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 37 

Abstract  38 

The digitisation of natural history specimens has unlocked opportunities for large-scale 39 
phenotypic trait analysis. In recent years, deep learning has shown significant results in 40 
accurately predicting annotations on 2D specimen photographs. However, it can be 41 
challenging for biologists without extensive related expertise to easily use deep learning. 42 
Here, we introduce PhenoLearn, a toolkit developed for biologists to generate 43 
annotations on 2D specimen images using deep learning. PhenoLearn integrates 44 
graphical user interfaces (GUIs) within its two main modules, PhenoLabel for image 45 
annotation and PhenoTrain for model training and prediction. GUIs increase 46 
accessibility and reduce the need for computational expertise, allowing biologists to 47 
intuitively go through a workflow of labelling training sets, using deep learning, and 48 
reviewing predictions in the same tool. We demonstrate PhenoLearn's capabilities 49 
through a case study involving the segmentation of plumage areas on bird images, 50 
showcasing prediction accuracy and the running time with and without GPU, 51 
highlighting its potential to generate annotations with minimal computational cost and 52 
time. The toolkit's modular design and flexibility ensure adaptability, allowing for 53 
integration with other tools amidst rapidly evolving deep learning approaches. 54 
PhenoLearn bridges the gap between specimen digitisation and downstream analysis, 55 
providing biologists with broader access to deep learning. The source code, installation 56 
guides, tutorials with screenshots, and a small demo dataset for PhenoLearn can be 57 
found at https://github.com/echanhe/phenolearn. 58 

Keywords: Deep Learning, Phenotyping, Image Annotation, Phenotypic Trait, Toolkit 59 
with User Interface.  60 
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Introduction 61 
The process of measuring phenotypic traits on 2D digitised specimen images is 62 
increasingly used to phenotype specimens for a range of tasks. Through the use of 63 
annotations such as points (Chang & Alfaro, 2016; Zelditch et al., 2004) and 64 
segmentations (Cooney et al., 2022; Y. He et al., 2022), researchers can extract and 65 
analyse a variety of morphological measurements from specimens to provide insights 66 
into evolutionary and ecological questions. Digitisation allows rapid and non-invasive 67 
measurements of natural history collections and mobilises specimens for further 68 
analyses, helping to unlock their full potential. Techniques such as tray scanning 69 
(Blagoderov et al., 2012) have significantly accelerated the digitisation of entomological 70 
collections, by leveraging robotic automation to automatically capture 2D images of 71 
specimens directly from museum trays. In addition, many computational tools for 72 
analysing phenotypes like shape (Adams & Otárola-Castillo, 2013) and colouration 73 
(Maia et al., 2019) have been developed, expanding the breadth of tools available to 74 
analyse phenotypic traits. However, manually pre-processing images (e.g., placing 75 
annotations) is time-consuming, especially with large datasets such as hundreds of 76 
thousands of observations (Cooney et al., 2022). To prevent manual annotation from 77 
becoming a bottleneck for mobilising large digital datasets, efficient high-throughput 78 
data extraction tools are essential. 79 

Classic computer vision algorithms like thresholding, connected components and region 80 
growing have been used for extracting phenotypic information from images, 81 
representing a significant increase in measurement speed compared to manual 82 
methods (Lürig, 2022; Pennekamp & Schtickzelle, 2013). Deep learning-based methods 83 
have recently become state-of-the-art for various computer vision tasks, including object 84 
segmentation in images with complex backgrounds. In particular, deep learning 85 
applications for measuring digitised specimens have demonstrated success with 86 
different types of annotations, including points (Mathis et al., 2018; Porto & Voje, 2020), 87 
bounding boxes (John et al., 2024; Shedrawi et al., 2024) and segmentations (Y. He et 88 
al., 2022; Schwartz & Alfaro, 2021). These methods yield high-throughput pipelines and 89 
accurate results, illustrating the potential for expanding deep learning to other 90 
biological datasets. However, several barriers remain preventing the widespread 91 
application of deep learning in ecology and evolutionary biology. 92 

A significant barrier to the wider adoption of deep learning is the generally high level of 93 
technical skill required for implementation. This issue is often compounded by the lack 94 
of intuitive platforms that allow non-specialists to use deep learning for phenotyping. 95 
Recent phenotyping toolkits, such as DeepLabCut (Mathis et al., 2018) and Argos (Ray 96 
& Stopfer, 2022), have focused on improving accessibility through graphical user 97 
interfaces (GUIs). The integration of deep learning models with GUIs can greatly 98 
increase accessibility, allowing researchers with limited technical knowledge to utilise 99 
these advanced techniques. Furthermore, the development of fully-integrated toolkits for 100 
performing a complete workflow, including labelling training sets, training models and 101 
reviewing predictions, can significantly improve the accessibility and efficiency for 102 
biologists to apply deep learning in biological research. Such a toolkit, tailored for 103 
extracting traits from 2D specimen photographs for ecological and evolutionary studies, 104 
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would serve as a much-needed bridge between digitisation and downstream biological 105 
analysis. 106 

Here, we introduce PhenoLearn, a user-friendly toolkit for generating annotations using 107 
deep learning. PhenoLearn comprises two main modules, PhenoLabel and PhenoTrain, 108 
covering three main functions (Figure 1). PhenoLabel implements both image labelling 109 
and reviewing, whereas PhenoTrain implements the functions for deep learning. As an 110 
open-source tool with GUIs, PhenoLearn aims to minimise the computational expertise 111 
required to generate point or segmentation predictions using deep learning for 2D 112 
biological image datasets. While PhenoLearn is designed to facilitate the entire 113 
annotation generation workflow, its modular design allows users to use individual 114 
functions for desired tasks. For instance, PhenoLabel can be used to review predictions 115 
from other methods. Likewise, labels generated elsewhere can be used to train models 116 
implemented in PhenoTrain. The PhenoLearn pipeline has already been successfully 117 
used to generate annotations in several large-scale research projects (Cooney et al., 118 
2022; Y. He et al., 2022, 2023). In this paper, we provide a detailed explanation, a user 119 
guideline, and an example of using PhenoLearn. 120 

 121 

 122 
Figure 1. Workflow overview of using PhenoLearn to generate annotations for 123 
biological datasets. Green boxes indicate steps involving PhenoLearn modules (PhenoLabel 124 
and PhenoTrain), which offer a connection between digitisation (2D imaging) and downstream 125 
biological analysis. 126 

Installation 127 
PhenoLearn was developed using Python 3, with the following libraries and their 128 
versions tested during its development: 129 

 Python: 3.10 130 
 PyQt: 5.15.9 131 
 NumPy: 1.25.1 132 
 pandas: 2.0.3 133 
 opencv-python: 4.8.0.74 134 
 PyTorch: 2.0.1 135 
 TensorBoard: 2.13.0 136 
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For deep learning, PhenoLearn is optimised to utilise NVIDIA graphics processing units 137 
(GPUs) through CUDA (https://developer.nvidia.com/cuda-toolkit). While it is possible to 138 
train models using the CPU on systems without CUDA-supported GPUs, this will 139 
generally lead to slower running time. We recommend using a GPU with at least 8GB of 140 
video memory for faster running time. 141 

PhenoLearn’s two main modules, PhenoLabel and PhenoTrain have their own GUIs. 142 
PhenoLabel implements the labelling and reviewing functions and can be accessed by 143 
running phenolabel.py. PhenoTrain handles deep learning training and prediction and 144 
is accessed by running phenotrain.py. It was tested on Windows 10, macOS 13.6, and 145 
Ubuntu 22.04.3 LTS. 146 

The source code, installation guides, tutorials with screenshots, and a small demo 147 
dataset for PhenoLearn can be found at https://github.com/echanhe/phenolearn. 148 
Datasets used in the example section are available at 149 
https://zenodo.org/records/8152784. For Windows users, a binary version of 150 
PhenoLabel (e.g., a .exe file) is available at https://zenodo.org/records/10909841. 151 
Detailed file introductions can be found in the supplementary material. 152 

Design and Implementation 153 
Labelling  154 
This section outlines using PhenoLabel for labelling, including creating a project, placing 155 
points/segmentations, and managing progress. To start, select ‘Open Dir’ in the File 156 
menu (Figure 2a) to open a folder of images for labelling. PhenoLabel uses the imread 157 
function from opencv-python (Bradski, 2000), which supports common formats including 158 
jpg, png and tiff. PhenoLabel lists all images in the File panel (Figure 2d) and displays 159 
the selected image in the Main panel (Figure 2e). Users can zoom the image and view 160 
the cursor coordinate and RGB values in the status bar (Figure 2g). 161 

Users can place points or segmentations in the Main panel. For points, click the 'Point' 162 
button on the Toolbar (Figure 2b) and left-click the image. Points can be named via a 163 
dialogue box, either inputting a new name or selecting from a dropdown menu. Existing 164 
points can be modified or deleted in the Annotation panel (Figure 2f). PhenoLearn 165 
records vertical (y) coordinates from the top of the image downward. This is the 166 
standard convention used in many Python-based image processing libraries, such as 167 
opencv-python. In contrast, tools like tpsDig (Rohlf, 2006) and many R-based image 168 
analysis tools typically record coordinates from the bottom up. Users working with 169 
tpsDig datasets should be aware of this difference. 170 

For segmenting, click the 'Segmentation' button on the Toolbar, and a Segmentation 171 
Toolbar (Figure 2c) appears. Segmentation classes must be named using the ‘Add’ 172 
button in the Segmentation tab (Figure 2f). Then by activating the 'Draw' button in the 173 
Segmentation Toolbar and holding the left mouse button, users can use a paintbrush to 174 
draw the region of interest (ROI). Each segmented ROI is automatically assigned a 175 
distinct colour, allowing users to easily differentiate between them. Segmented areas 176 
can be removed with the same operation with the 'Erase' button activated. To efficiently 177 
segment large areas, users can outline a region and then use the 'Auto Fill' function to 178 
fill the area within the outline. Four paintbrush sizes are available: S, M, L, and XL. 179 
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PhenoLabel's 'Fast Labelling' function automates annotation naming for cases that use 180 
consistent annotation names, eliminating repeated manual naming. This feature 181 
automatically creates annotation names for subsequent images using the annotation 182 
names from the current image. To ensure a newly placed point matches the preset point 183 
names, they need to be placed in the same order as the names displayed at the bottom 184 
of the Annotation Panel. 185 

'Save' and 'Save As' in the File menu allow users to save their work in JSON format, 186 
which includes details on images and annotations. 'Open Labelling Progress' allows 187 
users to continue or review their labelling progress. Annotations can be exported to 188 
PhenoTrain in CSV or binary masks (for single-class segmentations). Two types of CSV 189 
exports are available: a point CSV file and a segmentation CSV file. Refer to Table 1 for 190 
the detailed structure of the JSON and CSV files. 191 

 192 

 193 
Figure 2. The PhenoLabel GUI. (a) Menu bar: Provides functions for saving projects and 194 
loading files, (b) Toolbar: Tools for image annotation manipulation, (c) Segmentation Toolbar: 195 
Tools specifically designed for segmentation tasks, (d) File panel: Displays the loaded images 196 
and allows users to switch between images, (e) Main panel: The central workspace for image 197 
annotation, (f) Left: Annotation panel, Point tab for displaying details of point-based annotations; 198 
Right: Annotation panel, Segmentation tab for displaying details of segmentation-based 199 
annotations, (g) Status bar: Displays status such as image name, zoom level, and cursor 200 
position. 201 

 202 

Table 1. File structures used in PhenoLearn. 203 

File Description  
Labelling 
progress file 

A JSON file 
From:  Created by the save function in PhenoLabel. 
Usage: Can be used to load the progress into PhenoLabel 
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Structure: 
The file is a list of dictionaries.  

 “file_name” stores the image name. 
 “points” stores a list of dictionaries.  

o “name” stores the point name 
o “x” stores the x coordinate 
o “y” stores the y coordinate 
o “absence” stores if the point is missing 

 “segmentations” stores a dictionary.  
o Dictionary keys are the names of the segmentations and 

dictionary values are the segmentations.  
 
A segmentation is stored as a four-level nested list, which follows the 
format of segmentation contours extracted by OpenCV (Bradski, 
2000). The format is: 

 The first level corresponds to the segmentation itself. 
 The second level is the contour level, where one segmentation 

may include one or more contours. 
 The third and fourth levels pertain to the point level, with each 

contour having multiple points. 
 

The example below shows a segmentation consisting of two 
contours. Contour 1 contains 'n' points, and Contour 2 contains 'm' 
points. Here <x_12> represents the x-coordinate of the second point 
in Contour 1. 
 
Example: 
[ { 
"file_name": "Abeillia_abeillei_M_5.jpg",  

 
"points":  
  [  
    {"name": "beak", "x": 1580, "y": 1072}, 

{"name": "eye", "x": 1876, "y": 984}  
  ], 
 
"segmentations":  
  {"head":  

[  
   [  
     [ [ <x_11>, <y_11> ] ],  
     [ [ <x_12>, <y_12> ] ],  … 
     [ [ <x_1n>, <y_1n> ] ]  
   ] , 
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   [  
     [ [ <x_21>, <y_21> ] ],  
     [ [ <x_22>, <y_22> ] ],  … 
     [ [ <x_2m>, <y_2m> ] ]  
   ] 
]  

} ] 
 
 

Output Point 
CSV file 

A CSV file  
From:  Exported by PhenoLabel or generated by PhenoTrain. 
Usage: Can be imported into PhenoTrain as for training. 
 
Structure: 
The “file” column stores the image names.  
A “<point name>_x” column stores the x coordinate for a point. 
A “<point name>_y” column stores the y coordinate for a point. 
A value of -1 or an empty cell indicates the point is missing. 
 
Example: 

file beak_x beak_y eye_x eye_y 
Abeillia_abeillei_M_5.jpg 1580 1072 1876 984 

  
 

Output 
segmentation 
CSV file 

A CSV file  
From:  Exported by PhenoLabel or generated by PhenoTrain. 
Usage: Can be imported into PhenoTrain for training. 
 
Structure: 
The “file” column stores the image names.  
The remaining columns store the segmentations. 
 
A segmentation is stored as a four-level nested list.  
The details and examples can be found in the “Labelling progress file” 
row. Here, the example only shows a four-level nested list 
placeholder for better readability. 
 
Example: 
file head 
Abeillia_abeillei_M_5.jpg [ [ [ [ ] ] ] ] 

 
 

Output binary 
mask 

A black and white image 
From:  Exported by PhenoLabel or generated by PhenoTrain. 
Usage: Can be imported into PhenoTrain for training. 
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A grayscale image is saved under the same name as its input image, 
with background areas in black and segmentation areas in white. To 
prevent having the output masks replace the input images, ensure the 
input directory is not used as the output directory. 

 
 

Property file A CSV file. 
Usage: Import specific specimen properties into PhenoLabel to filter 
or sort images, allowing users to prioritise error-prone images first. 
 
Structure: 
The “file” column stores the image names.  
Other columns store the properties. 

 Categorical properties are stored as text strings. 
 Numerical properties are stored as numbers. 

 
Example: 
file id sex 
Abeillia_abeillei_M_5.jpg 5 M 

 
 

 204 

Deep Learning 205 
PhenoTrain allows users to train models and make predictions. This section 206 
demonstrates how to set up model training and prediction in PhenoTrain. 207 

Model Training 208 

Before training, eleven settings are required via the Train tab of PhenoTrain (Figure 3a). 209 
Some settings have default values derived from previous studies (Chen et al., 2017; K. 210 
He et al., 2017; Y. He et al., 2022, 2023) and the PyTorch documentation (Paszke et al., 211 
2019). These defaults provide a solid starting point for various applications:  212 

(1) Model type. Mask R-CNN (K. He et al., 2017) for point and DeepLabv3 (Chen et 213 
al., 2017) for segmentation. Despite the availability of numerous new deep 214 
learning architectures, we use Mask R-CNN and DeepLabv3 for their robust nature 215 
and adaptability to various tasks. Being well-established models, there are many 216 
tutorials available online that facilitate their implementation for users who want to 217 
understand the detailed information. 218 

(2) Annotation Input format. The default option is CSV. For single-class segmentations, 219 
'Mask' option is also available for using binary masks as inputs. Please refer to 220 
Table 1 for the details of the binary mask. 221 

(3) Annotation file. The CSV annotation file from PhenoLabel (only applicable when 222 
‘CSV is selected for Setting 2). 223 
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(4) Mask folder. The folder of the binary masks (only applicable when ‘Mask’ is 224 
selected for Setting 2). 225 

(5) Image folder. The folder of training images.  226 
(6) Image resize percentage. Ranges from 1-100%, keeps aspect ratio, using nearest 227 

neighbour interpolation. 228 
(7) Validation set percentage. The percentage of validation images used for 229 

evaluating the model per epoch. A common split is 80/20 for training/validating. 230 
(8) Batch size. The number of images processed in one training iteration. The default 231 

is 1. A smaller batch size saves memory but may lead to less stable optimisation. 232 
Conversely, a larger batch size may provide better optimisation, but it uses more 233 
memory. Users need to test a set of batch sizes to find the optimal value. 234 

(9) Training epochs. The number of times the entire training set passes through the 235 
model. Training for more epochs may lead to better model performance. The 236 
default training epoch is set to 1. Users can estimate the training time by training 237 
for one epoch. 238 

(10) Learning rate. Controls the step size during the optimisation phase of training. 239 
The default learning rate for PhenoTrain is 0.001. A too-large learning rate may 240 
result in overly large steps, causing the model to miss the optimum. A too-small 241 
learning rate might lead to a very slow convergence towards the optimum. 242 

(11) Level of training. Controls the proportion of the model that is trained. The options 243 
are Minimal, Intermediate and Full. "Minimal" trains only the final layers, 244 
"Intermediate" trains half of the model layers, and "Full" trains the entire model.  245 

(12) CPU/GPU. Select whether to use the CPU or GPU for training. If GPU is selected 246 
but no GPU is available on the device, CPU will be used. 247 

When the training is completed, a .pth file is saved in the ‘saved_model’ folder. 248 

 249 

 250 
Figure 3. The PhenoTrain GUI. The interface has two tabs, (a) the Train tab and (b) the Predict 251 
tab. Settings for training and predicting can be specified in each tab. 252 
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 253 

The training level setting utilises transfer learning (Tan et al., 2018), focusing on training 254 
with a pre-trained model. Transfer learning diverges from the approach of using 255 
randomly initialised model weights, which generates poor initial predictions and can take 256 
a longer training period. Instead, it leverages a pre-trained model, which effectively 257 
gives the model prior knowledge gained from previous tasks. This approach can train on 258 
parts of a model and achieve satisfactory results, saving both time and computational 259 
resources. Both DeepLabV3 and Mask-R-CNN were pre-trained on the COCO dataset 260 
(Lin et al., 2014), which is a large-scale image dataset for computer vision tasks such as 261 
segmentation. 262 

PhenoTrain integrates with TensorBoard (Martín Abadi et al., 2015) to visualise the 263 
training progress. Logs are saved in the ‘runs’ folder. To view logs in TensorBoard, run 264 
this command: `tensorboard --logdir==runs` in python. Upon execution, it can be 265 
viewed in a web browser at http://localhost:6006/. Users can view and compare across 266 
different training runs. 267 

TensorBoard saves training and validation loss, along with evaluation metrics. Training 268 
loss indicates the model's learning efficiency, while validation loss evaluates 269 
performance on the validation set. Point accuracy is assessed using the pixel distance 270 
(Euclidean distances between two points on an image). The Dice Score is used to 271 
evaluate segmentations, based on the overlap between predicted and manual 272 
segmentations. The Dice Score ranges from 0 (lowest) to 1 (highest). Average and 273 
class-specific metrics for points or segmentations are stored. 274 

Generating Predictions 275 

Once a well-trained model is saved, users can generate predictions in the Predict tab 276 
(Figure 3b) by configuring the following seven settings:  277 

(1) Model type. Point or Segmentation. 278 
(2) Output format. Options are CSV file or mask images (for single-class 279 

segmentations only). 280 
(3) Choose model. .pth file saved from training. 281 
(4) Image folder. The folder of images for prediction. 282 
(5) Image name file. CSV file with one column named ‘file’ for image names. 283 

PhenoLabel can export an Image name file when no annotations are presented for 284 
the images. 285 

(6) Choose the output folder. A folder for the prediction file. 286 
(7) Image resize percentage. Ranges from 1-100% and should be consistent with the 287 

percentage used in training. 288 
(8) CPU/GPU. Select whether to use the CPU or GPU for predicting. If GPU is 289 

selected but no GPU is available on the device, CPU will be used. 290 

PhenoTrain provides real-time updates during both training and prediction phases, 291 
including a progress bar and elapsed time display.  292 
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Reviewing predictions 293 
Deep learning predictions are not perfectly accurate, and reviewing predictions is often 294 
necessary to confirm and/or improve accuracy for biological applications. To facilitate 295 
this, we have incorporated two features within PhenoLabel: (1) Review Mode and (2) 296 
Review Assistant to improve reviewing efficiency. 297 

Users can open an image folder and import predictions (e.g., outputs from PhenoTrain) into 298 
PhenoLabel, and subsequently review and improve these predictions. By activating the Review 299 
Mode in the Toolbar, PhenoLabel displays multiple image thumbnails with annotations (Figure 4 300 

 301 
Figure 4a). In this mode, users can quickly browse through images and flag any with 302 
incorrect predictions by ticking adjacent checkboxes. After checking through thumbnails, 303 
click 'Show Flagged Images' button to show only the flagged images for a more focused 304 
review. Additionally, it is possible to export the predicted annotations for input into other 305 
outlier detection methods and to create flagged images. 306 

The Review Assistant improves review efficiency by leveraging specimen metadata. By 307 
prioritising images with specific properties (e.g. a problematic species), users can optimise 308 
accuracy and time efficiency. The Review Assistant facilitates this by offering options to sort or 309 
filter images based on properties (Figure 4 310 
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 311 
Figure 4b), which can be imported from a property file (Table 1). It can sort images by 312 
numerical properties (e.g. specimen length) and filter images by categorical properties 313 
(e.g. taxa). The 'Reset' button clears all filters and sorting. 314 

 315 
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 316 
Figure 4. The PhenoLabel GUI with Review Mode activated. (a) The Review panel, which 317 
replaces the Main panel, displays image thumbnails with annotations. (b) The Review Assistant. 318 
In this example, it is used to select male specimens and sort images by ID.  319 

Examples 320 
The examples described below were executed on a Windows 10 system featuring an 321 
Intel(R) Core(TM) i7-11800H CPU, 16 GB of RAM, and an RTX 3080 GPU with 16 GB 322 
of video memory (VRAM). For memory usage results, the highest memory allocation 323 
observed in Task Manager was recorded for CPU usage, while GPU memory usage 324 
was from the output of the nvidia-smi command. 325 

Segmenting with PhenoLearn 326 
We tested PhenoLearn on a dataset of 220 bird images (4948 x 3280 pixels) to 327 
segment the whole plumage area. We used 120 images for training and the remaining 328 
100 images for prediction. The 120 training images were annotated in PhenoLabel for 329 
training. The DeepLabv3 model was trained for five epochs, with a 20% validation set, 330 
batch size of two, 0.001 learning rate, minimal training level, and an input resolution of 331 
494 x 328 pixels (10% downsampling). 332 

The training process was faster with GPU, taking 3 minutes, compared to 13 minutes 333 
without it (CPU only). Predictions were generated in under a minute with GPU and 4 334 
minutes without it. Examples of the predictions can be found in Figure 5. One of the 335 
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authors (Y.H.) spent five minutes reviewing 100 images. An additional four minutes 336 
were used to correct predictions for these 18 images. In addition, we tested the training 337 
time, GPU usage and performance for using various configurations of GPU and CPU 338 
with different training levels to users with a comprehensive reference. The results are 339 
summarised in Table 2. 340 

 341 

 342 
Figure 5. Examples of the segmentation predictions in the review mode. 343 

 344 

Table 2. Training time, memory usage (RAM for CPU and VRAM for GPU), and 345 
performance across different hardware configurations and training levels on the 346 
segmentation test dataset. 347 

Training 
Level 

Hardware Training Time 
(Minutes) 

Memory 
Usage (GB) 

Average Dice Score 

Minimal 
GPU 2 1 

0.90 
CPU 13 1.2 

Intermediate 
GPU 3 3.5 

0.94 
CPU 26 4.1 

Full 
GPU 3 3.9 

0.93 
CPU 30 4.5 

 348 

Placing points with PhenoLearn 349 
We evaluated PhenoLearn on a dataset of 220 Littorina images, each measuring 2592 x 350 
1944 pixels, with four points annotated on each image according to a 15-landmark 351 
scheme derived from Ravinet et al. (2016). For this study, 120 images were used for 352 
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training, while the remaining 100 served for prediction. Annotations for the training 353 
images were performed using PhenoLabel. 354 

We trained a Mask R-CNN model over five epochs, using a validation set comprising 20% 355 
of the data, a batch size of two, a learning rate of 0.001, and an input resolution reduced 356 
to 518 x 388 pixels (20% downsampling). We conducted experiments using both GPU 357 
and CPU across various training levels. The best performance was an average pixel 358 
distance of 21. Details on GPU usage and the performance of different runs can be 359 
found in Table 3. 360 

 361 

Table 3. Training time, memory usage (RAM for CPU and VRAM for GPU), and 362 
performance across different hardware configurations and training levels on the point 363 
test dataset. 364 

Training 
Level 

Hardware Training Time 
(Minutes) 

Memory 
Usage 
(GB) 

Average Pixel 
Distance 

Minimal 
GPU 2 2.7 

138 
CPU 15 1.5 

Intermediate 
GPU 2 3 

126 
CPU 25 1.9 

Full 
GPU 3 4.5 

37 
CPU 29 3.5 

 365 

Examples of the predictions made using PhenoLearn are illustrated in Figure 6. One of 366 
the authors (Y.H.) spent five minutes reviewing 100 Littorina images, during which 19 367 
images with inaccurately placed points were flagged. An additional four minutes were 368 
spent to correct these predictions. 369 

 370 
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 371 
Figure 6. Examples of the point predictions in the review mode. 372 

 373 

The performance of PhenoTrain can vary with different datasets and training settings. 374 
As shown in the results, training from scratch is not guaranteed to outperform fine-375 
tuning pre-trained models (see Table 2). The pre-trained models used in PhenoLearn 376 
are based on the ImageNet dataset (Deng et al., 2009), which provides a large and 377 
diverse set of features as a strong starting point. Pre-trained models are also less prone 378 
to overfitting and more capable of generalising to new datasets (Huh et al., 2016; 379 
Yosinski et al., 2014). This advantage makes fine-tuning a pre-trained network a reliable 380 
choice in many scenarios. However, the relative performance of these approaches can 381 
only be determined through testing. Based on our observations, we recommend starting 382 
with fine-tuning for most use cases and minimum computational cost. 383 

Another important point is that the randomness inherent in the training process, such as 384 
random weight initialisation and data shuffling during batch creation, can lead to 385 
variability in results. Even with identical configurations and training data, different runs 386 
may yield slightly different outcomes. This variability should be considered when 387 
interpreting results. 388 

Here are some other general guidelines: 389 

 Test model performance with a small subset of your dataset (e.g., 20 images) to 390 
quickly assess learning progress by monitoring if validation loss decreases and 391 
the metrics on the validation set are increasing. extend the training to the full 392 
dataset. 393 
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 Manage memory (either RAM or video memory) by starting with an input 394 
resolution of around 500 x 500 pixels. The resolution can be incrementally 395 
increased. 396 

 Carefully select the learning rate, as it significantly impacts model training. A 397 
learning rate that is too large may cause the model to diverge or produce 398 
unstable results. For example, using a learning rate of 0.1 on our point dataset 399 
caused the loss to become null, resulting in training failure. Conversely, a very 400 
small learning rate can result in slow learning and require a large number of 401 
epochs to converge. We recommend that users try multiple training runs with 402 
different learning rates and monitor performance to find an appropriate setting for 403 
their dataset. 404 

 Better performance may be achieved by increasing the input resolution, training 405 
set size, training epochs, and training level. Increasing these settings leads to 406 
longer training times. Results from runs with various configurations are provided 407 
in the Supplementary Material, where some performance differences can be 408 
observed across settings. However, we note that these comparisons are based 409 
on a small number of runs and should be interpreted with caution. 410 

Users can change these settings to fit their datasets and research requirements. 411 

Discussion 412 
In summary, PhenoLearn provides a user-friendly, high-throughput data extraction 413 
pipeline with fully integrated GUIs, enabling biologists without extensive computational 414 
skills to effectively measure phenotypic traits from images. While tools like DeepLabCut 415 
and Argos offer robust solutions for specific phenotyping tasks, they focus more deeply 416 
on animal tracking, primarily supporting point-based annotations. In contrast, 417 
PhenoLearn combines support for point annotations and segmentation tasks within a 418 
single toolkit and has already been successfully applied for both annotation types in 419 
previously published studies (Cooney et al., 2022; Y. He et al., 2022, 2023). 420 
PhenoLearn also includes functions tailored specifically for handling 2D image datasets 421 
of natural history collections. These features include 'Fast Labelling,' which streamlines 422 
the annotation naming process, and 'Review Mode' and 'Review Assistant,' which 423 
leverage specimen metadata to simplify the review process. These capabilities make 424 
PhenoLearn particularly suited for natural history collections, which often include rich 425 
metadata. Together, these features position PhenoLearn as a complementary tool for 426 
phenotyping 2D images, offering unique advantages for researchers working with such 427 
datasets. 428 

As Lürig (2022) highlights, classic computer vision methods are more accessible to 429 
biologists with only CPUs. To facilitate the wider application of deep learning among 430 
biologists without GPU access, PhenoLearn leverages pre-trained models and partial 431 
model training to shorten CPU training times. Moreover, small training sets can yield 432 
accurate predictions for photographs with a highly consistent digitisation set-up, as 433 
minimal variation among images may bring more efficient training (Mulqueeney et al., 434 
2024). From our results, it appears that CPU usage requires slightly more memory 435 
compared to GPU usage. However, it is more cost-effective to upgrade system RAM 436 
than to purchase GPUs with equivalent VRAM capacity. Additionally, most current 437 
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consumer-grade laptops are equipped with at least 8 GB of RAM, making it feasible for 438 
a wide range of researchers to run PhenoLearn effectively on readily available CPU 439 
hardware. These features make predicting annotations on digitised specimens possible 440 
using only CPUs. 441 

The modular design of PhenoLearn, comprising separate modules for image annotation 442 
(PhenoLabel) and deep learning (PhenoTrain), offers flexibility to integrate with other 443 
tools. This feature is particularly important in the fast-developing field of machine 444 
learning, where new and powerful methods are continually being developed such as 445 
Segment Anything (Kirillov et al., 2023), the foundation model for semantic 446 
segmentation. Thus, with PhenoLearn, users have the option to export annotations from 447 
PhenoLabel for other Deep Learning methods, and then use PhenoLabel again for 448 
efficient prediction reviewing. PhenoLearn supports multiple output formats (CSV, JSON, 449 
and image-based segmentation), making it compatible with other methods or toolkits. 450 
These formats can be easily converted into target Python data structures commonly 451 
used in deep learning pipelines. For example, regardless of the format, annotations can 452 
be transformed into 2D tensors that represent segmentations or point heatmaps, which 453 
are among the most used data structures for segmentation and point predictions. 454 
PhenoLabel can also simply serve as a manual labelling tool for small datasets. 455 

Taken together, PhenoLearn is a versatile toolkit that bridges the gap between 456 
biological image datasets and downstream analysis, facilitating greater access for 457 
researchers to deep learning tools for image processing and data extraction.  458 

Future Directions 459 
Future development of PhenoLearn will likely focus on four main areas: (1) Optimisation 460 
of the user interface based on user feedback to increase usability. (2) Improvement of 461 
software performance, such as integrating multi-threading for displaying thumbnails, 462 
which will increase the efficiency of the review process. (3) Expansion of supported 463 
annotation types based on future user requirements. Adding bounding box annotations, 464 
for instance, could significantly broaden the toolkit’s applications, including object 465 
recognition tasks which can be used to identify specimen appearances in laboratory or 466 
camera trap photographs. (4) Integrating alternative and newer models, such as 467 
Segment Anything (Kirillov et al., 2023) and other state-of-the-art deep learning models, 468 
to further enhance segmentation and landmark prediction capabilities. 469 

  470 
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