
This is a repository copy of PhenoLearn: a user-friendly toolkit for image annotation and
deep learning-based phenotyping for biological datasets.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/227048/

Version: Published Version

Article:

He, Y. orcid.org/0000-0003-3464-7526, Cooney, C.R. orcid.org/0000-0002-4872-9146,
Maddock, S. et al. (1 more author) (2025) PhenoLearn: a user-friendly toolkit for image
annotation and deep learning-based phenotyping for biological datasets. Journal of
Evolutionary Biology. voaf058. ISSN: 1010-061X

https://doi.org/10.1093/jeb/voaf058

© The Author(s) 2025. Published by Oxford University Press on behalf of the European
Society of Evolutionary Biology. This is an Open Access article distributed under the terms
of the Creative Commons Attribution Non-Commercial License
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use,
distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC)
licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new
works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative
works on the same terms. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1093/jeb/voaf058
https://eprints.whiterose.ac.uk/id/eprint/227048/
https://eprints.whiterose.ac.uk/

Journal of Evolutionary Biology , 2025, 0 , 1–11

https://doi.org/10.1093/jeb/voaf058

Advance access publication 14 May 2025

Methods Article

PhenoLear n: a user-fr iendly t oolkit f or imag e annotation

and deep learning-based phenotyping for biological

datasets

Yic hen He
1 ,2 , , Christ opher R. Coone y

1 , , St ev e Maddoc k
3 , , Ga vin H. Thomas 1 ,4 ,

1 Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
2 Department of Life Sciences, Natural History Museum, London, United Kingdom
3 Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
4 Bird Group, Department of Life Sciences, Natural History Museum, Tring, United Kingdom

Handling editor: Max Reuter, Associate editor: Carmelo Fruciano

Corresponding author: Yichen He, Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, South Yorkshire,
S10 2TN, United Kingdom. Email: csyichenhe@gmail.com

Abstract

The digitization of natural history specimens has unlocked opportunities for large-scale phenotypic trait analysis. In recent years, deep learning has
shown significant results in accurately predicting annotations on 2D specimen photographs. However, it can be challenging for biologists without
e xtensiv e related expertise to easily use deep learning. Here, we introduce PhenoLearn, a toolkit developed for biologists to generate annotations
on 2D specimen images using deep learning. PhenoLearn integrates graphical user interfaces (GUIs) within its two main modules, PhenoLabel
for image annotation and PhenoTrain for model training and prediction. GUIs increase accessibility and reduce the need for computational
e xpertise, allo wing biologists to intuitively go through a workflow of labelling training sets, using deep learning, and re vie wing predictions in
the same tool. We demonstrate PhenoLearn’s capabilities through a case study in v olving the segmentation of plumage areas on bird images,
sho w casing prediction accuracy and the running time with and without graphics processing unit, highlighting its potential to generate annotations
with minimal computational cost and time. The toolkit’s modular design and flexibility ensure adaptability, allowing for integration with other
tools amidst rapidly e v olving deep learning approaches. PhenoLearn bridges the gap between specimen digitization and downstream analysis,
providing biologists with broader access to deep learning. The source code, installation guides, tutorials with screenshots, and a small demo
dataset for PhenoLearn can be found at https://github.com/echanhe/phenolearn .

Keywords: deep learning, phenotyping, image annotation, phenotypic trait, toolkit with user interface

Introduction

The process of measuring phenotypic traits on 2D digitized
specimen images is increasingly used to phenotype specimens
for a range of tasks. Through the use of annotations such as
points (Chang & Alfaro, 2016 ; Zelditch et al., 2004) and seg-
mentations (Cooney et al., 2022 ; He et al., 2022), researchers
can extract and analyse a variety of morphological measure-
ments from specimens to provide insights into evolutionary
and ecological questions. Digitization allows rapid and non-
invasive measurements of natural history collections and mo-
bilizes specimens for further analyses, helping to unlock their
full potential. Techniques such as tray scanning (Blagoderov
et al., 2012) have significantly accelerated the digitization of
entomological collections by leveraging robotic automation to
automatically capture 2D images of specimens directly from

museum trays. In addition, many computational tools for
analysing phenotypes like shape (Adams & Otárola-Castillo,
2013) and colouration (Maia et al., 2019) have been devel-
oped, expanding the breadth of tools available to analyse
phenotypic traits. However, manually preprocessing images
(e.g., placing annotations) is time-consuming, especially with
large datasets such as hundreds of thousands of observations

(Cooney et al., 2022). To prevent manual annotation
from becoming a bottleneck for mobilising large digital
datasets, efficient high-throughput data extraction tools are
essential.

Classic computer vision algorithms like thresholding, con-
nected components, and region growing have been used for
extracting phenotypic information from images, representing
a significant increase in measurement speed compared to man-
ual methods (Lürig, 2022 ; Pennekamp & Schtickzelle, 2013).
Deep learning-based methods have recently become state-of-
the-art for various computer vision tasks, including object seg-
mentation in images with complex backgrounds. In particu-
lar, deep learning applications for measuring digitized speci-
mens have demonstrated success with different types of anno-
tations, including points (Mathis et al., 2018 ; Porto & Voje,
2020), bounding boxes (John et al., 2024 ; Shedrawi et al.,
2024), and segmentations (He et al., 2022 ; Schwartz & Alfaro,
2021). These methods yield high-throughput pipelines and ac-
curate results, illustrating the potential for expanding deep
learning to other biological datasets. However, several bar-
riers remain, preventing the widespread application of deep
learning in ecology and evolutionary biology.

Received September 20, 2024; revised April 1, 2025; accepted May 16, 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Evolutionary Biology. This is an Open Access article

distributed under the terms of the Creative Commons Attribution-NonCommercial License (https:// creativecommons.org/ licenses/ by-nc/ 4.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions

link on the article page on our site-for further information please contact journals.permissions@oup.com

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

https://doi.org/10.1093/jeb/voaf058
https://orcid.org/0000-0003-3464-7526
https://orcid.org/0000-0002-4872-9146
https://orcid.org/0000-0003-3179-0263
https://orcid.org/0000-0002-1982-6051
mailto:csyichenhe@gmail.com
https://github.com/echanhe/phenolearn
https://creativecommons.org/licenses/by-nc/4.0/
mailto:reprints@oup.com
mailto:journals.permissions@oup.com

2 He et al.

Figure 1. Workflow overview of using PhenoLearn to generate annotations for biological datasets. Steps involving the PhenoLearn modules

(PhenoLabel and PhenoTrain) highlight the connection between digitization (2D imaging) and downstream biological analysis..

A significant barrier to the wider adoption of deep learn-
ing is the generally high level of technical skill required
for implementation. This issue is often compounded by the
lack of intuitive platforms that allow nonspecialists to use
deep learning for phenotyping. Recent phenotyping toolkits,
such as DeepLabCut (Mathis et al., 2018) and Argos (Ray
& Stopfer, 2022), have focused on improving accessibility
through graphical user interfaces (GUIs). The integration of
deep learning models with GUIs can greatly increase accessi-
bility, allowing researchers with limited technical knowledge
to utilize these advanced techniques. Furthermore, the devel-
opment of fully integrated toolkits for performing a complete
workflow, including labelling training sets, training models,
and reviewing predictions, can significantly improve the ac-
cessibility and efficiency for biologists to apply deep learn-
ing in biological research. Such a toolkit, tailored for ex-
tracting traits from 2D specimen photographs for ecologi-
cal and evolutionary studies, would serve as a much-needed
bridge between digitization and downstream biological
analysis.

Here, we introduce PhenoLearn, a user-friendly toolkit for
generating annotations using deep learning. PhenoLearn com-
prises two main modules, PhenoLabel and PhenoTrain, cover-
ing three main functions (Figure 1). PhenoLabel implements
both image labelling and reviewing, whereas PhenoTrain im-
plements the functions for deep learning. As an open-source
tool with GUIs, PhenoLearn aims to minimize the compu-
tational expertise required to generate point or segmenta-
tion predictions using deep learning for 2D biological im-
age datasets. While PhenoLearn is designed to facilitate the
entire annotation generation workflow, its modular design
allows users to use individual functions for desired tasks.
For instance, PhenoLabel can be used to review predictions
from other methods. Likewise, labels generated elsewhere can
be used to train models implemented in PhenoTrain. The
PhenoLearn pipeline has already been successfully used to
generate annotations in several large-scale research projects
(Cooney et al., 2022 ; He et al., 2022 , 2023). In this paper, we
provide a detailed explanation, a user guideline, and an exam-
ple of using PhenoLearn.

Installation

PhenoLearn was developed using Python 3, with the following
libraries and their versions tested during its development:

� Python: 3.10
� PyQt: 5.15.9

� NumPy: 1.25.1
� pandas: 2.0.3
� opencv-python: 4.8.0.74
� PyTorch: 2.0.1
� TensorBoard: 2.13.0

For deep learning, PhenoLearn is optimized to utilize
NVIDIA graphics processing units (GPUs) through CUDA

(https://developer.nvidia.com/cuda-toolkit). While it is possi-
ble to train models using the CPU on systems without CUDA-
supported GPUs, this will generally lead to slower running
time. We recommend using a GPU with at least 8 GB of video
memory for faster running time.

PhenoLearn’s two main modules, PhenoLabel and Pheno-
Train, have their own GUIs. PhenoLabel implements the la-
belling and reviewing functions and can be accessed by run-
ning phenolabel.py . PhenoTrain handles deep learning train-
ing and prediction and is accessed by running phenotrain.py . It
was tested on Windows 10, macOS 13.6, and Ubuntu 22.04.3
LTS.

The source code, installation guides, tutorials with screen-
shots, and a small demo dataset for PhenoLearn can be found
at https://github.com/echanhe/phenolearn . Datasets used in
the example section are available at https://zenodo.org/recor
ds/8152784 . For Windows users, a binary version of Pheno-
Label (e.g., a .exe file) is available at https://zenodo.org/recor
ds/10909841 . Detailed file introductions can be found in the
Supplementary Material .

Design and implementation

Labelling

This section outlines using PhenoLabel for labelling, in-
cluding creating a project, placing points/segmentations, and
managing progress. To start, select “Open Dir” in the File
menu (Figure 2A) to open a folder of images for labelling.
PhenoLabel uses the imread function from OpenCV-Python
(Bradski, 2000), which supports common formats including
jpg, png, and tiff. PhenoLabel lists all images in the File panel
(Figure 2D) and displays the selected image in the Main panel
(Figure 2D). Users can zoom the image and view the cursor
coordinate and RGB values in the status bar (Figure 2G).

Users can place points or segmentations in the Main panel.
For points, click the “Point”button on the Toolbar (Figure 2B)
and left-click the image. Points can be named via a dialogue
box, either inputting a new name or selecting from a drop-
down menu. Existing points can be modified or deleted in the
Annotation panel (Figure 2F). PhenoLearn records vertical (y)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

https://developer.nvidia.com/cuda-toolkit
https://github.com/echanhe/phenolearn
https://zenodo.org/records/8152784
https://zenodo.org/records/10909841
https://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voaf058#supplementary-data

Journal of Evolutionary Biology , 2025, Vol. 0, No. 0 3

Figure 2. The PhenoLabel GUI. (A) Menu bar: Provides functions for saving projects and loading files; (B) Toolbar: Tools for image annotation

manipulation; (C) Segmentation toolbar: Tools specifically designed for segmentation tasks; (D) File panel: Displa y s the loaded images and allows users

to switch between images; (E) Main panel: The central workspace for image annotation; (F) Left: Annotation panel, Point tab for displaying details of

point-based annotations; Right: Annotation panel, Segmentation tab for displaying details of segmentation-based annotations; (G) Status bar: Displa y s

status such as image name, zoom level, and cursor position.

coordinates from the top of the image downward. This is the
standard convention used in many Python-based image pro-
cessing libraries, such as OpenCV-Python. In contrast, tools
like tpsDig (Rohlf, 2006) and many R-based image analysis
tools typically record coordinates from the bottom up. Users
working with tpsDig datasets should be aware of this differ-
ence.

For segmenting, click the “Segmentation” button on the
Toolbar, and a Segmentation Toolbar (Figure 2C) appears.
Segmentation classes must be named using the “Add” button
in the Segmentation tab (Figure 2F). Then, by activating the
“Draw” button in the Segmentation Toolbar and holding the
left mouse button, users can use a paintbrush to draw the re-
gion of interest (ROI). Each segmented ROI is automatically
assigned a distinct colour, allowing users to easily differentiate
between them. Segmented areas can be removed with the same
operation with the “Erase”button activated. To efficiently seg-
ment large areas, users can outline a region and then use the
“Auto Fill” function to fill the area within the outline. Four
paintbrush sizes are available: S, M, L, and XL.

PhenoLabel’s “Fast Labelling” function automates annota-
tion naming for cases that use consistent annotation names,
eliminating repeated manual naming. This feature automati-
cally creates annotation names for subsequent images using
the annotation names from the current image. To ensure a
newly placed point matches the preset point names, they need
to be placed in the same order as the names displayed at the
bottom of the Annotation panel.

“Save” and “Save As” in the File menu allow users to save
their work in JSON format, which includes details on images
and annotations. “Open Labelling Progress” allows users to
continue or review their labelling progress. Annotations can
be exported to PhenoTrain in CSV or binary masks (for single-
class segmentations). Two types of CSV exports are available:
a point CSV file and a segmentation CSV file. Refer to Table 1
for the detailed structure of the JSON and CSV files.

Deep learning

PhenoTrain allows users to train models and make predic-
tions. This section demonstrates how to set up model training
and prediction in PhenoTrain.

Model training

Before training, eleven settings are required via the Train tab
of PhenoTrain (Figure 3A). Some settings have default values
derived from previous studies (Chen et al., 2017 ; He et al.,
2017 ; He et al., 2022 , 2023) and the PyTorch documentation
(Paszke et al., 2019). These defaults provide a solid starting
point for various applications:

(1) Model type . Mask R-CNN (He et al., 2017) for
point and DeepLabv3 (Chen et al., 2017) for seg-
mentation. Despite the availability of numerous new

deep learning architectures, we use Mask R-CNN and
DeepLabv3 for their robust nature and adaptability
to various tasks. Being well-established models, there
are many tutorials available online that facilitate their
implementation for users who want to understand the
detailed information.

(2) Annotation input format . The default option is CSV.
For single-class segmentations, “Mask”option is also
available for using binary masks as inputs. Please re-
fer to Table 1 for the details of the binary mask.

(3) Annotation file . The CSV annotation file from Phe-
noLabel (only applicable when “CSV” is selected for
Setting 2).

(4) Mask folder . The folder of the binary masks (only ap-
plicable when “Mask” is selected for Setting 2).

(5) Image folder. The folder of training images.
(6) Image resize percentage . Ranges from 1% to 100%,

keeps aspect ratio, using nearest neighbour interpola-
tion.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

4 He et al.

Table 1. File str uct ures used in PhenoLearn.

File Description

Labelling progress file A JSON file
From: Created by the save function in PhenoLabel.
Usage: Can be used to load the progress into PhenoLabel

Structure:
The file is a list of dictionaries.

� “file_name” stores the image name.
� “points” stores a list of dictionaries.
o “name” stores the point name
o “x” stores the x coordinate
o “y” stores the y coordinate
o “absence” stores if the point is missing

� “segmentations” stores a dictionary.
o Dictionary keys are the names of the segmentations and dictionary values are the segmentations.

A segmentation is stored as a four-level nested list, which follows the format of segmentation contours extracted
by OpenCV (Bradski, 2000). The format is:

� The first level corresponds to the segmentation itself.
� The second level is the contour level, where one segmentation may include one or more contours.
� The third and fourth levels pertain to the point level, with each contour having multiple points.

The example below shows a segmentation consisting of two contours. Contour 1 contains “n” points, and
Contour 2 contains “m” points. Here < x_12 > represents the x-coordinate of the second point
in Contour 1.

Example:
[{
“file_name”: “Abeillia_abeillei_M_5.jpg,”
“points”:

[
{“name”: “beak,” “x”: 1580, “y”: 1072},
{“name”: “eye,” “x”: 1876, “y”: 984}

],

“segmentations”:
{“head”:
[
[

[[< x_11 > , < y_11 >]],
[[< x_12 > , < y_12 >]], . . .
[[< x_1n > , < y_1n >]]

],
[

[[< x_21 > , < y_21 >]],
[[< x_22 > , < y_22 >]], . . .
[[< x_2m > , < y_2m >]]

]
]

}]

Output Point CSV file A CSV file
From: Exported by PhenoLabel or generated by PhenoTrain.
Usage: Can be imported into PhenoTrain as for training.

Structure:
The “file” column stores the image names.
A “< point name > _x” column stores the x coordinate for a point.
A “< point name > _y” column stores the y coordinate for a point.
A value of -1 or an empty cell indicates the point is missing.

Example:
File beak_x beak_y eye_x eye_y
Abeillia_abeillei_M_5.jpg 1580 1072 1876 984

Output segmentation
CSV file

A CSV file

From: Exported by PhenoLabel or generated by PhenoTrain.
Usage: Can be imported into PhenoTrain for training.

Structure:
The “file” column stores the image names.
The remaining columns store the segmentations.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

Journal of Evolutionary Biology , 2025, Vol. 0, No. 0 5

Table 1. Continued

File Description

A segmentation is stored as a four-level nested list.
The details and examples can be found in the “Labelling progress file” row. Here, the example only shows a
four-level nested list placeholder for better readability.

Example:
File Head
Abeillia_abeillei_M_5.jpg [[[[]]]]

Output binary mask A black and white image
From: Exported by PhenoLabel or generated by PhenoTrain.
Usage: Can be imported into PhenoTrain for training.

A grayscale image is saved under the same name as its input image, with background areas in black and
segmentation areas in white. To prevent having the output masks replace the input images,
ensure the input directory is not used as the output directory.

Property file A CSV file.
Usage: Import specific specimen properties into PhenoLabel to filter or sort images, allowing users to prioritize
error-prone images first.

Structure:
The “file” column stores the image names.
Other columns store the properties.
� Categorical properties are stored as text strings.
� Numerical properties are stored as numbers.

Example:
File Id sex
Abeillia_abeillei_M_5.jpg 5 M

Figure 3. The PhenoTrain GUI. The interface has two tabs: (A) the Train tab and (B) the Predict tab. Settings for training and predicting can be specified in

each tab.

(7) Validation set percentage . The percentage of valida-
tion images used for evaluating the model per epoch.
A common split is 80/20 for training/validating.

(8) Batch size . The number of images processed in
one training iteration. The default is 1. A smaller
batch size saves memory but may lead to less stable
optimization. Conversely, a larger batch size may pro-
vide better optimization, but it uses more memory.
Users need to test a set of batch sizes to find the opti-
mal value.

(9) Training epochs . The number of times the entire train-
ing set passes through the model. Training for more
epochs may lead to better model performance. The
default training epoch is set to 1. Users can estimate
the training time by training for one epoch.

(10) Learning rate . Controls the step size during the opti-
mization phase of training. The default learning rate
for PhenoTrain is 0.001. A too-large learning rate
may result in overly large steps, causing the model to
miss the optimum. A too-small learning rate might

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

6 He et al.

lead to a very slow convergence towards the opti-
mum.

(11) Level of training . Controls the proportion of the
model that is trained. The options are Minimal, In-
termediate, and Full. “Minimal” trains only the final
layers, “Intermediate” trains half of the model layers,
and “Full” trains the entire model.

(12) CPU / GPU . Select whether to use the CPU or GPU for
training. If GPU is selected but no GPU is available on
the device, CPU will be used.

When the training is completed, a .pth file is saved in the
“saved_model” folder.

The training level setting utilizes transfer learning (Tan
et al., 2018), focusing on training with a pretrained model.
Transfer learning diverges from the approach of using ran-
domly initialized model weights, which generates poor ini-
tial predictions and can take a longer training period. In-
stead, it leverages a pretrained model, which effectively gives
the model prior knowledge gained from previous tasks.
This approach can train on parts of a model and achieve
satisfactory results, saving both time and computational
resources. Both DeepLabV3 and Mask-R-CNN were pre-
trained on the COCO dataset (Lin et al., 2014), which is a
large-scale image dataset for computer vision tasks such as
segmentation.

PhenoTrain integrates with TensorBoard (Martín Abadi
et al., 2015) to visualize the training progress. Logs are saved
in the “runs” folder. To view logs in TensorBoard, run this
command: ‘tensorboard—logdir == runs’ in Python. Upon ex-
ecution, it can be viewed in a web browser at http://localhost:
6006/. Users can view and compare across different training
runs.

TensorBoard saves training and validation loss, along with
evaluation metrics. Training loss indicates the model’s learn-
ing efficiency, while validation loss evaluates performance on
the validation set. Point accuracy is assessed using the pixel
distance (Euclidean distances between two points on an im-
age). The Dice Score is used to evaluate segmentations based
on the overlap between predicted and manual segmentations.
The Dice Score ranges from 0 (lowest) to 1 (highest). Aver-
age and class-specific metrics for points or segmentations are
stored.

Generating predictions

Once a well-trained model is saved, users can generate predic-
tions in the Predict tab (Figure 3B) by configuring the follow-
ing seven settings:

(1) Model type. Point or segmentation.
(2) Output format . Options are CSV file or mask images

(for single-class segmentations only).
(3) Choose model. .pth file saved from training.
(4) Image folder . The folder of images for prediction.
(5) Image name file . CSV file with one column named

“file” for image names. PhenoLabel can export an Im-
age name file when no annotations are presented for
the images.

(6) Choose the output folder. A folder for the prediction
file.

(7) Image resize percentage. Ranges from 1% to 100%

and should be consistent with the percentage used in
training.

(8) CPU/GPU. Select whether to use the CPU or GPU for
predicting. If GPU is selected but no GPU is available
on the device, CPU will be used.

PhenoTrain provides real-time updates during both training
and prediction phases, including a progress bar and elapsed
time display.

Reviewing predictions

Deep learning predictions are not perfectly accurate, and re-
viewing predictions is often necessary to confirm and/or im-
prove accuracy for biological applications. To facilitate this,
we have incorporated two features within PhenoLabel: (1) Re-
view Mode and (2) Review Assistant to improve reviewing
efficiency.

Users can open an image folder and import predictions (e.g.,
outputs from PhenoTrain) into PhenoLabel, and subsequently
review and improve these predictions. By activating the Re-
view Mode in the Toolbar, PhenoLabel displays multiple im-
age thumbnails with annotations (Figure 4A). In this mode,
users can quickly browse through images and flag any with
incorrect predictions by ticking adjacent checkboxes. After
checking through thumbnails, click “Show Flagged Images”
button to show only the flagged images for a more focused
review . Additionally , it is possible to export the predicted an-
notations for input into other outlier detection methods and
to create flagged images.

The Review Assistant improves review efficiency by lever-
aging specimen metadata. By prioritizing images with specific
properties (e.g., a problematic species), users can optimize ac-
curacy and time efficiency. The Review Assistant facilitates
this by offering options to sort or filter images based on prop-
erties (Figure 4B), which can be imported from a property
file (Table 1). It can sort images by numerical properties (e.g.,
specimen length) and filter images by categorical properties
(e.g., taxa). The “Reset” button clears all filters and sorting.

Examples

The examples described below were executed on a Windows
10 system featuring an Intel(R) Core(TM) i7-11800H CPU,
16 GB of RAM, and an RTX 3080 GPU with 16 GB of
video memory (VRAM). For memory usage results, the highest
memory allocation observed in Task Manager was recorded
for CPU usage, while GPU memory usage was from the out-
put of the nvidia-smi command.

Segmenting with PhenoLearn

We tested PhenoLearn on a dataset of 220 bird images
(4948 × 3280 pixels) to segment the whole plumage area. We
used 120 images for training and the remaining 100 images for
prediction. The 120 training images were annotated in Phe-
noLabel for training. The DeepLabv3 model was trained for
five epochs with a 20% validation set, a batch size of two, a
learning rate of 0.001, a minimal training level, and an input
resolution of 494 × 328 pixels (10% downsampling).

The training process was faster with GPU, taking 3 min,
compared to 13 min without it (CPU only). Predictions were
generated in under a minute with GPU and 4 min without it.
Examples of the predictions can be found in Figure 5 . One of
the authors (Y.H.) spent 5 min reviewing 100 images. An ad-
ditional 4 min were used to correct predictions for these 18

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

http://localhost:6006/

Journal of Evolutionary Biology , 2025, Vol. 0, No. 0 7

Figure 4. The PhenoLabel GUI with Review Mode activated. (A) The Review panel, which replaces the Main panel, displays image thumbnails with

annotations. (B) The Review Assistant. In this example, it is used to select male specimens and sort images by ID.

Figure 5. Examples of the segmentation predictions in the re vie w mode.

images. In addition, we tested the training time, GPU usage,
and performance for using various configurations of GPU and
CPU with different training levels provide to users with a com-
prehensive reference. The results are summarized in Table 2 .

Placing points with phenolearn

We evaluated PhenoLearn on a dataset of 220 Littorina im-
ages, each measuring 2592 × 1944 pixels, with four points

annotated on each image according to a 15-landmark scheme
derived from Ravinet et al. (2016) . For this study, 120 images
were used for training, while the remaining 100 served for pre-
diction. Annotations for the training images were performed
using PhenoLabel.

We trained a Mask R-CNN model over five epochs, using
a validation set comprising 20% of the data, a batch size of
two, a learning rate of 0.001, and an input resolution reduced
to 518 × 388 pixels (20% downsampling). We conducted

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

8 He et al.

Table 2. Training time, memory usage (RAM for CPU and VRAM for GPU), and performance across different hardware configurations and training levels

on the segmentation test dataset.

Training level Hardware Training time (min) Memory usage (GB) Average dice score

Minimal GPU 2 1 0.90
CPU 13 1.2

Intermediate GPU 3 3.5 0.94
CPU 26 4.1

Full GPU 3 3.9 0.93
CPU 30 4.5

Table 3. Training time, memory usage (RAM for CPU and VRAM for GPU), and performance across different hardware configurations and training levels

on the point test dataset.

Training level Hardware Training time (min) Memory usage (GB) Average pixel distance

Minimal GPU 2 2.7 138
CPU 15 1.5

Intermediate GPU 2 3 126
CPU 25 1.9

Full GPU 3 4.5 37
CPU 29 3.5

experiments using both GPU and CPU across various training
levels. The best performance was an average pixel distance of
21. Details on GPU usage and the performance of different
runs can be found in Table 3 .

Examples of the predictions made using PhenoLearn are il-
lustrated in Figure 6 . One of the authors (Y.H.) spent 5 min
reviewing 100 Littorina images, during which 19 images with
inaccurately placed points were flagged. An additional 4 min
were spent to correct these predictions.

The performance of PhenoTrain can vary with different
datasets and training settings. As shown in the results, train-
ing from scratch is not guaranteed to outperform fine-tuning
pretrained models (see Table 2). The pretrained models used
in PhenoLearn are based on the ImageNet dataset (Deng et al.,
2009), which provides a large and diverse set of features as a
strong starting point. Pretrained models are also less prone to
overfitting and more capable of generalizing to new datasets
(Huh et al., 2016 ; Yosinski et al., 2014). This advantage makes
fine-tuning a pretrained network a reliable choice in many sce-
narios. However, the relative performance of these approaches
can only be determined through testing. Based on our
observations, we recommend starting with fine-tuning for
most use cases and minimum computational cost.

Another important point is that the randomness inherent
in the training process, such as random weight initialization
and data shuffling during batch creation, can lead to variabil-
ity in results. Even with identical configurations and training
data, different runs may yield slightly different outcomes. This
variability should be considered when interpreting results.

Here are some other general guidelines:

� Test model performance with a small subset of your
dataset (e.g., 20 images) to quickly assess learning
progress by monitoring if validation loss decreases and
the metrics on the validation set are increasing, extend
the training to the full dataset.

� Manage memory (either RAM or video memory) by
starting with an input resolution of around 500 × 500
pixels. The resolution can be incrementally increased.

� Carefully select the learning rate, as it significantly im-
pacts model training. A learning rate that is too large

may cause the model to diverge or produce unstable re-
sults. For example, using a learning rate of 0.1 on our
point dataset caused the loss to become null, resulting
in training failure. Conversely, a very small learning rate
can result in slow learning and require a large number of
epochs to converge. We recommend that users try multi-
ple training runs with different learning rates and mon-
itor performance to find an appropriate setting for their
dataset.

� Better performance may be achieved by increasing the
input resolution, training set size, training epochs, and
training level. Increasing these settings leads to longer
training times. Results from runs with various configura-
tions are provided in the Supplementary Material , where
some performance differences can be observed across
settings. However, we note that these comparisons are
based on a small number of runs and should be inter-
preted with caution.

Users can change these settings to fit their datasets and re-
search requirements.

Discussion

In summary, PhenoLearn provides a user-friendly, high-
throughput data extraction pipeline with fully integrated
GUIs, enabling biologists without extensive computational
skills to effectively measure phenotypic traits from images.
While tools like DeepLabCut and Argos offer robust solutions
for specific phenotyping tasks, they focus more deeply on an-
imal tracking, primarily supporting point-based annotations.
In contrast, PhenoLearn combines support for point annota-
tions and segmentation tasks within a single toolkit and has
already been successfully applied for both annotation types in
previously published studies (Cooney et al., 2022 ; He et al.,
2022 , 2023). PhenoLearn also includes functions tailored
specifically for handling 2D image datasets of natural history
collections. These features include “Fast Labelling,” which
streamlines the annotation naming process, and “Review

Mode” and “Review Assistant,” which leverage specimen
metadata to simplify the review process. These capabilities

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

https://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voaf058#supplementary-data

Journal of Evolutionary Biology , 2025, Vol. 0, No. 0 9

Figure 6. Examples of the point predictions in the re vie w mode.

make PhenoLearn particularly suited for natural history col-
lections, which often include rich metadata. Together, these
features position PhenoLearn as a complementary tool for
phenotyping 2D images, offering unique advantages for re-
searchers working with such datasets.

As Lürig (2022) highlights, classic computer vision meth-
ods are more accessible to biologists with only CPUs. To facil-
itate the wider application of deep learning among biologists
without GPU access, PhenoLearn leverages pretrained mod-
els and partial model training to shorten CPU training times.
Moreover, small training sets can yield accurate predictions
for photographs with a highly consistent digitization set-up,
as minimal variation among images may bring more efficient
training (Mulqueeney et al., 2024). From our results, it ap-
pears that CPU usage requires slightly more memory com-
pared to GPU usage. However, it is more cost-effective to up-
grade system RAM than to purchase GPUs with equivalent
VRAM capacity . Additionally , most current consumer-grade
laptops are equipped with at least 8 GB of RAM, making it
feasible for a wide range of researchers to run PhenoLearn ef-
fectively on readily available CPU hardware. These features
make predicting annotations on digitized specimens possible
using only CPUs.

The modular design of PhenoLearn, comprising separate
modules for image annotation (PhenoLabel) and deep learn-
ing (PhenoTrain), offers flexibility to integrate with other
tools. This feature is particularly important in the fast-
developing field of machine learning, where new and powerful

methods are continually being developed, such as Segment
Anything (Kirillov et al., 2023), the foundation model for se-
mantic segmentation. Thus, with PhenoLearn, users have the
option to export annotations from PhenoLabel for other deep
learning methods, and then use PhenoLabel again for efficient
prediction reviewing. PhenoLearn supports multiple output
formats (CSV, JSON, and image-based segmentation), mak-
ing it compatible with other methods or toolkits. These for-
mats can be easily converted into target Python data struc-
tures commonly used in deep learning pipelines. For example,
regardless of the format, annotations can be transformed into
2D tensors that represent segmentations or point heatmaps,
which are among the most used data structures for segmenta-
tion and point predictions. PhenoLabel can also simply serve
as a manual labelling tool for small datasets.

Taken together, PhenoLearn is a versatile toolkit that
bridges the gap between biological image datasets and down-
stream analysis, facilitating greater access for researchers to
deep learning tools for image processing and data extraction.

Futur e dir ections

Future development of PhenoLearn will likely focus on four
main areas: (1) Optimization of the user interface based on
user feedback to increase usability. (2) Improvement of soft-
ware performance, such as integrating multithreading for
displaying thumbnails, which will increase the efficiency of
the review process. (3) Expansion of supported annotation

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

10 He et al.

types based on future user requirements. Adding bounding
box annotations, for instance, could significantly broaden
the toolkit’s applications, including object recognition tasks,
which can be used to identify specimen appearances in lab-
oratory or camera trap photographs. (4) Integrating alterna-
tive and newer models, such as Segment Anything (Kirillov
et al., 2023) and other state-of-the-art deep learning mod-
els, to further enhance segmentation and landmark prediction
capabilities.

Supplementary material

Supplementary material is available at Journal of
Evolutionary Biology online.

Data availability

All code, datasets, and binaries used in this study are publicly
archived and available:

� Source code: The PhenoLearn source code is available
on GitHub for continued development: https://github
.com/echanhe/phenolearn . A snapshot of the code cor-
responding to the version used in this paper has been
archived on Zenodo and assigned a DOI: https://zenodo
.org/records/15350513 .

� Example datasets: The bird and Littorina test datasets
used for evaluation are available on Zenodo: https://ze
nodo.org/records/8152784 .

� Binary executable: The compiled Windows binary of the
PhenoLabel annotation tool is also archived on Zenodo:
https://zenodo.org/records/10909841 .

Author contributions

Yichen He (Conceptualization [lead], Data curation [equal],
Formal analysis [lead], Methodology [lead], Software [lead],
Validation [lead], Visualization [lead], Writing—original draft
[lead], Writing—review & editing [supporting]), Christo-
pher R. Cooney (Conceptualization [supporting], Data cu-
ration [equal], Funding acquisition [equal], Investigation
[supporting], Methodology [supporting], Project administra-
tion [equal], Software [supporting], Supervision [support-
ing], Writing—review & editing [equal]), Steve Maddock
(Conceptualization [supporting], Methodology [supporting],
Project administration [supporting], Project administration
[supporting], Software [supporting], Software [supporting],
Supervision [supporting], Supervision [supporting], Writing—
review & editing [equal], Writing—review & editing [equal]),
and Gavin H. Thomas (Conceptualization [supporting], Data
curation [equal], Funding acquisition [equal], Methodol-
ogy [supporting], Project administration [equal], Resources
[equal], Software [supporting], Supervision [lead], Writing—
review & editing [equal])

Funding

This work was funded by a Leverhulme Early Career Fel-
lowship (ECF-2018-101) and Natural Environment Research
Council Independent Research Fellowship (NE/T01105X/1)
to C.R.C., and a European Research Council grant (615709,
Project “ToLERates”) and Royal Society University Research
Fellowship (UF120016, URF \ R \ 180006) to G.H.T.

A c kno wledgments

We thank Thomas Guillerme, Kathryn Harris, and Eleftherios
Ioannou for testing this toolkit.

Conflicts of interest

None declared.

References

Abadi , M., Agarwal, A., Barham, P., … Zheng, X. (2015). TensorFlow:

Large-scale machine learning on heterogeneous systems . https://ww

w .tensorflow .org/

Adams , D. C., & Otárola-Castillo, E. (2013). Geomorph: An R pack-

age for the collection and analysis of geometric morphometric shape

data. Methods in Ecology and Evolution , 4 (4), 393–399. https:

// doi.org/ 10.1111/ 2041-210X.12035

Blagoderov , V., Kitching, I. J., Livermore, L., … Smith, V. S. (2012). No

specimen left behind: Industrial scale digitization of natural history

collections. ZooK e ys , 209 , 133. https:// doi.org/ 10.3897/ zookeys.20

9.3178

Bradski , G. (2000). The OpenCV library. Dr. Dobb’s Journal of Soft-

ware Tools , 120 , 122–125.

Chang , J., & Alfaro, M. E. (2016). Crowdsourced geometric morpho-

metrics enable rapid large-scale collection and analysis of pheno-

typic data. Methods in Ecology and Evolution , 7 (4), 472–482. https:

// doi.org/ 10.1111/ 2041-210X.12508

Chen , L.-C., Papandreou, G., Schroff, F., … Adam, H. (2017). Rethink-

ing atrous convolution for semantic image segmentation, arXiv,

arXiv:1706.05587, preprint: not peer reviewed. http:// arxiv.org/ ab

s/1706.05587

Cooney , C. R., He, Y., Varley, Z. K., … Thomas, G. H. (2022). Latitudi-

nal gradients in avian colourfulness. Nature Ecology & Evolution ,

6 (5), 622–629. https:// doi.org/ 10.1038/ s41559- 022- 01714- 1

Deng , J., Dong, W., Socher, R., … Fei-Fei, L. (2009). Imagenet: A large-

scale hierarchical image database. 2009 IEEE Conference on Com-

puter Vision and Pattern Recognition , 248–255.

He , K., Gkioxari, G., Dollar, P., … Girshick, R. (2017). Mask R-CNN.

2017 IEEE International Conference on Computer Vision (ICCV) ,

2980–2988. https:// doi.org/ 10.1109/ ICCV.2017.322

He , Y., Cooney, C. R., Maddock, S., … Thomas, G. H. (2023). Using

pose estimation to identify regions and points on natural history

specimens. PLOS Computational Biology , 19 (2), e1010933. https:

// doi.org/ 10.1371/ journal.pcbi.1010933

He , Y., Varley, Z. K., Nouri, L. O., … Cooney, C. R. (2022). Deep

learning image segmentation reveals patterns of UV reflectance evo-

lution in passerine birds. Nature Communications , 13 (1), 5068.

https:// doi.org/ 10.1038/ s41467- 022- 32586- 5

Huh , M., Agrawal, P., & Efros, A. A. (2016). What makes imagenet

good for transfer learning? arXiv, arXiv:1608.08614, preprint: not

peer reviewed. https:// doi.org/ 10.48550/arXiv.1608.08614

John , A., Theobald, E. J., Cristea, N., … Hille Ris Lambers, J. (2024).

Using photographs and deep neural networks to understand flower-

ing phenology and diversity in mountain meadows. Remote Sensing

in Ecology and Conservation , 10 (4), 480–499. https:// doi.org/ 10.1

002/rse2.382

Kirillov , A., Mintun, E., Ravi, N., … Girshick, R. (2023). Segment any-

thing. Proceedings of the IEEE/CVF international conference on

computer vision , (pp. 4015–4026). http:// arxiv.org/ abs/ 2304.02643

Lin , T.-Y., Maire, M., Belongie, S. J., … Zitnick, C. L. (2014). Microsoft

COCO: Common objects in context. Computer vision–ECCV 2014:

13th European conference, Zurich, Switzerland, September 6-12,

2014, proceedings, part v 13 (pp. 740–755). Springer. http://arxiv.

org/ abs/ 1405.0312

Lürig , M. D. (2022). Phenopype : A phenotyping pipeline for python.

Methods in Ecology and Evolution , 13 (3), 569–576. https://doi.org/

10.1111/2041-210X.13771

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

https://academic.oup.com/jeb/article-lookup/doi/10.1093/jeb/voaf058#supplementary-data
https://github.com/echanhe/phenolearn
https://zenodo.org/records/15350513
https://zenodo.org/records/8152784
https://zenodo.org/records/10909841
https://www.tensorflow.org/
https://doi.org/10.1111/2041-210X.12035
https://doi.org/10.3897/zookeys.209.3178
https://doi.org/10.1111/2041-210X.12508
http://arxiv.org/abs/1706.05587
https://doi.org/10.1038/s41559-022-01714-1
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1371/journal.pcbi.1010933
https://doi.org/10.1038/s41467-022-32586-5
https://doi.org/10.48550/arXiv.1608.08614
https://doi.org/10.1002/rse2.382
http://arxiv.org/abs/2304.02643
http://arxiv.org/abs/1405.0312
https://doi.org/10.1111/2041-210X.13771

Journal of Evolutionary Biology , 2025, Vol. 0, No. 0 11

Maia , R., Gruson, H., Endler, J. A., …White, T. E. (2019). Pavo 2: New

tools for the spectral and spatial analysis of colour in R. Methods in

Ecology and Evolution , 10 (7), 1097–1107. https:// doi.org/ 10.1111/

2041-210X.13174

Mathis , A., Mamidanna, P., Cury, K. M., … Bethge, M. (2018).

DeepLabCut: Markerless pose estimation of user-defined body parts

with deep learning. Nature Neuroscience , 21 (9), 1281–1289. https:

// doi.org/ 10.1038/ s41593- 018- 0209- y

Mulqueeney , J. M., Searle-Barnes, A., Brombacher, A., …Ezard, T. H. G.

(2024). How many specimens make a sufficient training set for au-

tomated three-dimensional feature extraction? Ro y al Society Open

Science , 11 (6), rsos.240113. https:// doi.org/ 10.1098/ rsos.240113

Paszke , A., Gross, S., Massa, F., … Chintala, S. (2019). PyTorch: An

imperative style, high-performance deep learning library. 33rd

Conference on Neural Information Processing Systems (NeurIPS

2019) , Vancouver, Canada, pp. 8024–8035. http://papers.neurips.

cc/paper/9015-pytorch-an-imperative-style-high-performance-

deep-learning-library.pdf

Pennekamp , F., & Schtickzelle, N. (2013). Implementing image analysis

in laboratory-based experimental systems for ecology and evolution:

A hands-on guide. Methods in Ecology and Evolution , 4 (5), 483–

492. https:// doi.org/ 10.1111/ 2041-210X.12036

Porto , A., & Voje, K. L. (2020). ML-morph: A fast, accurate and general

approach for automated detection and landmarking of biological

structures in images. Methods in Ecology and Evolution , 11 (4), 500–

512. https:// doi.org/ 10.1111/ 2041-210X.13373

Ravinet , M., Westram, A., Johannesson, K., … Panova, M. (2016).

Shared and nonshared genomic divergence in parallel ecotypes of

L ittorina saxatilis at a local scale. Molecular Ecology , 25 (1), 287–

305. https:// doi.org/ 10.1111/ mec.13332

Ray , S., & Stopfer, M. A. (2022). Argos: A toolkit for tracking multiple

animals in complex visual environments. Methods in Ecology and

Evolution , 13 (3), 585–595. https:// doi.org/ 10.1111/ 2041-210X.13

776

Rohlf , F. J. (2006). tpsDig, Digitize Landmarks and Outlines (Version

2.05). Stony Brook, NY: Department of Ecology and Evolution,

State University of New York. http:// life.bio.sunysb.edu/ morph/ inde

x.html

Schwartz , S. T., & Alfaro, M. E. (2021). Sashimi : A toolkit for facili-

tating high-throughput organismal image segmentation using deep

learning. Methods in Ecology and Evolution , 12 (12), 2341–2354.

https:// doi.org/ 10.1111/ 2041-210X.13712

Shedrawi , G., Magron, F., Vigga, B., … Andrew, N. L. (2024). Lever-

aging deep learning and computer vision technologies to enhance

management of coastal fisheries in the Pacific region. Scientific

Reports , 14 (1), 20915. https:// doi.org/ 10.1038/ s41598- 024- 71763

-y

Tan , C., Sun, F., Kong, T., … Liu, C. (2018). A survey on deep transfer

learning. In V. K ̊urková, Y. Manolopoulos, B. Hammer, L. Iliadis,

& I. Maglogiannis (Eds.), Artificial neural netw or ks and mac hine

learning—ICANN 2018 . (Vol. 11141 , pp. 270–279). Springer Inter-

national Publishing. https:// doi.org/ 10.1007/ 978- 3- 030- 01424- 7 _ 2

7

Yosinski , J., Clune, J., Bengio, Y., …Lipson, H. (2014). How transferable

are features in deep neural networks? Advances in Neural Informa-

tion Processing Systems , 27 , 8026–8037.

Zelditch , M. L., Swiderski, D. L., Sheets, H. D., … Fink, W. L. (2004).

Geometric morphometrics for biologists: A primer .2nd Edition,

Elsevier Academic Press. https:// doi.org/ 10.1016/ B978- 0- 12- 3869

03- 6.00001- 0

Received September 20, 2024; revised April 1, 2025; accepted May 16, 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Evolutionary Biology. This is an Open Access article

distributed under the terms of the Creative Commons Attribution-NonCommercial License (https:// creativecommons.org/ licenses/by-nc/4.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions

link on the article page on our site-for further information please contact journals.permissions@oup.com

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

4
 J

u
ly

 2
0
2
5

https://doi.org/10.1111/2041-210X.13174
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1098/rsos.240113
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1111/2041-210X.12036
https://doi.org/10.1111/2041-210X.13373
https://doi.org/10.1111/mec.13332
https://doi.org/10.1111/2041-210X.13776
https://ife.bio.sunysb.edu/morph/index.html
https://doi.org/10.1111/2041-210X.13712
https://doi.org/10.1038/s41598-024-71763-y
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1016/B978-0-12-386903-6.00001-0
https://creativecommons.org/licenses/by-nc/4.0/
mailto:reprints@oup.com
mailto:journals.permissions@oup.com

	Introduction
	Installation
	Design and implementation
	Examples
	Discussion
	Future directions
	Supplementary material
	Data availability
	Author contributions
	Funding
	Acknowledgments
	Conflicts of interest
	References

