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Abstract 

The digitization of natural history specimens has unlocked opportunities for large-scale phenotypic trait analysis. In recent years, deep learning has 
shown significant results in accurately predicting annotations on 2D specimen photographs. However, it can be challenging for biologists without 
e xtensiv e related expertise to easily use deep learning. Here, we introduce PhenoLearn, a toolkit developed for biologists to generate annotations 
on 2D specimen images using deep learning. PhenoLearn integrates graphical user interfaces (GUIs) within its two main modules, PhenoLabel 
for image annotation and PhenoTrain for model training and prediction. GUIs increase accessibility and reduce the need for computational 
e xpertise, allo wing biologists to intuitively go through a workflow of labelling training sets, using deep learning, and re vie wing predictions in 
the same tool. We demonstrate PhenoLearn’s capabilities through a case study in v olving the segmentation of plumage areas on bird images, 
sho w casing prediction accuracy and the running time with and without graphics processing unit, highlighting its potential to generate annotations 
with minimal computational cost and time. The toolkit’s modular design and flexibility ensure adaptability, allowing for integration with other 
tools amidst rapidly e v olving deep learning approaches. PhenoLearn bridges the gap between specimen digitization and downstream analysis, 
providing biologists with broader access to deep learning. The source code, installation guides, tutorials with screenshots, and a small demo 
dataset for PhenoLearn can be found at https://github.com/echanhe/phenolearn . 

Keywords: deep learning, phenotyping, image annotation, phenotypic trait, toolkit with user interface 

Introduction 

The process of measuring phenotypic traits on 2D digitized 
specimen images is increasingly used to phenotype specimens 
for a range of tasks. Through the use of annotations such as 
points ( Chang & Alfaro, 2016 ; Zelditch et al., 2004 ) and seg- 
mentations ( Cooney et al., 2022 ; He et al., 2022 ), researchers 
can extract and analyse a variety of morphological measure- 
ments from specimens to provide insights into evolutionary 
and ecological questions. Digitization allows rapid and non- 
invasive measurements of natural history collections and mo- 
bilizes specimens for further analyses, helping to unlock their 
full potential. Techniques such as tray scanning ( Blagoderov 
et al., 2012 ) have significantly accelerated the digitization of 
entomological collections by leveraging robotic automation to 
automatically capture 2D images of specimens directly from 

museum trays. In addition, many computational tools for 
analysing phenotypes like shape ( Adams & Otárola-Castillo,
2013 ) and colouration ( Maia et al., 2019 ) have been devel- 
oped, expanding the breadth of tools available to analyse 
phenotypic traits. However, manually preprocessing images 
(e.g., placing annotations) is time-consuming, especially with 
large datasets such as hundreds of thousands of observations 

( Cooney et al., 2022 ). To prevent manual annotation 
from becoming a bottleneck for mobilising large digital 
datasets, efficient high-throughput data extraction tools are 
essential. 

Classic computer vision algorithms like thresholding, con- 
nected components, and region growing have been used for 
extracting phenotypic information from images, representing 
a significant increase in measurement speed compared to man- 
ual methods ( Lürig, 2022 ; Pennekamp & Schtickzelle, 2013 ). 
Deep learning-based methods have recently become state-of- 
the-art for various computer vision tasks, including object seg- 
mentation in images with complex backgrounds. In particu- 
lar, deep learning applications for measuring digitized speci- 
mens have demonstrated success with different types of anno- 
tations, including points ( Mathis et al., 2018 ; Porto & Voje,
2020 ), bounding boxes ( John et al., 2024 ; Shedrawi et al.,
2024 ), and segmentations ( He et al., 2022 ; Schwartz & Alfaro,
2021 ). These methods yield high-throughput pipelines and ac- 
curate results, illustrating the potential for expanding deep 
learning to other biological datasets. However, several bar- 
riers remain, preventing the widespread application of deep 
learning in ecology and evolutionary biology. 
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Figure 1. Workflow overview of using PhenoLearn to generate annotations for biological datasets. Steps involving the PhenoLearn modules 

(PhenoLabel and PhenoTrain) highlight the connection between digitization (2D imaging) and downstream biological analysis.. 

A significant barrier to the wider adoption of deep learn- 
ing is the generally high level of technical skill required 
for implementation. This issue is often compounded by the 
lack of intuitive platforms that allow nonspecialists to use 
deep learning for phenotyping. Recent phenotyping toolkits, 
such as DeepLabCut ( Mathis et al., 2018 ) and Argos ( Ray 
& Stopfer, 2022 ), have focused on improving accessibility 
through graphical user interfaces (GUIs). The integration of 
deep learning models with GUIs can greatly increase accessi- 
bility, allowing researchers with limited technical knowledge 
to utilize these advanced techniques. Furthermore, the devel- 
opment of fully integrated toolkits for performing a complete 
workflow, including labelling training sets, training models, 
and reviewing predictions, can significantly improve the ac- 
cessibility and efficiency for biologists to apply deep learn- 
ing in biological research. Such a toolkit, tailored for ex- 
tracting traits from 2D specimen photographs for ecologi- 
cal and evolutionary studies, would serve as a much-needed 
bridge between digitization and downstream biological 
analysis. 

Here, we introduce PhenoLearn, a user-friendly toolkit for 
generating annotations using deep learning. PhenoLearn com- 
prises two main modules, PhenoLabel and PhenoTrain, cover- 
ing three main functions ( Figure 1 ). PhenoLabel implements 
both image labelling and reviewing, whereas PhenoTrain im- 
plements the functions for deep learning. As an open-source 
tool with GUIs, PhenoLearn aims to minimize the compu- 
tational expertise required to generate point or segmenta- 
tion predictions using deep learning for 2D biological im- 
age datasets. While PhenoLearn is designed to facilitate the 
entire annotation generation workflow, its modular design 
allows users to use individual functions for desired tasks. 
For instance, PhenoLabel can be used to review predictions 
from other methods. Likewise, labels generated elsewhere can 
be used to train models implemented in PhenoTrain. The 
PhenoLearn pipeline has already been successfully used to 
generate annotations in several large-scale research projects 
( Cooney et al., 2022 ; He et al., 2022 , 2023 ). In this paper, we 
provide a detailed explanation, a user guideline, and an exam- 
ple of using PhenoLearn. 

Installation 

PhenoLearn was developed using Python 3, with the following 
libraries and their versions tested during its development: 

� Python: 3.10 
� PyQt: 5.15.9 

� NumPy: 1.25.1 
� pandas: 2.0.3 
� opencv-python: 4.8.0.74 
� PyTorch: 2.0.1 
� TensorBoard: 2.13.0 

For deep learning, PhenoLearn is optimized to utilize 
NVIDIA graphics processing units (GPUs) through CUDA 

( https://developer.nvidia.com/cuda-toolkit ). While it is possi- 
ble to train models using the CPU on systems without CUDA- 
supported GPUs, this will generally lead to slower running 
time. We recommend using a GPU with at least 8 GB of video 
memory for faster running time. 

PhenoLearn’s two main modules, PhenoLabel and Pheno- 
Train, have their own GUIs. PhenoLabel implements the la- 
belling and reviewing functions and can be accessed by run- 
ning phenolabel.py . PhenoTrain handles deep learning train- 
ing and prediction and is accessed by running phenotrain.py . It 
was tested on Windows 10, macOS 13.6, and Ubuntu 22.04.3 
LTS. 

The source code, installation guides, tutorials with screen- 
shots, and a small demo dataset for PhenoLearn can be found 
at https://github.com/echanhe/phenolearn . Datasets used in 
the example section are available at https://zenodo.org/recor 
ds/8152784 . For Windows users, a binary version of Pheno- 
Label (e.g., a .exe file) is available at https://zenodo.org/recor 
ds/10909841 . Detailed file introductions can be found in the 
Supplementary Material . 

Design and implementation 

Labelling 

This section outlines using PhenoLabel for labelling, in- 
cluding creating a project, placing points/segmentations, and 
managing progress. To start, select “Open Dir” in the File 
menu ( Figure 2A ) to open a folder of images for labelling. 
PhenoLabel uses the imread function from OpenCV-Python 
( Bradski, 2000 ), which supports common formats including 
jpg, png, and tiff. PhenoLabel lists all images in the File panel 
( Figure 2D ) and displays the selected image in the Main panel 
( Figure 2D ). Users can zoom the image and view the cursor 
coordinate and RGB values in the status bar ( Figure 2G ). 

Users can place points or segmentations in the Main panel. 
For points, click the “Point”button on the Toolbar ( Figure 2B ) 
and left-click the image. Points can be named via a dialogue 
box, either inputting a new name or selecting from a drop- 
down menu. Existing points can be modified or deleted in the 
Annotation panel ( Figure 2F ). PhenoLearn records vertical (y) 
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Figure 2. The PhenoLabel GUI. (A) Menu bar: Provides functions for saving projects and loading files; (B) Toolbar: Tools for image annotation 

manipulation; (C) Segmentation toolbar: Tools specifically designed for segmentation tasks; (D) File panel: Displa y s the loaded images and allows users 

to switch between images; (E) Main panel: The central workspace for image annotation; (F) Left: Annotation panel, Point tab for displaying details of 

point-based annotations; Right: Annotation panel, Segmentation tab for displaying details of segmentation-based annotations; (G) Status bar: Displa y s 

status such as image name, zoom level, and cursor position. 

coordinates from the top of the image downward. This is the 
standard convention used in many Python-based image pro- 
cessing libraries, such as OpenCV-Python. In contrast, tools 
like tpsDig ( Rohlf, 2006 ) and many R-based image analysis 
tools typically record coordinates from the bottom up. Users 
working with tpsDig datasets should be aware of this differ- 
ence. 

For segmenting, click the “Segmentation” button on the 
Toolbar, and a Segmentation Toolbar ( Figure 2C ) appears. 
Segmentation classes must be named using the “Add” button 
in the Segmentation tab ( Figure 2F ). Then, by activating the 
“Draw” button in the Segmentation Toolbar and holding the 
left mouse button, users can use a paintbrush to draw the re- 
gion of interest (ROI). Each segmented ROI is automatically 
assigned a distinct colour, allowing users to easily differentiate 
between them. Segmented areas can be removed with the same 
operation with the “Erase”button activated. To efficiently seg- 
ment large areas, users can outline a region and then use the 
“Auto Fill” function to fill the area within the outline. Four 
paintbrush sizes are available: S, M, L, and XL. 

PhenoLabel’s “Fast Labelling” function automates annota- 
tion naming for cases that use consistent annotation names, 
eliminating repeated manual naming. This feature automati- 
cally creates annotation names for subsequent images using 
the annotation names from the current image. To ensure a 
newly placed point matches the preset point names, they need 
to be placed in the same order as the names displayed at the 
bottom of the Annotation panel. 

“Save” and “Save As” in the File menu allow users to save 
their work in JSON format, which includes details on images 
and annotations. “Open Labelling Progress” allows users to 
continue or review their labelling progress. Annotations can 
be exported to PhenoTrain in CSV or binary masks (for single- 
class segmentations). Two types of CSV exports are available: 
a point CSV file and a segmentation CSV file. Refer to Table 1 
for the detailed structure of the JSON and CSV files. 

Deep learning 

PhenoTrain allows users to train models and make predic- 
tions. This section demonstrates how to set up model training 
and prediction in PhenoTrain. 

Model training 

Before training, eleven settings are required via the Train tab 
of PhenoTrain ( Figure 3A ). Some settings have default values 
derived from previous studies ( Chen et al., 2017 ; He et al.,
2017 ; He et al., 2022 , 2023 ) and the PyTorch documentation 
( Paszke et al., 2019 ). These defaults provide a solid starting 
point for various applications: 

(1) Model type . Mask R-CNN ( He et al., 2017 ) for 
point and DeepLabv3 ( Chen et al., 2017 ) for seg- 
mentation. Despite the availability of numerous new 

deep learning architectures, we use Mask R-CNN and 
DeepLabv3 for their robust nature and adaptability 
to various tasks. Being well-established models, there 
are many tutorials available online that facilitate their 
implementation for users who want to understand the 
detailed information. 

(2) Annotation input format . The default option is CSV. 
For single-class segmentations, “Mask”option is also 
available for using binary masks as inputs. Please re- 
fer to Table 1 for the details of the binary mask. 

(3) Annotation file . The CSV annotation file from Phe- 
noLabel (only applicable when “CSV” is selected for 
Setting 2). 

(4) Mask folder . The folder of the binary masks (only ap- 
plicable when “Mask” is selected for Setting 2). 

(5) Image folder. The folder of training images. 
(6) Image resize percentage . Ranges from 1% to 100%, 

keeps aspect ratio, using nearest neighbour interpola- 
tion. 
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Table 1. File str uct ures used in PhenoLearn. 

File Description 

Labelling progress file A JSON file 
From: Created by the save function in PhenoLabel. 
Usage: Can be used to load the progress into PhenoLabel 

Structure: 
The file is a list of dictionaries. 

� “file_name” stores the image name. 
� “points” stores a list of dictionaries. 
o “name” stores the point name 
o “x” stores the x coordinate 
o “y” stores the y coordinate 
o “absence” stores if the point is missing 

� “segmentations” stores a dictionary. 
o Dictionary keys are the names of the segmentations and dictionary values are the segmentations. 

A segmentation is stored as a four-level nested list, which follows the format of segmentation contours extracted 
by OpenCV ( Bradski, 2000 ). The format is: 

� The first level corresponds to the segmentation itself. 
� The second level is the contour level, where one segmentation may include one or more contours. 
� The third and fourth levels pertain to the point level, with each contour having multiple points. 

The example below shows a segmentation consisting of two contours. Contour 1 contains “n” points, and 
Contour 2 contains “m” points. Here < x_12 > represents the x-coordinate of the second point 
in Contour 1. 

Example: 
[ { 
“file_name”: “Abeillia_abeillei_M_5.jpg,”
“points”: 

[ 
{“name”: “beak,” “x”: 1580, “y”: 1072}, 
{“name”: “eye,” “x”: 1876, “y”: 984} 

], 

“segmentations”: 
{“head”: 
[ 
[ 

[ [ < x_11 > , < y_11 > ]], 
[ [ < x_12 > , < y_12 > ]], . . . 
[ [ < x_1n > , < y_1n > ]] 

], 
[ 

[ [ < x_21 > , < y_21 > ]], 
[ [ < x_22 > , < y_22 > ]], . . . 
[ [ < x_2m > , < y_2m > ]] 

] 
] 

}] 

Output Point CSV file A CSV file 
From: Exported by PhenoLabel or generated by PhenoTrain. 
Usage: Can be imported into PhenoTrain as for training. 

Structure: 
The “file” column stores the image names. 
A “< point name > _x” column stores the x coordinate for a point. 
A “< point name > _y” column stores the y coordinate for a point. 
A value of -1 or an empty cell indicates the point is missing. 

Example: 
File beak_x beak_y eye_x eye_y 
Abeillia_abeillei_M_5.jpg 1580 1072 1876 984 

Output segmentation 
CSV file 

A CSV file 

From: Exported by PhenoLabel or generated by PhenoTrain. 
Usage: Can be imported into PhenoTrain for training. 

Structure: 
The “file” column stores the image names. 
The remaining columns store the segmentations. 
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Table 1. Continued 

File Description 

A segmentation is stored as a four-level nested list. 
The details and examples can be found in the “Labelling progress file” row. Here, the example only shows a 
four-level nested list placeholder for better readability. 

Example: 
File Head 
Abeillia_abeillei_M_5.jpg [ [ [ []]]] 

Output binary mask A black and white image 
From: Exported by PhenoLabel or generated by PhenoTrain. 
Usage: Can be imported into PhenoTrain for training. 

A grayscale image is saved under the same name as its input image, with background areas in black and 
segmentation areas in white. To prevent having the output masks replace the input images, 
ensure the input directory is not used as the output directory. 

Property file A CSV file. 
Usage: Import specific specimen properties into PhenoLabel to filter or sort images, allowing users to prioritize 
error-prone images first. 

Structure: 
The “file” column stores the image names. 
Other columns store the properties. 
� Categorical properties are stored as text strings. 
� Numerical properties are stored as numbers. 

Example: 
File Id sex 
Abeillia_abeillei_M_5.jpg 5 M 

Figure 3. The PhenoTrain GUI. The interface has two tabs: (A) the Train tab and (B) the Predict tab. Settings for training and predicting can be specified in 

each tab. 

(7) Validation set percentage . The percentage of valida- 
tion images used for evaluating the model per epoch. 
A common split is 80/20 for training/validating. 

(8) Batch size . The number of images processed in 
one training iteration. The default is 1. A smaller 
batch size saves memory but may lead to less stable 
optimization. Conversely, a larger batch size may pro- 
vide better optimization, but it uses more memory. 
Users need to test a set of batch sizes to find the opti- 
mal value. 

(9) Training epochs . The number of times the entire train- 
ing set passes through the model. Training for more 
epochs may lead to better model performance. The 
default training epoch is set to 1. Users can estimate 
the training time by training for one epoch. 

(10) Learning rate . Controls the step size during the opti- 
mization phase of training. The default learning rate 
for PhenoTrain is 0.001. A too-large learning rate 
may result in overly large steps, causing the model to 
miss the optimum. A too-small learning rate might 
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lead to a very slow convergence towards the opti- 
mum. 

(11) Level of training . Controls the proportion of the 
model that is trained. The options are Minimal, In- 
termediate, and Full. “Minimal” trains only the final 
layers, “Intermediate” trains half of the model layers, 
and “Full” trains the entire model. 

(12) CPU / GPU . Select whether to use the CPU or GPU for 
training. If GPU is selected but no GPU is available on 
the device, CPU will be used. 

When the training is completed, a .pth file is saved in the 
“saved_model” folder. 

The training level setting utilizes transfer learning ( Tan 
et al., 2018 ), focusing on training with a pretrained model. 
Transfer learning diverges from the approach of using ran- 
domly initialized model weights, which generates poor ini- 
tial predictions and can take a longer training period. In- 
stead, it leverages a pretrained model, which effectively gives 
the model prior knowledge gained from previous tasks. 
This approach can train on parts of a model and achieve 
satisfactory results, saving both time and computational 
resources. Both DeepLabV3 and Mask-R-CNN were pre- 
trained on the COCO dataset ( Lin et al., 2014 ), which is a 
large-scale image dataset for computer vision tasks such as 
segmentation. 

PhenoTrain integrates with TensorBoard ( Martín Abadi 
et al., 2015 ) to visualize the training progress. Logs are saved 
in the “runs” folder. To view logs in TensorBoard, run this 
command: ‘tensorboard—logdir == runs’ in Python. Upon ex- 
ecution, it can be viewed in a web browser at http://localhost: 
6006/. Users can view and compare across different training 
runs. 

TensorBoard saves training and validation loss, along with 
evaluation metrics. Training loss indicates the model’s learn- 
ing efficiency, while validation loss evaluates performance on 
the validation set. Point accuracy is assessed using the pixel 
distance (Euclidean distances between two points on an im- 
age). The Dice Score is used to evaluate segmentations based 
on the overlap between predicted and manual segmentations. 
The Dice Score ranges from 0 (lowest) to 1 (highest). Aver- 
age and class-specific metrics for points or segmentations are 
stored. 

Generating predictions 

Once a well-trained model is saved, users can generate predic- 
tions in the Predict tab ( Figure 3B ) by configuring the follow- 
ing seven settings: 

(1) Model type. Point or segmentation. 
(2) Output format . Options are CSV file or mask images 

(for single-class segmentations only). 
(3) Choose model. .pth file saved from training. 
(4) Image folder . The folder of images for prediction. 
(5) Image name file . CSV file with one column named 

“file” for image names. PhenoLabel can export an Im- 
age name file when no annotations are presented for 
the images. 

(6) Choose the output folder. A folder for the prediction 
file. 

(7) Image resize percentage. Ranges from 1% to 100% 

and should be consistent with the percentage used in 
training. 

(8) CPU/GPU. Select whether to use the CPU or GPU for 
predicting. If GPU is selected but no GPU is available 
on the device, CPU will be used. 

PhenoTrain provides real-time updates during both training 
and prediction phases, including a progress bar and elapsed 
time display. 

Reviewing predictions 

Deep learning predictions are not perfectly accurate, and re- 
viewing predictions is often necessary to confirm and/or im- 
prove accuracy for biological applications. To facilitate this, 
we have incorporated two features within PhenoLabel: (1) Re- 
view Mode and (2) Review Assistant to improve reviewing 
efficiency. 

Users can open an image folder and import predictions (e.g., 
outputs from PhenoTrain) into PhenoLabel, and subsequently 
review and improve these predictions. By activating the Re- 
view Mode in the Toolbar, PhenoLabel displays multiple im- 
age thumbnails with annotations ( Figure 4A ). In this mode, 
users can quickly browse through images and flag any with 
incorrect predictions by ticking adjacent checkboxes. After 
checking through thumbnails, click “Show Flagged Images”
button to show only the flagged images for a more focused 
review . Additionally , it is possible to export the predicted an- 
notations for input into other outlier detection methods and 
to create flagged images. 

The Review Assistant improves review efficiency by lever- 
aging specimen metadata. By prioritizing images with specific 
properties (e.g., a problematic species), users can optimize ac- 
curacy and time efficiency. The Review Assistant facilitates 
this by offering options to sort or filter images based on prop- 
erties ( Figure 4B ), which can be imported from a property 
file ( Table 1 ). It can sort images by numerical properties (e.g., 
specimen length) and filter images by categorical properties 
(e.g., taxa). The “Reset” button clears all filters and sorting. 

Examples 

The examples described below were executed on a Windows 
10 system featuring an Intel(R) Core(TM) i7-11800H CPU, 
16 GB of RAM, and an RTX 3080 GPU with 16 GB of 
video memory (VRAM). For memory usage results, the highest 
memory allocation observed in Task Manager was recorded 
for CPU usage, while GPU memory usage was from the out- 
put of the nvidia-smi command. 

Segmenting with PhenoLearn 

We tested PhenoLearn on a dataset of 220 bird images 
(4948 × 3280 pixels) to segment the whole plumage area. We 
used 120 images for training and the remaining 100 images for 
prediction. The 120 training images were annotated in Phe- 
noLabel for training. The DeepLabv3 model was trained for 
five epochs with a 20% validation set, a batch size of two, a 
learning rate of 0.001, a minimal training level, and an input 
resolution of 494 × 328 pixels (10% downsampling). 

The training process was faster with GPU, taking 3 min, 
compared to 13 min without it (CPU only). Predictions were 
generated in under a minute with GPU and 4 min without it. 
Examples of the predictions can be found in Figure 5 . One of 
the authors (Y.H.) spent 5 min reviewing 100 images. An ad- 
ditional 4 min were used to correct predictions for these 18 
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Figure 4. The PhenoLabel GUI with Review Mode activated. (A) The Review panel, which replaces the Main panel, displays image thumbnails with 

annotations. (B) The Review Assistant. In this example, it is used to select male specimens and sort images by ID. 

Figure 5. Examples of the segmentation predictions in the re vie w mode. 

images. In addition, we tested the training time, GPU usage, 
and performance for using various configurations of GPU and 
CPU with different training levels provide to users with a com- 
prehensive reference. The results are summarized in Table 2 . 

Placing points with phenolearn 

We evaluated PhenoLearn on a dataset of 220 Littorina im- 
ages, each measuring 2592 × 1944 pixels, with four points 

annotated on each image according to a 15-landmark scheme 
derived from Ravinet et al. (2016) . For this study, 120 images 
were used for training, while the remaining 100 served for pre- 
diction. Annotations for the training images were performed 
using PhenoLabel. 

We trained a Mask R-CNN model over five epochs, using 
a validation set comprising 20% of the data, a batch size of 
two, a learning rate of 0.001, and an input resolution reduced 
to 518 × 388 pixels (20% downsampling). We conducted 
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Table 2. Training time, memory usage (RAM for CPU and VRAM for GPU), and performance across different hardware configurations and training levels 

on the segmentation test dataset. 

Training level Hardware Training time (min) Memory usage (GB) Average dice score 

Minimal GPU 2 1 0.90 
CPU 13 1.2 

Intermediate GPU 3 3.5 0.94 
CPU 26 4.1 

Full GPU 3 3.9 0.93 
CPU 30 4.5 

Table 3. Training time, memory usage (RAM for CPU and VRAM for GPU), and performance across different hardware configurations and training levels 

on the point test dataset. 

Training level Hardware Training time (min) Memory usage (GB) Average pixel distance 

Minimal GPU 2 2.7 138 
CPU 15 1.5 

Intermediate GPU 2 3 126 
CPU 25 1.9 

Full GPU 3 4.5 37 
CPU 29 3.5 

experiments using both GPU and CPU across various training 
levels. The best performance was an average pixel distance of 
21. Details on GPU usage and the performance of different 
runs can be found in Table 3 . 

Examples of the predictions made using PhenoLearn are il- 
lustrated in Figure 6 . One of the authors (Y.H.) spent 5 min 
reviewing 100 Littorina images, during which 19 images with 
inaccurately placed points were flagged. An additional 4 min 
were spent to correct these predictions. 

The performance of PhenoTrain can vary with different 
datasets and training settings. As shown in the results, train- 
ing from scratch is not guaranteed to outperform fine-tuning 
pretrained models (see Table 2 ). The pretrained models used 
in PhenoLearn are based on the ImageNet dataset ( Deng et al.,
2009 ), which provides a large and diverse set of features as a 
strong starting point. Pretrained models are also less prone to 
overfitting and more capable of generalizing to new datasets 
( Huh et al., 2016 ; Yosinski et al., 2014 ). This advantage makes 
fine-tuning a pretrained network a reliable choice in many sce- 
narios. However, the relative performance of these approaches 
can only be determined through testing. Based on our 
observations, we recommend starting with fine-tuning for 
most use cases and minimum computational cost. 

Another important point is that the randomness inherent 
in the training process, such as random weight initialization 
and data shuffling during batch creation, can lead to variabil- 
ity in results. Even with identical configurations and training 
data, different runs may yield slightly different outcomes. This 
variability should be considered when interpreting results. 

Here are some other general guidelines: 

� Test model performance with a small subset of your 
dataset (e.g., 20 images) to quickly assess learning 
progress by monitoring if validation loss decreases and 
the metrics on the validation set are increasing, extend 
the training to the full dataset. 

� Manage memory (either RAM or video memory) by 
starting with an input resolution of around 500 × 500 
pixels. The resolution can be incrementally increased. 

� Carefully select the learning rate, as it significantly im- 
pacts model training. A learning rate that is too large 

may cause the model to diverge or produce unstable re- 
sults. For example, using a learning rate of 0.1 on our 
point dataset caused the loss to become null, resulting 
in training failure. Conversely, a very small learning rate 
can result in slow learning and require a large number of 
epochs to converge. We recommend that users try multi- 
ple training runs with different learning rates and mon- 
itor performance to find an appropriate setting for their 
dataset. 

� Better performance may be achieved by increasing the 
input resolution, training set size, training epochs, and 
training level. Increasing these settings leads to longer 
training times. Results from runs with various configura- 
tions are provided in the Supplementary Material , where 
some performance differences can be observed across 
settings. However, we note that these comparisons are 
based on a small number of runs and should be inter- 
preted with caution. 

Users can change these settings to fit their datasets and re- 
search requirements. 

Discussion 

In summary, PhenoLearn provides a user-friendly, high- 
throughput data extraction pipeline with fully integrated 
GUIs, enabling biologists without extensive computational 
skills to effectively measure phenotypic traits from images. 
While tools like DeepLabCut and Argos offer robust solutions 
for specific phenotyping tasks, they focus more deeply on an- 
imal tracking, primarily supporting point-based annotations. 
In contrast, PhenoLearn combines support for point annota- 
tions and segmentation tasks within a single toolkit and has 
already been successfully applied for both annotation types in 
previously published studies ( Cooney et al., 2022 ; He et al.,
2022 , 2023 ). PhenoLearn also includes functions tailored 
specifically for handling 2D image datasets of natural history 
collections. These features include “Fast Labelling,” which 
streamlines the annotation naming process, and “Review 

Mode” and “Review Assistant,” which leverage specimen 
metadata to simplify the review process. These capabilities 
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Figure 6. Examples of the point predictions in the re vie w mode. 

make PhenoLearn particularly suited for natural history col- 
lections, which often include rich metadata. Together, these 
features position PhenoLearn as a complementary tool for 
phenotyping 2D images, offering unique advantages for re- 
searchers working with such datasets. 

As Lürig (2022) highlights, classic computer vision meth- 
ods are more accessible to biologists with only CPUs. To facil- 
itate the wider application of deep learning among biologists 
without GPU access, PhenoLearn leverages pretrained mod- 
els and partial model training to shorten CPU training times. 
Moreover, small training sets can yield accurate predictions 
for photographs with a highly consistent digitization set-up, 
as minimal variation among images may bring more efficient 
training ( Mulqueeney et al., 2024 ). From our results, it ap- 
pears that CPU usage requires slightly more memory com- 
pared to GPU usage. However, it is more cost-effective to up- 
grade system RAM than to purchase GPUs with equivalent 
VRAM capacity . Additionally , most current consumer-grade 
laptops are equipped with at least 8 GB of RAM, making it 
feasible for a wide range of researchers to run PhenoLearn ef- 
fectively on readily available CPU hardware. These features 
make predicting annotations on digitized specimens possible 
using only CPUs. 

The modular design of PhenoLearn, comprising separate 
modules for image annotation (PhenoLabel) and deep learn- 
ing (PhenoTrain), offers flexibility to integrate with other 
tools. This feature is particularly important in the fast- 
developing field of machine learning, where new and powerful 

methods are continually being developed, such as Segment 
Anything ( Kirillov et al., 2023 ), the foundation model for se- 
mantic segmentation. Thus, with PhenoLearn, users have the 
option to export annotations from PhenoLabel for other deep 
learning methods, and then use PhenoLabel again for efficient 
prediction reviewing. PhenoLearn supports multiple output 
formats (CSV, JSON, and image-based segmentation), mak- 
ing it compatible with other methods or toolkits. These for- 
mats can be easily converted into target Python data struc- 
tures commonly used in deep learning pipelines. For example, 
regardless of the format, annotations can be transformed into 
2D tensors that represent segmentations or point heatmaps, 
which are among the most used data structures for segmenta- 
tion and point predictions. PhenoLabel can also simply serve 
as a manual labelling tool for small datasets. 

Taken together, PhenoLearn is a versatile toolkit that 
bridges the gap between biological image datasets and down- 
stream analysis, facilitating greater access for researchers to 
deep learning tools for image processing and data extraction. 

Futur e dir ections 

Future development of PhenoLearn will likely focus on four 
main areas: (1) Optimization of the user interface based on 
user feedback to increase usability. (2) Improvement of soft- 
ware performance, such as integrating multithreading for 
displaying thumbnails, which will increase the efficiency of 
the review process. (3) Expansion of supported annotation 
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types based on future user requirements. Adding bounding 
box annotations, for instance, could significantly broaden 
the toolkit’s applications, including object recognition tasks, 
which can be used to identify specimen appearances in lab- 
oratory or camera trap photographs. (4) Integrating alterna- 
tive and newer models, such as Segment Anything ( Kirillov 
et al., 2023 ) and other state-of-the-art deep learning mod- 
els, to further enhance segmentation and landmark prediction 
capabilities. 

Supplementary material 

Supplementary material is available at Journal of 
Evolutionary Biology online. 

Data availability 

All code, datasets, and binaries used in this study are publicly 
archived and available: 

� Source code: The PhenoLearn source code is available 
on GitHub for continued development: https://github 
.com/echanhe/phenolearn . A snapshot of the code cor- 
responding to the version used in this paper has been 
archived on Zenodo and assigned a DOI: https://zenodo 
.org/records/15350513 . 

� Example datasets: The bird and Littorina test datasets 
used for evaluation are available on Zenodo: https://ze 
nodo.org/records/8152784 . 

� Binary executable: The compiled Windows binary of the 
PhenoLabel annotation tool is also archived on Zenodo: 
https://zenodo.org/records/10909841 . 
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