
This is a repository copy of PhenoLearn: a user-friendly toolkit for image annotation and
deep learning-based phenotyping for biological datasets.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/227048/

Version: Accepted Version

Article:

He, Y. orcid.org/0000-0003-3464-7526, Cooney, C.R. orcid.org/0000-0002-4872-9146,
Maddock, S. et al. (1 more author) (2025) PhenoLearn: a user-friendly toolkit for image
annotation and deep learning-based phenotyping for biological datasets. Journal of
Evolutionary Biology. voaf058. ISSN 1010-061X

https://doi.org/10.1093/jeb/voaf058

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1093/jeb/voaf058
https://eprints.whiterose.ac.uk/id/eprint/227048/
https://eprints.whiterose.ac.uk/

© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Evolutionary Biology. This is an Open Access article

distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and

reproduction in any medium, provided the original work is properly cited.

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

PhenoLearn: A user-friendly Toolkit for Image Annotation 1
and Deep Learning-Based Phenotyping for Biological 2
Datasets 3

Authors: Yichen He1,2*, Christopher R. Cooney1, Steve Maddock3, Gavin H. Thomas1,4 4

 5
1 Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield; 6
Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK. 7
2 Department of Life Sciences, Natural History Museum; Cromwell Rd, South 8
Kensington, London SW7 5BD, UK 9
3 Department of Computer Science, University of Sheffield; Regent Court, 211 10
Portobello, Sheffield S1 4DP, UK. 11
4 Bird Group, Department of Life Sciences, Natural History Museum; Akeman Street, 12
Tring, HP23 6AP, UK. 13

 14

*Corresponding authors. Email: csyichenhe@gmail.com 15

Acknowledgements. We thank Thomas Guillerme, Kathryn Harris and Eleftherios 16
Ioannou for testing this toolkit. 17

Funding. This work was funded by a Leverhulme Early Career Fellowship (ECF-2018-18
101) and Natural Environment Research Council Independent Research Fellowship 19
(NE/T01105X/1) to C.R.C, and a European Research Council grant (615709, Project 20
‘ToLERates’) and Royal Society University Research Fellowship (UF120016, 21
URF\R\180006) to G.H.T. 22

Authors contributions. All authors designed the tool; Y.H. developed the tool; C.R.C. 23
and G.H.T. tested the tool. Y.H. wrote the manuscript with input from all authors. 24

Competing interests. All authors have no competing interests. 25

Data and materials availability. All code, datasets, and binaries used in this study are 26
publicly archived and available: 27

 Source code: The PhenoLearn source code is available on GitHub for continued 28
development: https://github.com/echanhe/phenolearn. A snapshot of the code 29
corresponding to the version used in this paper has been archived on Zenodo 30
and assigned a DOI: https://zenodo.org/records/15350513. 31

 Example datasets: The bird and Littorina test datasets used for evaluation are 32
available on Zenodo: https://zenodo.org/records/8152784. 33

 Binary executable: The compiled Windows binary of the PhenoLabel annotation 34
tool is also archived on Zenodo: https://zenodo.org/records/10909841. 35

 36

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 37

Abstract 38

The digitisation of natural history specimens has unlocked opportunities for large-scale 39
phenotypic trait analysis. In recent years, deep learning has shown significant results in 40
accurately predicting annotations on 2D specimen photographs. However, it can be 41
challenging for biologists without extensive related expertise to easily use deep learning. 42
Here, we introduce PhenoLearn, a toolkit developed for biologists to generate 43
annotations on 2D specimen images using deep learning. PhenoLearn integrates 44
graphical user interfaces (GUIs) within its two main modules, PhenoLabel for image 45
annotation and PhenoTrain for model training and prediction. GUIs increase 46
accessibility and reduce the need for computational expertise, allowing biologists to 47
intuitively go through a workflow of labelling training sets, using deep learning, and 48
reviewing predictions in the same tool. We demonstrate PhenoLearn's capabilities 49
through a case study involving the segmentation of plumage areas on bird images, 50
showcasing prediction accuracy and the running time with and without GPU, 51
highlighting its potential to generate annotations with minimal computational cost and 52
time. The toolkit's modular design and flexibility ensure adaptability, allowing for 53
integration with other tools amidst rapidly evolving deep learning approaches. 54
PhenoLearn bridges the gap between specimen digitisation and downstream analysis, 55
providing biologists with broader access to deep learning. The source code, installation 56
guides, tutorials with screenshots, and a small demo dataset for PhenoLearn can be 57
found at https://github.com/echanhe/phenolearn. 58

Keywords: Deep Learning, Phenotyping, Image Annotation, Phenotypic Trait, Toolkit 59
with User Interface. 60

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Introduction 61
The process of measuring phenotypic traits on 2D digitised specimen images is 62
increasingly used to phenotype specimens for a range of tasks. Through the use of 63
annotations such as points (Chang & Alfaro, 2016; Zelditch et al., 2004) and 64
segmentations (Cooney et al., 2022; Y. He et al., 2022), researchers can extract and 65
analyse a variety of morphological measurements from specimens to provide insights 66
into evolutionary and ecological questions. Digitisation allows rapid and non-invasive 67
measurements of natural history collections and mobilises specimens for further 68
analyses, helping to unlock their full potential. Techniques such as tray scanning 69
(Blagoderov et al., 2012) have significantly accelerated the digitisation of entomological 70
collections, by leveraging robotic automation to automatically capture 2D images of 71
specimens directly from museum trays. In addition, many computational tools for 72
analysing phenotypes like shape (Adams & Otárola-Castillo, 2013) and colouration 73
(Maia et al., 2019) have been developed, expanding the breadth of tools available to 74
analyse phenotypic traits. However, manually pre-processing images (e.g., placing 75
annotations) is time-consuming, especially with large datasets such as hundreds of 76
thousands of observations (Cooney et al., 2022). To prevent manual annotation from 77
becoming a bottleneck for mobilising large digital datasets, efficient high-throughput 78
data extraction tools are essential. 79

Classic computer vision algorithms like thresholding, connected components and region 80
growing have been used for extracting phenotypic information from images, 81
representing a significant increase in measurement speed compared to manual 82
methods (Lürig, 2022; Pennekamp & Schtickzelle, 2013). Deep learning-based methods 83
have recently become state-of-the-art for various computer vision tasks, including object 84
segmentation in images with complex backgrounds. In particular, deep learning 85
applications for measuring digitised specimens have demonstrated success with 86
different types of annotations, including points (Mathis et al., 2018; Porto & Voje, 2020), 87
bounding boxes (John et al., 2024; Shedrawi et al., 2024) and segmentations (Y. He et 88
al., 2022; Schwartz & Alfaro, 2021). These methods yield high-throughput pipelines and 89
accurate results, illustrating the potential for expanding deep learning to other 90
biological datasets. However, several barriers remain preventing the widespread 91
application of deep learning in ecology and evolutionary biology. 92

A significant barrier to the wider adoption of deep learning is the generally high level of 93
technical skill required for implementation. This issue is often compounded by the lack 94
of intuitive platforms that allow non-specialists to use deep learning for phenotyping. 95
Recent phenotyping toolkits, such as DeepLabCut (Mathis et al., 2018) and Argos (Ray 96
& Stopfer, 2022), have focused on improving accessibility through graphical user 97
interfaces (GUIs). The integration of deep learning models with GUIs can greatly 98
increase accessibility, allowing researchers with limited technical knowledge to utilise 99
these advanced techniques. Furthermore, the development of fully-integrated toolkits for 100
performing a complete workflow, including labelling training sets, training models and 101
reviewing predictions, can significantly improve the accessibility and efficiency for 102
biologists to apply deep learning in biological research. Such a toolkit, tailored for 103
extracting traits from 2D specimen photographs for ecological and evolutionary studies, 104

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

would serve as a much-needed bridge between digitisation and downstream biological 105
analysis. 106

Here, we introduce PhenoLearn, a user-friendly toolkit for generating annotations using 107
deep learning. PhenoLearn comprises two main modules, PhenoLabel and PhenoTrain, 108
covering three main functions (Figure 1). PhenoLabel implements both image labelling 109
and reviewing, whereas PhenoTrain implements the functions for deep learning. As an 110
open-source tool with GUIs, PhenoLearn aims to minimise the computational expertise 111
required to generate point or segmentation predictions using deep learning for 2D 112
biological image datasets. While PhenoLearn is designed to facilitate the entire 113
annotation generation workflow, its modular design allows users to use individual 114
functions for desired tasks. For instance, PhenoLabel can be used to review predictions 115
from other methods. Likewise, labels generated elsewhere can be used to train models 116
implemented in PhenoTrain. The PhenoLearn pipeline has already been successfully 117
used to generate annotations in several large-scale research projects (Cooney et al., 118
2022; Y. He et al., 2022, 2023). In this paper, we provide a detailed explanation, a user 119
guideline, and an example of using PhenoLearn. 120

 121

 122
Figure 1. Workflow overview of using PhenoLearn to generate annotations for 123
biological datasets. Green boxes indicate steps involving PhenoLearn modules (PhenoLabel 124
and PhenoTrain), which offer a connection between digitisation (2D imaging) and downstream 125
biological analysis. 126

Installation 127
PhenoLearn was developed using Python 3, with the following libraries and their 128
versions tested during its development: 129

 Python: 3.10 130
 PyQt: 5.15.9 131
 NumPy: 1.25.1 132
 pandas: 2.0.3 133
 opencv-python: 4.8.0.74 134
 PyTorch: 2.0.1 135
 TensorBoard: 2.13.0 136

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

For deep learning, PhenoLearn is optimised to utilise NVIDIA graphics processing units 137
(GPUs) through CUDA (https://developer.nvidia.com/cuda-toolkit). While it is possible to 138
train models using the CPU on systems without CUDA-supported GPUs, this will 139
generally lead to slower running time. We recommend using a GPU with at least 8GB of 140
video memory for faster running time. 141

PhenoLearn’s two main modules, PhenoLabel and PhenoTrain have their own GUIs. 142
PhenoLabel implements the labelling and reviewing functions and can be accessed by 143
running phenolabel.py. PhenoTrain handles deep learning training and prediction and 144
is accessed by running phenotrain.py. It was tested on Windows 10, macOS 13.6, and 145
Ubuntu 22.04.3 LTS. 146

The source code, installation guides, tutorials with screenshots, and a small demo 147
dataset for PhenoLearn can be found at https://github.com/echanhe/phenolearn. 148
Datasets used in the example section are available at 149
https://zenodo.org/records/8152784. For Windows users, a binary version of 150
PhenoLabel (e.g., a .exe file) is available at https://zenodo.org/records/10909841. 151
Detailed file introductions can be found in the supplementary material. 152

Design and Implementation 153
Labelling 154
This section outlines using PhenoLabel for labelling, including creating a project, placing 155
points/segmentations, and managing progress. To start, select ‘Open Dir’ in the File 156
menu (Figure 2a) to open a folder of images for labelling. PhenoLabel uses the imread 157
function from opencv-python (Bradski, 2000), which supports common formats including 158
jpg, png and tiff. PhenoLabel lists all images in the File panel (Figure 2d) and displays 159
the selected image in the Main panel (Figure 2e). Users can zoom the image and view 160
the cursor coordinate and RGB values in the status bar (Figure 2g). 161

Users can place points or segmentations in the Main panel. For points, click the 'Point' 162
button on the Toolbar (Figure 2b) and left-click the image. Points can be named via a 163
dialogue box, either inputting a new name or selecting from a dropdown menu. Existing 164
points can be modified or deleted in the Annotation panel (Figure 2f). PhenoLearn 165
records vertical (y) coordinates from the top of the image downward. This is the 166
standard convention used in many Python-based image processing libraries, such as 167
opencv-python. In contrast, tools like tpsDig (Rohlf, 2006) and many R-based image 168
analysis tools typically record coordinates from the bottom up. Users working with 169
tpsDig datasets should be aware of this difference. 170

For segmenting, click the 'Segmentation' button on the Toolbar, and a Segmentation 171
Toolbar (Figure 2c) appears. Segmentation classes must be named using the ‘Add’ 172
button in the Segmentation tab (Figure 2f). Then by activating the 'Draw' button in the 173
Segmentation Toolbar and holding the left mouse button, users can use a paintbrush to 174
draw the region of interest (ROI). Each segmented ROI is automatically assigned a 175
distinct colour, allowing users to easily differentiate between them. Segmented areas 176
can be removed with the same operation with the 'Erase' button activated. To efficiently 177
segment large areas, users can outline a region and then use the 'Auto Fill' function to 178
fill the area within the outline. Four paintbrush sizes are available: S, M, L, and XL. 179

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

PhenoLabel's 'Fast Labelling' function automates annotation naming for cases that use 180
consistent annotation names, eliminating repeated manual naming. This feature 181
automatically creates annotation names for subsequent images using the annotation 182
names from the current image. To ensure a newly placed point matches the preset point 183
names, they need to be placed in the same order as the names displayed at the bottom 184
of the Annotation Panel. 185

'Save' and 'Save As' in the File menu allow users to save their work in JSON format, 186
which includes details on images and annotations. 'Open Labelling Progress' allows 187
users to continue or review their labelling progress. Annotations can be exported to 188
PhenoTrain in CSV or binary masks (for single-class segmentations). Two types of CSV 189
exports are available: a point CSV file and a segmentation CSV file. Refer to Table 1 for 190
the detailed structure of the JSON and CSV files. 191

 192

 193
Figure 2. The PhenoLabel GUI. (a) Menu bar: Provides functions for saving projects and 194
loading files, (b) Toolbar: Tools for image annotation manipulation, (c) Segmentation Toolbar: 195
Tools specifically designed for segmentation tasks, (d) File panel: Displays the loaded images 196
and allows users to switch between images, (e) Main panel: The central workspace for image 197
annotation, (f) Left: Annotation panel, Point tab for displaying details of point-based annotations; 198
Right: Annotation panel, Segmentation tab for displaying details of segmentation-based 199
annotations, (g) Status bar: Displays status such as image name, zoom level, and cursor 200
position. 201

 202

Table 1. File structures used in PhenoLearn. 203

File Description
Labelling
progress file

A JSON file
From: Created by the save function in PhenoLabel.
Usage: Can be used to load the progress into PhenoLabel

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Structure:
The file is a list of dictionaries.

 “file_name” stores the image name.
 “points” stores a list of dictionaries.

o “name” stores the point name
o “x” stores the x coordinate
o “y” stores the y coordinate
o “absence” stores if the point is missing

 “segmentations” stores a dictionary.
o Dictionary keys are the names of the segmentations and

dictionary values are the segmentations.

A segmentation is stored as a four-level nested list, which follows the
format of segmentation contours extracted by OpenCV (Bradski,
2000). The format is:

 The first level corresponds to the segmentation itself.
 The second level is the contour level, where one segmentation

may include one or more contours.
 The third and fourth levels pertain to the point level, with each

contour having multiple points.

The example below shows a segmentation consisting of two
contours. Contour 1 contains 'n' points, and Contour 2 contains 'm'
points. Here <x_12> represents the x-coordinate of the second point
in Contour 1.

Example:
[{
"file_name": "Abeillia_abeillei_M_5.jpg",

"points":
 [
 {"name": "beak", "x": 1580, "y": 1072},

{"name": "eye", "x": 1876, "y": 984}
],

"segmentations":
 {"head":

[
 [
 [[<x_11>, <y_11>]],
 [[<x_12>, <y_12>]], …
 [[<x_1n>, <y_1n>]]
] ,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 [
 [[<x_21>, <y_21>]],
 [[<x_22>, <y_22>]], …
 [[<x_2m>, <y_2m>]]
]
]

}]

Output Point
CSV file

A CSV file
From: Exported by PhenoLabel or generated by PhenoTrain.
Usage: Can be imported into PhenoTrain as for training.

Structure:
The “file” column stores the image names.
A “<point name>_x” column stores the x coordinate for a point.
A “<point name>_y” column stores the y coordinate for a point.
A value of -1 or an empty cell indicates the point is missing.

Example:

file beak_x beak_y eye_x eye_y
Abeillia_abeillei_M_5.jpg 1580 1072 1876 984

Output
segmentation
CSV file

A CSV file
From: Exported by PhenoLabel or generated by PhenoTrain.
Usage: Can be imported into PhenoTrain for training.

Structure:
The “file” column stores the image names.
The remaining columns store the segmentations.

A segmentation is stored as a four-level nested list.
The details and examples can be found in the “Labelling progress file”
row. Here, the example only shows a four-level nested list
placeholder for better readability.

Example:
file head
Abeillia_abeillei_M_5.jpg [[[[]]]]

Output binary
mask

A black and white image
From: Exported by PhenoLabel or generated by PhenoTrain.
Usage: Can be imported into PhenoTrain for training.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

A grayscale image is saved under the same name as its input image,
with background areas in black and segmentation areas in white. To
prevent having the output masks replace the input images, ensure the
input directory is not used as the output directory.

Property file A CSV file.
Usage: Import specific specimen properties into PhenoLabel to filter
or sort images, allowing users to prioritise error-prone images first.

Structure:
The “file” column stores the image names.
Other columns store the properties.

 Categorical properties are stored as text strings.
 Numerical properties are stored as numbers.

Example:
file id sex
Abeillia_abeillei_M_5.jpg 5 M

 204

Deep Learning 205
PhenoTrain allows users to train models and make predictions. This section 206
demonstrates how to set up model training and prediction in PhenoTrain. 207

Model Training 208

Before training, eleven settings are required via the Train tab of PhenoTrain (Figure 3a). 209
Some settings have default values derived from previous studies (Chen et al., 2017; K. 210
He et al., 2017; Y. He et al., 2022, 2023) and the PyTorch documentation (Paszke et al., 211
2019). These defaults provide a solid starting point for various applications: 212

(1) Model type. Mask R-CNN (K. He et al., 2017) for point and DeepLabv3 (Chen et 213
al., 2017) for segmentation. Despite the availability of numerous new deep 214
learning architectures, we use Mask R-CNN and DeepLabv3 for their robust nature 215
and adaptability to various tasks. Being well-established models, there are many 216
tutorials available online that facilitate their implementation for users who want to 217
understand the detailed information. 218

(2) Annotation Input format. The default option is CSV. For single-class segmentations, 219
'Mask' option is also available for using binary masks as inputs. Please refer to 220
Table 1 for the details of the binary mask. 221

(3) Annotation file. The CSV annotation file from PhenoLabel (only applicable when 222
‘CSV is selected for Setting 2). 223

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

(4) Mask folder. The folder of the binary masks (only applicable when ‘Mask’ is 224
selected for Setting 2). 225

(5) Image folder. The folder of training images. 226
(6) Image resize percentage. Ranges from 1-100%, keeps aspect ratio, using nearest 227

neighbour interpolation. 228
(7) Validation set percentage. The percentage of validation images used for 229

evaluating the model per epoch. A common split is 80/20 for training/validating. 230
(8) Batch size. The number of images processed in one training iteration. The default 231

is 1. A smaller batch size saves memory but may lead to less stable optimisation. 232
Conversely, a larger batch size may provide better optimisation, but it uses more 233
memory. Users need to test a set of batch sizes to find the optimal value. 234

(9) Training epochs. The number of times the entire training set passes through the 235
model. Training for more epochs may lead to better model performance. The 236
default training epoch is set to 1. Users can estimate the training time by training 237
for one epoch. 238

(10) Learning rate. Controls the step size during the optimisation phase of training. 239
The default learning rate for PhenoTrain is 0.001. A too-large learning rate may 240
result in overly large steps, causing the model to miss the optimum. A too-small 241
learning rate might lead to a very slow convergence towards the optimum. 242

(11) Level of training. Controls the proportion of the model that is trained. The options 243
are Minimal, Intermediate and Full. "Minimal" trains only the final layers, 244
"Intermediate" trains half of the model layers, and "Full" trains the entire model. 245

(12) CPU/GPU. Select whether to use the CPU or GPU for training. If GPU is selected 246
but no GPU is available on the device, CPU will be used. 247

When the training is completed, a .pth file is saved in the ‘saved_model’ folder. 248

 249

 250
Figure 3. The PhenoTrain GUI. The interface has two tabs, (a) the Train tab and (b) the Predict 251
tab. Settings for training and predicting can be specified in each tab. 252

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 253

The training level setting utilises transfer learning (Tan et al., 2018), focusing on training 254
with a pre-trained model. Transfer learning diverges from the approach of using 255
randomly initialised model weights, which generates poor initial predictions and can take 256
a longer training period. Instead, it leverages a pre-trained model, which effectively 257
gives the model prior knowledge gained from previous tasks. This approach can train on 258
parts of a model and achieve satisfactory results, saving both time and computational 259
resources. Both DeepLabV3 and Mask-R-CNN were pre-trained on the COCO dataset 260
(Lin et al., 2014), which is a large-scale image dataset for computer vision tasks such as 261
segmentation. 262

PhenoTrain integrates with TensorBoard (Martín Abadi et al., 2015) to visualise the 263
training progress. Logs are saved in the ‘runs’ folder. To view logs in TensorBoard, run 264
this command: `tensorboard --logdir==runs` in python. Upon execution, it can be 265
viewed in a web browser at http://localhost:6006/. Users can view and compare across 266
different training runs. 267

TensorBoard saves training and validation loss, along with evaluation metrics. Training 268
loss indicates the model's learning efficiency, while validation loss evaluates 269
performance on the validation set. Point accuracy is assessed using the pixel distance 270
(Euclidean distances between two points on an image). The Dice Score is used to 271
evaluate segmentations, based on the overlap between predicted and manual 272
segmentations. The Dice Score ranges from 0 (lowest) to 1 (highest). Average and 273
class-specific metrics for points or segmentations are stored. 274

Generating Predictions 275

Once a well-trained model is saved, users can generate predictions in the Predict tab 276
(Figure 3b) by configuring the following seven settings: 277

(1) Model type. Point or Segmentation. 278
(2) Output format. Options are CSV file or mask images (for single-class 279

segmentations only). 280
(3) Choose model. .pth file saved from training. 281
(4) Image folder. The folder of images for prediction. 282
(5) Image name file. CSV file with one column named ‘file’ for image names. 283

PhenoLabel can export an Image name file when no annotations are presented for 284
the images. 285

(6) Choose the output folder. A folder for the prediction file. 286
(7) Image resize percentage. Ranges from 1-100% and should be consistent with the 287

percentage used in training. 288
(8) CPU/GPU. Select whether to use the CPU or GPU for predicting. If GPU is 289

selected but no GPU is available on the device, CPU will be used. 290

PhenoTrain provides real-time updates during both training and prediction phases, 291
including a progress bar and elapsed time display. 292

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Reviewing predictions 293
Deep learning predictions are not perfectly accurate, and reviewing predictions is often 294
necessary to confirm and/or improve accuracy for biological applications. To facilitate 295
this, we have incorporated two features within PhenoLabel: (1) Review Mode and (2) 296
Review Assistant to improve reviewing efficiency. 297

Users can open an image folder and import predictions (e.g., outputs from PhenoTrain) into 298
PhenoLabel, and subsequently review and improve these predictions. By activating the Review 299
Mode in the Toolbar, PhenoLabel displays multiple image thumbnails with annotations (Figure 4 300

 301
Figure 4a). In this mode, users can quickly browse through images and flag any with 302
incorrect predictions by ticking adjacent checkboxes. After checking through thumbnails, 303
click 'Show Flagged Images' button to show only the flagged images for a more focused 304
review. Additionally, it is possible to export the predicted annotations for input into other 305
outlier detection methods and to create flagged images. 306

The Review Assistant improves review efficiency by leveraging specimen metadata. By 307
prioritising images with specific properties (e.g. a problematic species), users can optimise 308
accuracy and time efficiency. The Review Assistant facilitates this by offering options to sort or 309
filter images based on properties (Figure 4 310

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 311
Figure 4b), which can be imported from a property file (Table 1). It can sort images by 312
numerical properties (e.g. specimen length) and filter images by categorical properties 313
(e.g. taxa). The 'Reset' button clears all filters and sorting. 314

 315

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 316
Figure 4. The PhenoLabel GUI with Review Mode activated. (a) The Review panel, which 317
replaces the Main panel, displays image thumbnails with annotations. (b) The Review Assistant. 318
In this example, it is used to select male specimens and sort images by ID. 319

Examples 320
The examples described below were executed on a Windows 10 system featuring an 321
Intel(R) Core(TM) i7-11800H CPU, 16 GB of RAM, and an RTX 3080 GPU with 16 GB 322
of video memory (VRAM). For memory usage results, the highest memory allocation 323
observed in Task Manager was recorded for CPU usage, while GPU memory usage 324
was from the output of the nvidia-smi command. 325

Segmenting with PhenoLearn 326
We tested PhenoLearn on a dataset of 220 bird images (4948 x 3280 pixels) to 327
segment the whole plumage area. We used 120 images for training and the remaining 328
100 images for prediction. The 120 training images were annotated in PhenoLabel for 329
training. The DeepLabv3 model was trained for five epochs, with a 20% validation set, 330
batch size of two, 0.001 learning rate, minimal training level, and an input resolution of 331
494 x 328 pixels (10% downsampling). 332

The training process was faster with GPU, taking 3 minutes, compared to 13 minutes 333
without it (CPU only). Predictions were generated in under a minute with GPU and 4 334
minutes without it. Examples of the predictions can be found in Figure 5. One of the 335

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

authors (Y.H.) spent five minutes reviewing 100 images. An additional four minutes 336
were used to correct predictions for these 18 images. In addition, we tested the training 337
time, GPU usage and performance for using various configurations of GPU and CPU 338
with different training levels to users with a comprehensive reference. The results are 339
summarised in Table 2. 340

 341

 342
Figure 5. Examples of the segmentation predictions in the review mode. 343

 344

Table 2. Training time, memory usage (RAM for CPU and VRAM for GPU), and 345
performance across different hardware configurations and training levels on the 346
segmentation test dataset. 347

Training
Level

Hardware Training Time
(Minutes)

Memory
Usage (GB)

Average Dice Score

Minimal
GPU 2 1

0.90
CPU 13 1.2

Intermediate
GPU 3 3.5

0.94
CPU 26 4.1

Full
GPU 3 3.9

0.93
CPU 30 4.5

 348

Placing points with PhenoLearn 349
We evaluated PhenoLearn on a dataset of 220 Littorina images, each measuring 2592 x 350
1944 pixels, with four points annotated on each image according to a 15-landmark 351
scheme derived from Ravinet et al. (2016). For this study, 120 images were used for 352

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

training, while the remaining 100 served for prediction. Annotations for the training 353
images were performed using PhenoLabel. 354

We trained a Mask R-CNN model over five epochs, using a validation set comprising 20% 355
of the data, a batch size of two, a learning rate of 0.001, and an input resolution reduced 356
to 518 x 388 pixels (20% downsampling). We conducted experiments using both GPU 357
and CPU across various training levels. The best performance was an average pixel 358
distance of 21. Details on GPU usage and the performance of different runs can be 359
found in Table 3. 360

 361

Table 3. Training time, memory usage (RAM for CPU and VRAM for GPU), and 362
performance across different hardware configurations and training levels on the point 363
test dataset. 364

Training
Level

Hardware Training Time
(Minutes)

Memory
Usage
(GB)

Average Pixel
Distance

Minimal
GPU 2 2.7

138
CPU 15 1.5

Intermediate
GPU 2 3

126
CPU 25 1.9

Full
GPU 3 4.5

37
CPU 29 3.5

 365

Examples of the predictions made using PhenoLearn are illustrated in Figure 6. One of 366
the authors (Y.H.) spent five minutes reviewing 100 Littorina images, during which 19 367
images with inaccurately placed points were flagged. An additional four minutes were 368
spent to correct these predictions. 369

 370

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 371
Figure 6. Examples of the point predictions in the review mode. 372

 373

The performance of PhenoTrain can vary with different datasets and training settings. 374
As shown in the results, training from scratch is not guaranteed to outperform fine-375
tuning pre-trained models (see Table 2). The pre-trained models used in PhenoLearn 376
are based on the ImageNet dataset (Deng et al., 2009), which provides a large and 377
diverse set of features as a strong starting point. Pre-trained models are also less prone 378
to overfitting and more capable of generalising to new datasets (Huh et al., 2016; 379
Yosinski et al., 2014). This advantage makes fine-tuning a pre-trained network a reliable 380
choice in many scenarios. However, the relative performance of these approaches can 381
only be determined through testing. Based on our observations, we recommend starting 382
with fine-tuning for most use cases and minimum computational cost. 383

Another important point is that the randomness inherent in the training process, such as 384
random weight initialisation and data shuffling during batch creation, can lead to 385
variability in results. Even with identical configurations and training data, different runs 386
may yield slightly different outcomes. This variability should be considered when 387
interpreting results. 388

Here are some other general guidelines: 389

 Test model performance with a small subset of your dataset (e.g., 20 images) to 390
quickly assess learning progress by monitoring if validation loss decreases and 391
the metrics on the validation set are increasing. extend the training to the full 392
dataset. 393

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 Manage memory (either RAM or video memory) by starting with an input 394
resolution of around 500 x 500 pixels. The resolution can be incrementally 395
increased. 396

 Carefully select the learning rate, as it significantly impacts model training. A 397
learning rate that is too large may cause the model to diverge or produce 398
unstable results. For example, using a learning rate of 0.1 on our point dataset 399
caused the loss to become null, resulting in training failure. Conversely, a very 400
small learning rate can result in slow learning and require a large number of 401
epochs to converge. We recommend that users try multiple training runs with 402
different learning rates and monitor performance to find an appropriate setting for 403
their dataset. 404

 Better performance may be achieved by increasing the input resolution, training 405
set size, training epochs, and training level. Increasing these settings leads to 406
longer training times. Results from runs with various configurations are provided 407
in the Supplementary Material, where some performance differences can be 408
observed across settings. However, we note that these comparisons are based 409
on a small number of runs and should be interpreted with caution. 410

Users can change these settings to fit their datasets and research requirements. 411

Discussion 412
In summary, PhenoLearn provides a user-friendly, high-throughput data extraction 413
pipeline with fully integrated GUIs, enabling biologists without extensive computational 414
skills to effectively measure phenotypic traits from images. While tools like DeepLabCut 415
and Argos offer robust solutions for specific phenotyping tasks, they focus more deeply 416
on animal tracking, primarily supporting point-based annotations. In contrast, 417
PhenoLearn combines support for point annotations and segmentation tasks within a 418
single toolkit and has already been successfully applied for both annotation types in 419
previously published studies (Cooney et al., 2022; Y. He et al., 2022, 2023). 420
PhenoLearn also includes functions tailored specifically for handling 2D image datasets 421
of natural history collections. These features include 'Fast Labelling,' which streamlines 422
the annotation naming process, and 'Review Mode' and 'Review Assistant,' which 423
leverage specimen metadata to simplify the review process. These capabilities make 424
PhenoLearn particularly suited for natural history collections, which often include rich 425
metadata. Together, these features position PhenoLearn as a complementary tool for 426
phenotyping 2D images, offering unique advantages for researchers working with such 427
datasets. 428

As Lürig (2022) highlights, classic computer vision methods are more accessible to 429
biologists with only CPUs. To facilitate the wider application of deep learning among 430
biologists without GPU access, PhenoLearn leverages pre-trained models and partial 431
model training to shorten CPU training times. Moreover, small training sets can yield 432
accurate predictions for photographs with a highly consistent digitisation set-up, as 433
minimal variation among images may bring more efficient training (Mulqueeney et al., 434
2024). From our results, it appears that CPU usage requires slightly more memory 435
compared to GPU usage. However, it is more cost-effective to upgrade system RAM 436
than to purchase GPUs with equivalent VRAM capacity. Additionally, most current 437

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

consumer-grade laptops are equipped with at least 8 GB of RAM, making it feasible for 438
a wide range of researchers to run PhenoLearn effectively on readily available CPU 439
hardware. These features make predicting annotations on digitised specimens possible 440
using only CPUs. 441

The modular design of PhenoLearn, comprising separate modules for image annotation 442
(PhenoLabel) and deep learning (PhenoTrain), offers flexibility to integrate with other 443
tools. This feature is particularly important in the fast-developing field of machine 444
learning, where new and powerful methods are continually being developed such as 445
Segment Anything (Kirillov et al., 2023), the foundation model for semantic 446
segmentation. Thus, with PhenoLearn, users have the option to export annotations from 447
PhenoLabel for other Deep Learning methods, and then use PhenoLabel again for 448
efficient prediction reviewing. PhenoLearn supports multiple output formats (CSV, JSON, 449
and image-based segmentation), making it compatible with other methods or toolkits. 450
These formats can be easily converted into target Python data structures commonly 451
used in deep learning pipelines. For example, regardless of the format, annotations can 452
be transformed into 2D tensors that represent segmentations or point heatmaps, which 453
are among the most used data structures for segmentation and point predictions. 454
PhenoLabel can also simply serve as a manual labelling tool for small datasets. 455

Taken together, PhenoLearn is a versatile toolkit that bridges the gap between 456
biological image datasets and downstream analysis, facilitating greater access for 457
researchers to deep learning tools for image processing and data extraction. 458

Future Directions 459
Future development of PhenoLearn will likely focus on four main areas: (1) Optimisation 460
of the user interface based on user feedback to increase usability. (2) Improvement of 461
software performance, such as integrating multi-threading for displaying thumbnails, 462
which will increase the efficiency of the review process. (3) Expansion of supported 463
annotation types based on future user requirements. Adding bounding box annotations, 464
for instance, could significantly broaden the toolkit’s applications, including object 465
recognition tasks which can be used to identify specimen appearances in laboratory or 466
camera trap photographs. (4) Integrating alternative and newer models, such as 467
Segment Anything (Kirillov et al., 2023) and other state-of-the-art deep learning models, 468
to further enhance segmentation and landmark prediction capabilities. 469

 470

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

References 471
Adams, D. C., & Otárola-Castillo, E. (2013). geomorph: An R package for the collection 472

and analysis of geometric morphometric shape data. Methods in Ecology and 473

Evolution, 4(4), 393–399. 474

Blagoderov, V., Kitching, I. J., Livermore, L., Simonsen, T. J., & Smith, V. S. (2012). No 475

specimen left behind: Industrial scale digitization of natural history collections. 476

ZooKeys, 209, 133. 477

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools. 478

Chang, J., & Alfaro, M. E. (2016). Crowdsourced geometric morphometrics enable rapid 479

large-scale collection and analysis of phenotypic data. Methods in Ecology and 480

Evolution, 7(4), 472–482. https://doi.org/10.1111/2041-210X.12508 481

Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking Atrous 482

Convolution for Semantic Image Segmentation (arXiv:1706.05587). arXiv. 483

http://arxiv.org/abs/1706.05587 484

Cooney, C. R., He, Y., Varley, Z. K., Nouri, L. O., Moody, C. J. A., Jardine, M. D., Liker, 485

A., Székely, T., & Thomas, G. H. (2022). Latitudinal gradients in avian 486

colourfulness. Nature Ecology & Evolution, 6(5), 622–629. 487

https://doi.org/10.1038/s41559-022-01714-1 488

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-489

scale hierarchical image database. 2009 IEEE Conference on Computer Vision 490

and Pattern Recognition, 248–255. 491

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. 2017 IEEE 492

International Conference on Computer Vision (ICCV), 2980–2988. 493

https://doi.org/10.1109/ICCV.2017.322 494

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

He, Y., Cooney, C. R., Maddock, S., & Thomas, G. H. (2023). Using pose estimation to 495

identify regions and points on natural history specimens. PLOS Computational 496

Biology, 19(2), e1010933. https://doi.org/10.1371/journal.pcbi.1010933 497

He, Y., Varley, Z. K., Nouri, L. O., Moody, C. J. A., Jardine, M. D., Maddock, S., Thomas, 498

G. H., & Cooney, C. R. (2022). Deep learning image segmentation reveals 499

patterns of UV reflectance evolution in passerine birds. Nature Communications, 500

13(1), 5068. https://doi.org/10.1038/s41467-022-32586-5 501

Huh, M., Agrawal, P., & Efros, A. A. (2016). What makes ImageNet good for transfer 502

learning? (arXiv:1608.08614). arXiv. https://doi.org/10.48550/arXiv.1608.08614 503

John, A., Theobald, E. J., Cristea, N., Tan, A., & Hille Ris Lambers, J. (2024). Using 504

photographs and deep neural networks to understand flowering phenology and 505

diversity in mountain meadows. Remote Sensing in Ecology and Conservation, 506

10(4), 480–499. https://doi.org/10.1002/rse2.382 507

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., 508

Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., & Girshick, R. (2023). Segment 509

Anything (arXiv:2304.02643). arXiv. http://arxiv.org/abs/2304.02643 510

Lin, T.-Y., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., Perona, 511

P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common 512

Objects in Context. CoRR, abs/1405.0312. http://arxiv.org/abs/1405.0312 513

Lürig, M. D. (2022). phenopype: A phenotyping pipeline for Python. Methods in Ecology 514

and Evolution, 13(3), 569–576. https://doi.org/10.1111/2041-210X.13771 515

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

Maia, R., Gruson, H., Endler, J. A., & White, T. E. (2019). pavo 2: New tools for the 516

spectral and spatial analysis of colour in r. Methods in Ecology and Evolution, 517

10(7), 1097–1107. https://doi.org/10.1111/2041-210X.13174 518

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, 519

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, 520

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Jia, Y., Rafal 521

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, … Xiaoqiang Zheng. (2015). 522

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 523

https://www.tensorflow.org/ 524

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, 525

M. (2018). DeepLabCut: Markerless pose estimation of user-defined body parts 526

with deep learning. Nature Neuroscience, 21(9), 1281–1289. 527

https://doi.org/10.1038/s41593-018-0209-y 528

Mulqueeney, J. M., Searle-Barnes, A., Brombacher, A., Sweeney, M., Goswami, A., & 529

Ezard, T. H. G. (2024). How many specimens make a sufficient training set for 530

automated three-dimensional feature extraction? Royal Society Open Science, 531

11(6), rsos.240113. https://doi.org/10.1098/rsos.240113 532

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., 533

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, 534

M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). 535

PyTorch: An Imperative Style, High-Performance Deep Learning Library. In H. 536

Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett 537

(Eds.), Advances in Neural Information Processing Systems 32 (pp. 8024–8035). 538

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-539

performance-deep-learning-library.pdf 540

Pennekamp, F., & Schtickzelle, N. (2013). Implementing image analysis in laboratory-541

based experimental systems for ecology and evolution: A hands-on guide. 542

Methods in Ecology and Evolution, 4(5), 483–492. 543

Porto, A., & Voje, K. L. (2020). ML‐morph: A fast, accurate and general approach for 544

automated detection and landmarking of biological structures in images. Methods 545

in Ecology and Evolution, 11(4), 500–512. https://doi.org/10.1111/2041-546

210X.13373 547

Ravinet, M., Westram, A., Johannesson, K., Butlin, R., André, C., & Panova, M. (2016). 548

Shared and nonshared genomic divergence in parallel ecotypes of L ittorina 549

saxatilis at a local scale. Molecular Ecology, 25(1), 287–305. 550

Ray, S., & Stopfer, M. A. (2022). Argos: A toolkit for tracking multiple animals in 551

complex visual environments. Methods in Ecology and Evolution, 13(3), 585–595. 552

https://doi.org/10.1111/2041-210X.13776 553

Rohlf, F. J. (2006). tpsDig, version 2.10. Http://Life. Bio. Sunysb. Edu/Morph/Index. Html. 554

Schwartz, S. T., & Alfaro, M. E. (2021). Sashimi: A toolkit for facilitating high‐throughput 555

organismal image segmentation using deep learning. Methods in Ecology and 556

Evolution, 12(12), 2341–2354. https://doi.org/10.1111/2041-210X.13712 557

Shedrawi, G., Magron, F., Vigga, B., Bosserelle, P., Gislard, S., Halford, A. R., Tiitii, S., 558

Fepuleai, F., Molai, C., Rota, M., Jalam, S., Fatongiatau, V., Sami, A. P., Nikiari, 559

B., Sokach, A. H. M., Joy, L. A., Li, O., Steenbergen, D. J., & Andrew, N. L. 560

(2024). Leveraging deep learning and computer vision technologies to enhance 561

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

management of coastal fisheries in the Pacific region. Scientific Reports, 14(1), 562

20915. https://doi.org/10.1038/s41598-024-71763-y 563

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A Survey on Deep 564

Transfer Learning. In V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, & I. 565

Maglogiannis (Eds.), Artificial Neural Networks and Machine Learning – ICANN 566

2018 (Vol. 11141, pp. 270–279). Springer International Publishing. 567

https://doi.org/10.1007/978-3-030-01424-7_27 568

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in 569

deep neural networks? Advances in Neural Information Processing Systems, 27. 570

Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric 571

morphometrics for biologists: A primer. Elsevier, 457. 572

https://doi.org/10.1016/B978-0-12-386903-6.00001-0 573

 574
 575

 576

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/je
b
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/je

b
/v

o
a
f0

5
8
/8

1
3
1
5
1
3
 b

y
 R

ic
h
a
rd

 S
im

p
s
o
n
 u

s
e
r o

n
 2

3
 M

a
y
 2

0
2
5

