regime except for a limited range of Womersley numbers. Therefore, much of the
investigation in this article attempts to set the groundwork of expectations of the experimental
observations using a Lagrangian‑based approach, which is much more suited to this problem. In
addition, we probe the regions of applicability and practical limitations of computing solutions
for the continuum approach, revealing that low Wo simulations are computationally expensive
and large Wo simulations collapse because of the breakdown of the GTD.
The results from this study demonstrate how one can control the axial and lateral dispersion

patterns by tuning parameters, particularly theWomersley number. In addition, we find that par‑
ticles placed exclusively on the left and right halves of the channel can be mixed in an unusual
dance in the oscillating flow. Unlike in the case of passive particles where the mean drift is zero,
here, we observe non‑zero drift directly due to biased motility but in a non‑obvious manner. The
excess drift can be exploited to separate cells with differentmotilities. Comparing the solutions for
the continuum‑based description and individual‑based models, we see the descriptions match‑
ing for a small range of Womersley numbers: there is an expected breakdown of the continuum
approach at large Wo but also computational difficulties arise for fixed Pé at small Wo.
In §2, we provide an outline of some preliminary experimental observations, as motivation

for the numerical studies. We then describe the oscillatory flow field and the Lagrangian and Eu‑
lerian models, including a novel two‑dimensional solution of the GTD description in appendix
A and the various numerical approaches employed. The following section describes the results
from the numerical simulations, including a demonstration of the relative separation of passive
particles and two species with different gyrotactic strengths. We explain the limitations of the
continuum‑based solutions through comparisons of results with those from the individual‑based
model, before reflecting on our results in the discussion.

2. Preliminary experimental observations
The experimental set‑up is displayed in figure 1a. Oscillatory flow is generated by aHarvard PHD
ULTRA 70‑3006 programmable syringe pump, connected via stiff tubing to a Plexiglass tube of
7 mm inner diameter. The set‑up, including the syringe pump, is aligned vertically to generate
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upwelling–downwelling oscillatory flow. The camera (ELP IF‑USB4KCAM30H‑CFV) records a
region sufficiently far from the ends to ensure a fully developed flow. The tube is placed inside a
water‑filled reservoir filled to minimize optical aberrations from the edges of the cylindrical tube
(similar to [30] for bioconvection in a horizontal tube). Initially, the tube contains media in the ab‑
sence of algae. The algal suspension is introduced as a blob from an opening at the side of the tube
via a second syringe at a concentration of approximately 105 cells cm−3. We use the microalgaeD.
salina from Culture Collection of Algae & Protozoa (product code CCAP 19/18). The microalgae
are cultivated for 2−3 weeks on modified Pick’s media under a 16:8 light:dark cycle at 21◦C prior
to experiments. A filtering process with a sterile piece of cotton (cells swim up through the cotton)
provides control of the cell concentration [28]. To prevent phototaxis, the laboratory is kept dark
during the experiments except for a red LED light source (Advanced Illumination) behind the
apparatus (figure 1a; see [31]). The images are captured using MATLAB (image acquisition tool‑
box) and processed with ImageJ software to enhance contrast. The syringe pump operates with
prescribed fluid flux with a periodic square wave, providing distinct infusion and withdrawal
phases. Upon releasing the microalgae, the syringe pump operates for 50 periods.
Even though the pulsatile flow profile at low Wo should be similar to Poiseuille flow, the full

two‑way coupled interaction between fluid flow and microswimmer cell concentration can in‑
duce flows due to their negative buoyancy, particularly when they accumulate in regions of the
flow, and the space‑dependent vorticity leads to focusing (see [4,32]). For simple Poiseuille flow,
imposed fluid pressure determines fluid flux, but for two‑way coupled microswimmer suspen‑
sions, there is a distinct qualitative difference between pressure and flux‑driven flows, allowing
access to different solution branches [33]. One might attempt to avoid secondary flow structures
by following [28], fluorescently dyeing some of the negatively buoyant cells in an existing plume
structure in a vertical tube, but it is difficult to add dyed cells to a well‑developed distribution
in this oscillatory case. In this initial study, we inject a dilute suspension of cells into media in a
vertical tube and image the cells directly, without the need for dye.
Two examples of experiments are presented in figure 1. The first, in (b)–(i), provides eight

images of a carefully initiated long‑time distribution of vigorously swimming cells over two com‑
plete flow oscillation periods forWo= 3.58 (R′ = 3.5mm; the properties of themedia are similar to
water: 𝜌′ ≈ 1050 kgm−3, 𝜇′ ≈ 0.001Pa s; pumping rate of 15 mlmin−1; pumping/withdrawal vol‑
ume set to 0.785 ml). The time instances displayed are expressed in terms of non‑dimensional
period measure 𝜏p =

mod (t′,T′)
T′

2𝜋, where T′ is the period of oscillation. Under no‑flow conditions
with no boundaries, the cells swim upwards on average. However, for downwelling (upwelling)
flow cells tend to swim towards the centre (to the walls) of the tube in response to gravitational
and viscous torques. When the flow oscillates with period commensurate with the time scale for
reorientation (for this value of Wo, inducing a flatter flow profile) the cells accumulate with a dy‑
namically evolving axisymmetric distribution at an intermediate distance between the centre of
the tube and its walls. The blob of cells persists but drifts upwards, reminiscent of a swimming
jellyfish. In contrast, we observe in figure 1j–m the transient behaviour of cells injected into the
flow for Wo = 4.52. As before, the distribution moves up and down with the flow, but the im‑
ages in figure 1 are presented at integer multiples of the flow period. For this slightly larger Wo
(larger frequency), the initially complex distribution diffuses and the cells, which are observed to
be not as sprightly, descend by focusing into a plume. (Videos for both experiments are provided
in electronic supplementary material, S1 and S2.)
Such qualitative differences in cell distributions and dispersion in response to small flow

frequency variations and/or swimming speeds motivate us to explore the system theoretically.
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3. Governing equations

(a) Oscillatory flow field
Consider a vertically aligned channel ofwidth 2R′, with centreline along the x‑axis and gravity act‑
ing in the positive x‑direction, containing a dilute suspension of non‑interacting gyrotactic active
particles. Initially, the particles are uniformly distributed across the channel. The two‑dimensional
flow field u′ = [u′ v′]T, where T and ′ indicate transpose and dimensional quantities, respectively,
is governed by the Navier–Stokes equations and driven by an oscillatory pressure gradient dp

′

dx′
,

such that

𝜕u′
𝜕t′

+
(
u′ ⋅∇

)
u′ = −1

𝜌′
∇p′ + 𝜈′∇2u′ and

dp′

dx′
=ℜ

{
p′a exp

(
iΩ′t′

)}
. (3.1)

Here, p′a is the amplitude andℜ indicates the real part. There is no lateral flow, v′ = 0, and, with
a length scale R′ and time scale 1∕Ω′, we can non‑dimensionalize the governing equation as

uyy −
R′2𝛺′

𝜈′
u𝜏 =ℜ{exp(i𝜏)}, (3.2)

where u= u′𝜇′∕(p′aR′), 𝜏 =𝛺′t′ and Wo=
√
R′2𝛺′∕𝜈′. The terms without primes are non‑

dimensional. No‑slip boundary conditions are imposed, u(±1) = 0, giving the textbook solution

u(y, 𝜏) =ℜ

⎧
⎨⎩

1
iWo2

⎛⎜⎝
cosh(Wo

√
iy)

cosh(Wo
√
i)

− 1
⎞⎟⎠ exp(i𝜏)

⎫
⎬⎭
, (3.3)

which diminishes with increasing Wo. In line with the earlier literature, we scale u with a factor

K= 1∕⟨u⟩, where ⟨u⟩=√
1∕(4𝜋)∫2𝜋0 ∫1−1 u2dyd𝜏 is the root‑mean‑square velocity [34], allowing a

Péclet number to be defined based on ⟨u⟩ (see §§3b and 4b).
(b) Lagrangian description
For individual‑based simulations, we compute the dynamics for the position x′t′ and orientation
𝜃t′ for each particle j= 0, 1, 2...N, where t′ indicates the time. The orientation angle 𝜃t′ is defined
relative to the y‑axis, providing the normalized orientation vector p̂= [sin(𝜃t′ ) cos(𝜃t′ )]T. The par‑
ticles are assumed to occupy no volume and hydrodynamic interactions are neglected under the
dilute assumption. The change in the position and orientation of particle j, denoted by dx′jt′ and
d𝜃jt′ , is governed by [3,11,33]

dx′jt′ = u
′(x′jt′ , t

′)dt′ + V s′p̂jt′dt
′, (3.4)

d𝜃jt′ = ( 1
2B′

cos(𝜃) + 1
2𝜔

′
z(x

′j
t′ , t

′))dt′ +√
2d′rdWt′ , (3.5)

where B′ is the gyrotactic reorientation time, 𝜔z is the z‑component of the vorticity field andWt′

is a Wiener process representing rotational Brownian motion. The amplitude of the noise,
√
2d′r,

ensures a rotational diffusivity of d′r [11].
We follow a cell‑based scaling with a time scale R′2d′r∕V s′

2 and length scale R′. In the nu‑
merical implementation, m represents the index for time steps with 0≤m≤M − 1, where the
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dimensionless simulation duration tf is split into M intervals. Equations (3.4) and (3.5) become

𝛥xjm = PeR u
(
xjm, t

)
𝛥t + 𝛽Rp̂

j
m𝛥t, (3.6)

𝛥𝜃
j
m = ( 1

2B cos
(
𝜃
j
m
)
+
1
2𝜔z

(
xjm, tm

))𝛥t +√
2𝛽R𝛥W, (3.7)

respectively, where 𝛥W=Wm+1 −Wm represents independent and identically distributed ran‑
dom variables with an expected value of zero and variance of 𝛥t, following the Euler–Maruyama
scheme. The non‑dimensional flow and swimming Péclet numbers are

Pé R =
⟨
u′
⟩
R′d′r
Vs′2

and 𝛽R =
R′d′r
Vs′

, (3.8)

respectively, where ⟨u′⟩ is the root‑mean‑square amplitude of the fluid velocity (subscript R in‑
dicates d′r‑based scaling). The non‑dimensional reorientation rate is B= B′d′r∕𝛽2R. One could also
follow aflow‑based scaling: appendixA.1 describes the relationship between scalings, fromwhich
we obtain 𝜏 = tWo2Sc allowing the use of equation (3.3) in our individual‑based model. The par‑
ticles are confined between y=±1. If particle j attempts to cross the boundary, it is specularly
reflected [26,35] back to the domain by setting

yjnew = sgn
(
yj
) (
2 − ||||yj||||) and 𝜃

j
new =mod

(
−𝜃j + 𝜋, 2𝜋

)
. (3.9)

(c) Eulerian description
The governing equation for the non‑dimensional concentration, n, is written as

𝜕n
𝜕t

=−∇ ⋅ J, where J= n
(
Pé Du + 𝛽Dq

)
−D ⋅∇n, (3.10)

where J is the spatial cell flux, and we have the non‑dimensional numbers

Ре́ D =
⟨
u′
⟩
R′

D′
, 𝛽D =

Vs′R′
D′

, (3.11)

based on spatial diffusion scale D′(=Vs′2∕d′r). No‑flux conditions are applied at boundaries:

n ⋅ (𝛽Dqn −D ⋅
𝜕n
𝜕y)= 0 on y=±1, (3.12)

where n is the boundary unit normal. We follow Bearon et al.’s [27] approach for gyrotactic
swimmers, where closed‑form expressions are formulated for the diffusion tensor D and aver‑
age swimming direction q based on GTD for cells dispersing in a linear shear flow. Here, we
derive and use equivalent expressions for D and q in a two‑dimensional channel (see appendix
A.2).We prefer 1∕Ω′ as the time scale to reduce the computational cost. The C++ library oomph-lib
is employed to solve equation (3.10) in an axially periodic box with the boundary conditions of
equation (3.12) [36] based on advection–diffusion equations with adaptive Lagrangian quadratic
elements and time stepping (as in earlier studies on dispersion of active suspensions [27,35,37]).
Time derivatives are approximated by a backward‑difference scheme based on two previous time
steps. Fluid flow is introduced as a wind function while the swimming of the organisms is rep‑
resented as a conservative wind function. Methods are adapted to accommodate time‑dependent
shear (affecting swimming and diffusion terms) and flow velocity.
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Figure 2. (a) Comparison of individual-based passive particle simulations with results from Lee et al. [34]. Concentration
distributions of gyrotactic Chlamydomonas augustae cells in (b) downwelling, (c) upwelling and (d–g) oscillating flows (Wo
= 0.106): (d) is at time 𝜏p = 0, (e) is at time 𝜏p = 𝜋∕2, (f) is at time 𝜏p = 𝜋 and (g) is at time 𝜏p = 3𝜋∕2. Dashed lines
indicate velocity fields at given𝜏p (scaled up and offset for visibility). (h) Long-time axial distributions of passive and gyrotactic
particles subject to oscillatory flows, Wo= 0.277.

4. Results

(a) Validation of Lagrangian simulation
We start by providing a brief validation of our individual‑based model with the results from Lee
et al. [34], where the dispersion of passive particles under oscillating flowswas studied. Following
their formulation with a simple spatial diffusivity, the change in position is expressed as

𝛥xjm = Pé Ru
(
xjm, t

)
𝛥t +

√
2D𝛥W, (4.1)

where D is set to unity to compare with Lee et al. [34]. We also take PéR = 12.8 and Sc= 10 based
on the same study. The measure D∗2D is a period‑averaged diffusivity defined by

D∗2D =
1
2𝜋

∫
𝜏p=2𝜋

𝜏p=0
De∗𝜕𝜏p, (4.2)

where De∗ is the effective axial diffusion, evaluated from variance V in the x‑direction with
De∗(t) = 1

2
(V(t) − V(tm))∕(t − tm), where tm refers to an end‑of‑period halfway through the sim‑

ulation (avoiding transients). If the number of periods is even, tm = tf∕2, otherwise tm is rounded
down to the nearest end‑of‑period. The time span t − tm is sufficiently long tominimize stochastic‑
ity and ensure convergence. The integral in equation (4.2) ranges from t= tf − T to t= tf in particle‑
based scaling. The results in figure 2a (varying Wo2) demonstrate that the individual‑based
simulations replicate results in [34].

(b) Cell distributions
We begin by examining the effects of biased motility on dispersion with individual‑based sim‑
ulations, based on equations (3.6) and (3.7) [38]. We simulate strongly gyrotactic C. augustae
(sometimes referred to as C. nivalis, see [30]; C. augustae has a large B′ and small d′r, see table 1
for the simulation parameters). Initially, the particles are uniformly distributed across the chan‑
nel at x= 0 with a uniform orientation distribution. In the absence of any flow, the cells would
exhibit negative gravitaxis. The flow advects the particles and alters their orientation due to gyro‑
taxis, resulting in inhomogeneous cross‑channel distributions. Long‑time distributions in purely
downwelling (figure 2b) and upwelling flows (figure 2c) are plotted alongside the distributions
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Table 1. Parameters for the individual-based simulations. Bold indicates base values.

parameter PéR Sc N 𝚫t
value 1, 12.8 , 50 16.8 5000 T∕80 if Wo≥ 1

T∕400 if Wo 1

parameter B[s] dr[1∕s] tf(≥) 𝜷R

value 0.3 for strongly gyrotactic
sp.

0.1 for strongly gyrotactic
sp.

1500 0.1 (C. augustae)

3.4 for C. augustae 0.067 for C. augustae 1 (general)

10.5 for D. salina 0.23 for D. salina 5 (C. augustae)

for an oscillatory flowwithWo = 0.106 at key 𝜏p values (figure 2d–g). A purely downwelling (up‑
welling) flow causes migration towards the centre (boundaries) of the channel. Introducing an
oscillatory flow field leads to something in‑between; the particles move towards the boundaries
during upwelling periods but then the flow direction reverses and the cells migrate towards the
centre of the channel. Even though the cells swim upwards on average (associated with nega‑
tive gravitaxis), the particles can drift downwards on average; the fluid velocity is higher at the
centre of the channel and the particles accumulate at the centre of the channel during the down‑
welling phase. As the particles occupy regions with high shear amplitudes between upwelling
and downwelling flows, axial dispersion may also be enhanced. In figure 2h, we compare the ax‑
ial distribution of passive and active particles for an oscillatory flow with Wo = 0.277 at t= tf (i.e.
𝜏p = 0). The passive particles exhibit a Gaussian distribution centred around x= 0 while the gyro‑
tactic particles drift downwards and generally retain a Gaussian distribution with rate‑of‑change
of variance depending on gyrotactic strength.
With the focusing mainly governed by the strength of the gyrotactic bias, one can exploit the

mechanism to separate cells with different biases. Figure 3a shows how the cell distributions
evolve over time for the same Wo = 0.106. We plot the distributions for three cell species: weakly
gyrotactic D. salina (red), strongly gyrotactic C. augustae (black) and another model species with
even stronger gyrotactic bias for investigative purposes (blue), with motility parameters listed
in table 1 (but note that the first two species normally require quite different media). Initial con‑
ditions are as above. Over time, the species separate, due in part to how long they occupy the
fast‑moving regions of the flow. Figure 3c(v)–(viii) shows how the cell distributions changewithin
a period of oscillation at long times. C. augustae and strongly gyrotactic cells focus and defocus,
sampling the faster moving part of the fluid and thus drifting away from D. salina, which remain
broadly spread across the channel. This separation mechanism is non‑invasive, and it holds great
potential to separate active particles from passive particles, or swimming from non‑swimming.
The above results set the scene for what we may expect for the effect of upwelling and down‑

welling phases of the flow on the cells, yet wewill see that the results are highly dependent onWo.
Figure 3b–g show the key moments in a period at long times (tf ≥ 1500) for several values of Wo
(see electronic supplementary material, S3 for an animation of the trajectories for different Wo).
The value PéR = 12.8 is kept constant by scaling uwith the factor K. At a small value of Wo= 0.07,
the particles except for D. salina exhibit separation and regrouping (figure 3b(i)–(iv)). The focus‑
ing at the centre is slightly weaker than that for Wo= 0.106 (figure 3b(i)–(iv)). WhenWo increases
to 0.211 only strongly gyrotactic cells exhibit focusing, and they remain spread across the chan‑
nel during the upwelling phase (figure 3d(i)–(iv)). The reduction in particle focusing means that
they do not all occupy high‑velocity regions, so the mean rate that they drift in the x‑direction
decreases. This decrease is most dramatic for the strongly gyrotactic cells. The reduced oscillation
period also limits axial diffusion.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

7
 S

ep
te

m
b
er

 2
0
2
5
 



10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240259

.........................................................................................................................

Figure 3. Distributions of C. augustae (black), D. salina (red) and strongly gyrotactic (blue, see text) particles under oscilla-
tory flow (channels rotated𝜋∕2 anticlockwise). Row (a) gives distributions with Wo= 0.106 at a given end-of-period, with
columns (i)–(iv) indicating periods 0, 12, 24 and 35, respectively. Rows (b–g) give the distributions during one period at long
times for (a) Wo= 0.07, (b) Wo= 0.106, (c) Wo= 0.211, (d) Wo= 0.481, (e) Wo= 0.634 and (f) Wo= 5.00. Columns
(v)–(viii) are for times𝜏p = 0,𝜋∕2,𝜋 and 3𝜋∕2, respectively. Themagenta curves indicate the instantaneous velocity fields
(×20; offset by 11000). Coloured symbols indicate themean of C. augustae and symbols are matched with datapoints in figure
4.

Figure 4. Long-timemeasures of (a–c) excess drift, (d–f) axial dispersion and (g–i) mixing time (see text) with respect toWo
in individual-based simulations. Plots (a), (d) and (g) show the values for different species (see legend in (d)). Plots (b), (e) and
(h) show the values for different𝛽R (see legend in (e)). Plots (c), (f) and (i) show the values for different PéR (see legend in (f)).
The black curves in all plots represent the default configuration for C. augustae (see table 1 for parameters). The coloured sym-
bols on the black curves indicate critical points and match the cases in figure 3. Inset (A) plots the separation velocity between
C. augustae and D. salina. Inset (B) shows the excess drift with respect to𝛽R at Wo= 0.106 for C. augustae.

(c) Dispersion characteristics
The long‑time excess drift of the cell distributions is defined by Ue =

(
xc(tf) − xc(tl)

)
∕
(
tf − tl

)
,

where xc denotes the axial position of the centre‑of‑mass of the particles, and tl and tf > tl are long
times separated by an integer number of periods, evaluated at the end point of a period to remove
within‑period fluctuations. Here, we choose five periods to reduce the effect of noise. Figure 4a–c
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plot Ue with respect to Wo for different cells and 𝛽R and PéR values. Black curves in figure 4a–i
are for the base configuration for C. augustae, see the values in bold in table 1 for the complete set
of parameters. Below we summarize our findings:

— For C. augustae and the range of Wo explored, Ue has a maximum at Wo = 0.106 (green
square in figure 4a–c, patterns in figure 3b) but mainly decreases with increasing Wo.
The long downwelling phases for small Wo focus the cells at the centre, leading them
to drift downwards at the maximum flow rate for half the oscillation period and they
accumulate at the walls and do not drift upwards for the other half. Strongly gravitac‑
tic particles do not accumulate in the centre and at walls as much and, therefore, have
smaller drift.

— Ue decreases and becomes negative beyond Wo= 0.481 for C. augustae (blue triangles in
figure 4a–c, patterns in figure 3d). The drift velocity settles around a value of −0.7 for
Wo > 5.00 (green triangles in figure 4a–c, patterns in figure 3f). As a large Wo number
corresponds to fast oscillating plug flow, the net effect of the flow disappears and what
remains is the biased (upwards) motility of the particles, gravitaxis.

— Figure 4a plots Ues, the difference between the drift of C. augustae and D. salina. Depend‑
ing on Wo, C. augustae can drift relative to D. salina either during the downwelling or
upwelling periods. In addition, one can use this mechanism to mix cells that initially
are separated. Similarly to the crossover frequencies for gases with different diffusivities
[19], here we find Ues ≈ 0 when Wo= 0.383.

— For small 𝛽R (figure 4b), the particles move relatively slowly, so Ue approaches the zero
net advection of the flow. When 𝛽R is large, the particles swim faster but with more ori‑
entational noise (see equation (3.7)). If in additionWo is small thenUe becomes negative
as the cells can swim upwards against the downwelling phase of the flow. As Wo in‑
creases, larger fluid velocities lead the cells to focus and drift downwards (positive Ue).
As before, for even largerWo, we have a central region of plug flow, the advective effects
diminish and gravitaxis dominates leading to upwards drift (negative Ue).

— Figure 4b shows Ue with respect to 𝛽R for Wo= 0.106. The drift peaks at approximately
𝛽R = 1, where the swimming and rotational diffusion time scales coincide, providing
maximal cell focusing at the centre of the channel during the downwelling period.

— The response to PéR is displayed in figure 4c. The particles swim upwards at low PéR
against the weak flow while at large PéR the particles exhibit strong downwards drift.
As the flow effects diminish at large Wo, the curves for different PéR collapse.

The effective axial diffusion De =De∗(tf) is plotted in figure 4d–f. In summary:

— For C. augustae, De is the greatest for Wo = 0.07 (orange circle in figure 4d, patterns
in figure 3a), which then decays to zero as Wo increases due to a flattening of the
distribution across the channel with smaller shear sampled more often, except at the
walls.

— There is a slight increase in De that coincides with Ue going negative (golden diamonds
in figure 4a,d, patterns in figure 3e), which is where we start to see a qualitative change
in the shear profile.

— De for D. salina follows that of C. augustae at intermediate Wo where both species are
spread across the channel. At largeWo, the relatively weak gyrotaxis ofD. salina induces
greater De. For small Wo, D. salina are still spread across the channel but C. augustae re‑
peatedly focus and separate, spending extended periods in central regions of relatively
low shear, yielding a smaller De.

— For strong gravitaxis, the cells do not diffuse much across streamlines and thusDe is rel‑
atively small (and numerically noisy). For small Wo, the cells have time to slowly transit
the high shear regions, leading to relatively large values of De (see figure 4c).
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— De is insensitive to 𝛽R at large Wo (figure 4e) as the flow profile is mostly flat across
the channel, but for small Wo, there is an interesting dependence on 𝛽R for the bal‑
ance between focusing and swimming across high shear regions (see the blue curve in
particular).

— Figure 4f displays De for different PéR. For small PéR, De is mostly flat and for large PéR
we see an approximate Wo−4 dependence for small Wo. There is also a local maximum
for PéR = 50 at Wo ∼ 1 associated with transit across high shear regions.

Finally,we explore cross‑channelmixing through the quantity tmix, ameasure based on the signal‑
to‑noise ratio, SNR= 𝜇∕𝜎, where 𝜇 is the mean and 𝜎 is the standard deviation of yj for particles
initially placed on the right half of the vertical channel (i.e. yj0 > 0). If these particles spread across
the channel, 𝜇 and 𝜎 should approach zero and 0.58, respectively, and the signal‑to‑noise ratio
will tend to zero. The time it takes for SNR to fall below a reference value of 0.1 is called tmix.
Figure 4g–i plot tmix values for all simulations. In summary:

— For C. augustae, tmix is large at small Wo. The distinct minimum at Wo = 0.211 (magenta
cross in figure 4g–i, patterns in figure 3d), corresponds to the smallest Wo for which the
particles are spread across the whole channel. Beyond this Wo, tmix increases until Wo =
0.634 (golden diamonds in figure 4g–i, patterns shown in figure 3f), coinciding with the
point of the local maximum in De and the change in sign of Ue.

— For both C. augustae andD. salina, we see a sharp decrease in tmix aroundWo= 1 and the
values remain low for Wo > 1. The decrease in the oscillation period, coupled with the
change in the flow profile and thus trajectories of the active particles, clearly enhances
mixing.

— For small Wo, tmix for D. salina is similar to that of C. augustae, yet the value is signifi‑
cantly smaller for large Wo due to reduced biased motility. When gravitaxis is strong,
mixing times are very long.

— Small 𝛽R delays mixing due to slower swimming (figure 4h). Large 𝛽R improves mixing
to the extent that the sharp drop in tmix around Wo = 1 can be removed.

— Large PéR flows delay themixing by suppressing the diffusion and biasedmotility of the
cells (figure 4i).

(d) Limits of validity of the Eulerian description for time-varying flows
For the Eulerian simulations, we attempt to compute the concentration field n for gyrotactic active
particles [38]. The domain length for simulations is set to 700 and the initial distribution of parti‑

cles is n(x, t= 0) = e−0.01
||||x−x0c ||||2 , where x0c represents the coordinate of the peak of the distribution,

selected based on the drift of the blob of particles to minimize end effects. There are numerous
computational challenges associated with the Eulerian approach. One cannot explore parameter
space easily for very smallWodue to the excessivemovement of the distribution for that case. This
necessitates large computational domains to prevent the concentration profile, sitting across the
streamwise periodic structure and interacting with itself. Furthermore, long simulation times are
required to obtain (periodically) converged solutions. Due to the high computational cost of the
numerical model, we are only able to simulate a non‑dimensional duration of t= 300 in a reason‑
able time, compared with the t= 1500 runs accessed with the Lagrangian approach. In addition,
we set PéR = 2 to prevent overlap within a domain of manageable size. We use q and D obtained
for C. augustae (see appendix A.2) and Lagrangian simulations use the corresponding d′r and B′

values. Lastly, 𝛽R = 1 for all simulations reported in this section.
Figure 5 compares the concentration field n obtained via the Eulerian and Lagrangian schemes

(see electronic supplementary material file S4 for an animation.). Three values of Wo are selected
to help explain similarities and differences in the results of the approaches. For Wo= 0.2 (figure
5a–h), cross‑channel distributions of particles are remarkably similar, showing the focusing and
separation discussed earlier. However, while the Lagrangian particles show clear cell migration

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 1

7
 S

ep
te

m
b
er

 2
0
2
5
 



13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240259

.........................................................................................................................

Figure 5. Comparison between Lagrangian and Eulerian model results. (a–x) show n as density plots, with darker colours in-
dicating larger n. Columns represent different 𝜏p with the values shown at the top of each column. (a–h) show the results for
Wo= 0.2, (i–p) are for Wo= 0.4 and (q–x) are for Wo= 1.0. (a–d), (i–l) and (q–t) show Lagrangian simulation results while
(e–h), (m–p) and (u–x) show Eulerian simulations. (y) and (z) compare Ue and De obtained from these models, respectively.

against gravity, the drift is downwards in the Eulerian simulations (figure 5y). This PéR value (in
contrast to PéR = 12.8 in figure 3) represents a regimewhere the gravitaxis of the particles remains
slightly stronger than the downwards fluid flow. In the Eulerian simulations, as particles migrate
to the boundaries, they experience a changing shear flow. The shear may be sufficiently strong
that they tumble, yielding a mean swimming vector q with magnitude much smaller than one.
On the other hand, p̂ and x in the Lagrangian simulations change dynamically, providing com‑
plex swimmer trajectories, which may cross the centre or intersect with boundaries. The no‑flux
condition used in the Eulerian simulations approximates this boundary interaction, losing in‑
formation about prior trajectories [26]. The specularly reflective boundary conditions employed
in the Lagrangian simulations are a better representation of the real boundary interactions and
can significantly affect the cell distribution [35], and thus dispersion characteristics, during the
upwelling part of the flow.
AsWo increases, in an intermediate region, the twodescriptions show closer agreement. Figure

5i–p present distributions for Wo = 0.4. Both the distributions and Ue match better for this value
ofWo, as seen in figure 5y. However, note thatDe from the Eulerian simulations are always larger
than those from the Lagrangian simulations. Stronger and more persistent accumulation around
the boundary and the quasi‑steady nature of the mean orientational dynamics allow particles
more time in the high‑shear regions and this leads to a notably larger De.
As Wo is increased beyond 0.7, we once again observe strong divergence of the results from

each other. Figure 5q–x provide distributions for Wo= 1.0. While Ue values are remarkably close,
the irregularity of Ue at other Wo values in figure 5y indicates that this is more of a coincidence.
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The quasi‑steady state GTD expressions for q andD used in the Eulerian simulations are eval‑
uated for a linear shear flow. If the cells traverse a flow field that changes in space or time faster
than the cell orientation dynamics then we are unlikely to obtain consistent results. Indeed, the
Eulerian simulations, and particularly the GTD approach, are expected to break down when the
cell reorientation time scale R′2d′r∕Vs′

2 is larger than the flow oscillation time scale 1∕Ω′, which
is when Wo2Sc ≳ 1, and we observe results diverge with increasing Wo number starting from
a value somewhat less than one. However, the breakdown mostly occurs within the high shear
regions of width 1∕Wo close to the walls, so while the breakdown should not affect dynamics
within the relatively uninteresting plug flow region it does make the overall Taylor dispersion
results suspect in the Eulerian simulations for large Wo. In the large Wo limit, cells will be con‑
fined to the broad plug flow region and without a shear flow the oscillation time scale 1∕Ω′ is no
longer relevant; forWo≫ 1 cells swim upwards with the same bias as for no fluid flow, providing
a drift of −I0(𝜆)∕I1(𝜆) (see appendix A.2), which for 𝜆= 2.2 is −0.7281, once again agreeing with
the results from the Lagrangian simulation.

5. Conclusion
Active suspensions exhibit a rich variety of new phenomena when they are subject to fluid flows.
In particular, active particles disperse in a flow in a tube in a manner that is qualitatively distinct
from that of passive tracers [5,28]. This is caused by the complex interaction between advec‑
tion and individual particle dynamics, driven by fluid shear. Previous analyses have restricted
attention to steady flows, as steps to coarse‑grain the underlying microscopic individual‑based
models to a macroscopic continuummodel typically assume that the time scales of active particle
dynamics aremuch smaller than variations in the flow [26]. It is unclearwhether the resulting phe‑
nomenological advection–diffusion equations for the cell concentration are adequate in situations
where the flow field varies over a time scale commensurate with the cell reorientation.
This study is motivated by preliminary experimental observations, reported herein, that in‑

vestigate the behaviour of active suspensions under oscillatory flows in a tube; we subject a
suspension of gyrotactic swimming cells to upwelling–downwelling oscillatory flow. For steady
Poiseuille flow, cells would either migrate to the walls or towards the centre of the channel, de‑
pending on whether the flow is upwelling or downwelling, respectively. However, experiments
suggest that oscillating flows enable a range of behaviour, with various amounts of drift (in con‑
trast to passive particles) and effective diffusion realized as a function of the system parameters,
particularly the Womersley number, Wo.
We use individual‑based simulations to show how the active particles migrate from one dis‑

tribution to the other as the flow switches direction. At intermediate oscillation frequencies, the
particles exhibit complex patterns between these distributions, dispersing axially and laterally in
the channel. The shear experienced by the particles, and their resulting trajectories, enhances the
mixing of particles placed exclusively on either side of the channel. Furthermore, the gyrotactic
particles exhibit an excess drift in oscillatory flows. We propose a new method of separating two
algal species with different motilities by exploiting their relative drift in oscillatory flows.
The Lagrangian simulations are contrasted with a finite‑element based approximation of the

phenomenological Eulerian description of the system. The Eulerian approach utilizes a mean
swimming direction, q, and diffusion tensor, D, computed from GTD theory as a function of
vorticity. We provide novel closed‑form approximations in two dimensions for this purpose. The
results of the continuum‑based model agree with the individual‑based description for a small
range ofWomersley numbers. However, the current Eulerian approach breaks down for largeWo
as the oscillation time scale approaches the diffusive time scale and invalidates the quasi‑steady
state assumption. At low Wo, the approach is computationally impractical, and factors such as
boundary conditions and particle behaviour at large Wo cause a divergence from Lagrangian
based results. Clearly, for the problem of dispersion in oscillatory flows, the individual‑based
simulations are more accurate and much preferred computationally. To access approximations
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at large Wo, a complete solution of the full Smoluchowski equation is required, describing the
probability, P(x,p, t), that there is a particle at position xwith orientation p at time t [26,29], given
initial data. This, however, presents considerable computational hurdles of its own.
The relative effect of oscillatory flows on the dispersion of active particle suspensions presents

a simple yet powerful method for a variety of biological and medical applications. For example,
the controlled dispersion of active particles can be useful in bioreactors as a passive mixing mech‑
anism away from surfaces, reducing the potential for biofilm formation. The oscillatory flows can
also provide demixing for cell separation. Our approach is non‑invasive and it could be developed
into a fully closed cost‑effective and practical system. Finally, we hope that our findings motivate
the development of new simplified continuum descriptions of active suspensions that are robust
to rapid variations in flow fields.
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Appendix A.

A.1. Scaling considerations
The system analysed in this manuscript permits different scalings. The oscillating flow field solu‑
tion provides the Womersley number Wo=R′

√
Ω′∕𝜈′. Here, R′ and 1∕Ω′ are the length and time

scales, respectively. The non‑dimensional time in terms of this scaling is 𝜏 = t′Ω′. Equations (3.4)
and (3.5) become

𝛥xjm = PeF u
(
xjm, t

)
𝛥𝜏 + 𝛽Fp̂

j
m𝛥𝜏, (A 1)

𝛥𝜃
j
m = ( 1

2B cos
(
𝜃
j
m
)
+
1
2𝜔z

(
xjm, tm

))𝛥𝜏 +√
2dr𝛥W, (A 2)

where 𝛥W has variance 𝛥𝜏. The non‑dimensional numbers now become

Рé F =
⟨
u′
⟩

R′𝛺′
, 𝛽F =

Vs′
R′𝛺′

, (A 3)

respectively, where the subscript F indicates flow‑based scaling. The non‑dimensional reorien‑
tation rate is B= B′Wo2Scd′r and the non‑dimensional reorientation rate is dr = 1∕Wo

2Sc. The
relations between the cell and flow‑based Péclet numbers are

Pé R = Pé F Wo
2 Sc , 𝛽R = 𝛽F Wo

2 Sc. (A 4)

In the cell‑based scaling t= t′Vs′2∕(R′2d′r), where D∼Vs′
2
∕d′r. Defining the Schmidt number as

Sc= 𝜈′d′r∕Vs′
2, we can express 𝜏 = tWo2Sc.
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A.2. Two-dimensional GTD for gyrotactic micro-organisms in linear shear flow
The approaches of [29] and [27] employ a Galerkinmethod to determine expressions for the mean
swimming direction, q, and diffusion tensor, D, in a steady linear flow using GTD for the phe‑
nomenological advection–diffusion equation in equation (3.10) for the cell concentration, n. In
particular, they consider three‑dimensional physical space with cell orientation determined by
two Euler angles. The dimensional micro‑scale model is

𝜕P
𝜕t

+ ∇x ⋅
[(
u + Vs′p

)
P
]
+ℒP= 0, where ℒ=∇p ⋅

[
ṗ − dr∇p

]
, (A 5)

for P(p, x, t), the probability of there being a cell at x with orientation p at time t, where ṗ can
be evaluated from equation (3.5). By considering the long‑time limits of the co‑deformational
derivatives of the moments of the distribution P, GTD then provides expressions for mean cell
orientation, q, and diffusion tensor, D, as integrals over cell orientation, p, in the form

q=∫
p
pf(p)dp and D=∫

p
[bp + 2𝜎

f(p)
bb ⋅ Ĝ]sym dp, (A 6)

where 𝜎 = Pé∕2𝜒′, with 𝜒′ indicating derivative of the flow field relative to the mean (assuming
Pé is defined with respect to the mean). Here, []sym indicates the symmetric part and Ĝ is the
transpose of the non‑dimensional fluid velocity gradient, whose eigenvalues must be imaginary
for the method to work. To evaluate these expressions onemust find solutions for the equilibrium
and vector field distributions, f(p) and b(p), respectively, via

ℒf= 0 and ℒb − 2𝜎b ⋅ Ĝ= f(p)(p − q), (A 7)

with ∫p f(p)dp= 1 and ∫p b(p)dp= 0, as described in [29]. Solutions are expanded in spherical
harmonics, substituted into the equations, and truncated at a particular order. Coefficients are
determined using exact algebra (Maple) as a function of 𝜆 and 𝜎, with excellent agreement with
asymptotic limits for small and large 𝜎.
In this article, we mirror this approach but consider all variables constrained to a two‑

dimensional plane, such that x= [x y]T and p= [− cos 𝜃 sin 𝜃]T, 𝜃 ∈ [0, 2𝜋). The variable x is
measured in the vertical downwards direction, y is across the channel and 𝜃 is the angle from the
positive x‑axis. In this situation, we find that 𝜃̇ =−

1
2B
sin 𝜃 − G

2
and thus we need to solve

ℳf= 0, ℳb2 =−f
(
sin 𝜃 − q2

)
and ℳb1 − 2𝜎b2 = f (cos 𝜃 + q1) , (A 8)

most conveniently accomplished in that order, where the operatorM is given by

M=
d2

d𝜃2
+ (𝜆 sin 𝜃 + 𝜎)

d
d𝜃

+ 𝜆 cos 𝜃. (A 9)

Expansion in Fourier series of the form Ci =
∑∞

n=0 A
i
n sinn𝜃 + B

i
n cosn𝜃, where C0 = f, C1 = b1 and

C2 = b2, and truncating at a suitable order provides a system of algebraic equations to solve for
the coefficients. Substituting the series in equation (A 6) provides the expressions

q= 𝜋
[
−B01 A01

]T
and D

=
𝜋

2
⎡⎢⎣

−2B11 A11 − B
2
1

A11 − B
2
1 2A21

⎤⎥⎦ −∫
p

2𝜎
f(p)

⎡⎢⎣
2b1b2 b2b2
b2b2 0

⎤⎥⎦ dp.
(A 10)

Solutions converge rapidly; an order three truncation is suitable formost purposes. Similar to [27],
the solutions are well‑fitted by the curves of the form q1 =−F(𝜎; a1, c1), q2 =−𝜎F(𝜎; a2, c2), and
similarly for odd and even components of the diffusion tensor, where F(𝜎; a, c) = (a0 + a2𝜎2)∕(1 +
c2𝜎2 + c4𝜎4). Coefficients for 𝜆= 2.2 are listed in table 2.
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Table 2. The fit coefficients for𝜆= 2.2 for the mean swimming direction and diffusion.

term a0 a2 c2 c4
q1 7.281 × 10−1 7.52 × 10−2 3.584 × 10−1 6.06 × 10−2

q2 3.814 × 10−1 4.489 × 10−2 2.959 × 10−1 4.405 × 10−2

D11 6.9693 × 10−2 3.046 × 10−1 1.627 × 10−1 8.72 × 10−2

D22 1.7672 × 10−1 1.269 7.959 1.483

D12 1.694 × 10−1 5.182 × 10−2 2.166 × 10−1 9.147 × 10−2

To verify the method, solutions can be found for 𝜎 = 0 for the two‑dimensional case. Equa‑

tion (A 8) provides [𝜆(1 − x2)
1
2 (f − f′)]′ = 0, upon substitution of x= cos 𝜃. Integrate and determine

the constant at x= 1 to be zero, to yield the von Mises distribution f(𝜃) =Ae𝜆 cos 𝜃 . Noting that
modified Bessel functions of the first kind can be defined as In(𝜆) =

1
2𝜋
∫2𝜋0 e𝜆 cos 𝜃 cosn𝜃 d𝜃, we

haveA= 1∕2𝜋I0(𝜆), fromwhichwe can calculate q= [−
I1(𝜆)
I0(𝜆)

0]T. For 𝜆= 2.2, q1 =−0.7281, which
agreeswith the series solution, as does the distribution for f(𝜃). Note that for the three‑dimensional
case, the equivalent q1 =− coth 𝜆 + 1∕𝜆=−0.57, so the two‑dimensional case provides a larger
peak orientation, as one may expect, plus it also decays to zero a little faster and the y component
has a turning point at a smaller 𝜎 (by a factor of 2∕3; the cell will tumble for smaller shear rates).
Qualitatively, the solutions are similar to the three‑dimensional case.
Similarly, we can integrate the equation for b2 to find

b2 =
e𝜆 cos 𝜃

2𝜋I0(𝜆)𝜆
(𝜃 − 1

I0(𝜆)
∫

𝜃

0
e−𝜆 cos 𝜃′d𝜃′) . (A 11)

A more involved expression can be found for b1, from which one may compute components of
the diffusion tensor numerically, establishing excellent agreement with the earlier solution from
the series expansion (D11 = 0.06969,D12 = 0 andD22 = 0.1767). Onemay also check that the eigen‑
values of the diffusion tensor remain positive definite for all 𝜆 and 𝜎. Diffusion values can also be
fitted by curves, with D11 = F(𝜎; a11, c), D12 =−𝜎F(𝜎; a12, c) and D22 = F(𝜎; a22, c).
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