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Abstract
We present a high-resolution age-depth model for Site M0079, drilled in the Corinth rift, central
Greece, during International Ocean Discovery Program Expedition 381. To establish the model,
we use available age constrains derived from postcruise research, including ages from 14C analysis
and visible tephra layers, together with published ages from U/Th analysis, magnetostratigraphy,
and relative paleointensity data. The age-depth model is built for the entire length of the Site
M0079 drill hole using a probabilistic modeling approach in OxCal software. The resulting age-
depth model provides a robust chronological framework for sediment accumulation within the
Gulf of Corinth, constraining the most recent phase of synrift deposition over the past 800,000 y.

1. Introduction
International Ocean Discovery Program (IODP) Expedition 381 took place in the Corinth rift,
central Greece, and aimed to understand and quantify rates of tectonic and sedimentary processes
at high temporal resolution in this geologically young and active rift. Obtaining precise age con-
straints for the synrift sediments was a primary objective of the expedition and a major challenge.
Drilling was undertaken at three sites, including Site M0079 in the main depocenter of the Gulf of
Corinth, which provided an expanded section of the synrift sedimentary sequence. Shipboard
analyses yielded initial insights into the timing of sediment deposition by integrating biostrati-
graphic and magnetostratigraphic data with paleoenvironmental indicators of alternating basin
conditions linked to glacial–interglacial cycles (Site M0079; McNeill et al., 2019a; McNeill et al.,
2019b). Here, we establish a high-resolution age-depth model using new age constraints derived
from Site M0079, such as 14C ages for the most recent sediments and inferred ages from visible
tephra layers, together with published age data including U/Th ages from Gawthorpe et al. (2022)
and magnetostratigraphic and relative paleointensity data from Maffione and Herrero-Bervera
(2022). The compilation of different types of dating methods and resulting age constraints pro-
vides higher confidence in the age-depth model predictions that are important for resolving the
Corinth rift evolution.
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2. Methods and materials

2.1. Decompaction analysis
Before building the age-depth model, stratigraphic thickness was corrected for compaction effects 
using the porosity data measured on Expedition 381 cores (McNeill et al., 2019b). First, a second-
order polynomial best fit was applied to the measured porosities and values with residuals greater 
than 1.5 were discarded, following McNeill et al. (2019a). Consequently, a simple exponential 
decay function was fitted to the depth-porosity data, following the equation in Athy (1930):

,

where ϕ(z) is the porosity at a given depth, ϕ0 is the porosity at the well surface (i.e., the porosity of 
the seafloor at Site M0079A), and b is the compaction coefficient. For Site M0079, ϕ0 is 0.513 and 
b is 0.0006. The porosity function was then used to calculate the decompacted thickness (TD) of 
each bed, as defined in Gawthorpe et al. (2022), at its specific depth, using the following equation:

,

where TZ is the measured thickness of a given bed and ϕz is the porosity obtained from the poros-
ity function at the bed depth.

2.2. Age-depth model
The age-depth model is built using the probabilistic modeling approach in OxCal 4.4. software 
(Bronk Ramsey, 2009a). The model performs 5000 iterations, which are sufficient for convergence 
to a stable distribution that adequately represents the data. Age distributions are calculated at 
regular intervals using an interpolation step of 1 m, balancing data resolution and computational 
efficiency. To account for variable sediment accumulation, we employ the P-sequence model in 
OxCal (Bronk Ramsey, 2008; Bronk Ramsey and Lee, 2013), which models sediment deposition as 
a Poisson process (i.e., depositional events occur randomly, but the overall accumulation rate 
follows a statistical pattern). Unlike a simple uniform model, a P-sequence is ideal for modeling 
stratigraphy where deposition rates change over time. The degree of variation in sediment accu-
mulation is controlled by the parameter k, which is allowed to vary by two orders of magnitude per 
meter, enabling the model to determine the best fit based on the data rather than assuming a fixed 
rate. Additionally, we incorporate implicit groupings to define groups of events within the 
sequence, considering the changes in sedimentation rates between time intervals when the 
Corinth Gulf experienced marine and semi-isolated/isolated conditions (McNeill et al., 2019b, 
Shillington et al., 2019). In particular, we define boundaries at the depths where bioturbated (i.e., 
marine) stratigraphic packages occur (Gawthorpe et al., 2022), which experience relatively lower 
sedimentation rates compared to isolated intervals (McNeill et al., 2019a). Tops and bases of the 
bioturbated intervals occurring during the last interglacial highstand (Marine Isotope Stage 5 
[MIS5]) are further constrained from foraminiferal analysis (Sergiou et al., 2024).

The age-depth model is established for the entire sedimentary succession at Site M0079 (i.e., 704.9 
m). Beds corresponding to instantaneous events were excluded during the modeling run and rein-
serted afterward. These beds include the graded beds (G1–G3) and the slumps (S), described by 
Gawthorpe et al. (2022) (Figure F1), that account for a total thickness of 257 m.
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3. Results
We use 62 age constraints (Table T1) to develop the age-depth model for Site M0079 (Figures F2, 
F3). These include 7 absolute ages (4 samples dated by 14C and 3 samples dated by U/Th), 3 cor-
related tephras, 49 samples with measurements of geomagnetic relative paleointensities (RPI), and 
the Brunhes-Matuyama chron boundary identified by Maffione and Herrero-Bervera (2022) at 
665 meters below seafloor (mbsf ). The samples analyzed by 14C are of terrestrial origin and cali-
brated using the IntCal20 curve (Reimer et al., 2020) (Table T2). The U/Th dates were obtained 
from Gawthorpe et al. (2022), but only half of the original six dates were used. Three ages (i.e., at 
the base V2 and the tops of U1 and U2 in Gawthorpe et al., 2022) were discarded due to a high 
degree of contamination of the aragonite samples with detrital calcite. The tephras correspond to 
three visible intervals that correlate between the three Expedition 381 sites (Shillington et al., 2019) 
and provide ages tied to well-known eruptions in the Mediterranean area (Table T3). The RPI tie 
points were revised from Maffione and Herrero-Bervera (2022) to align with absolute ages and 
stratigraphic constraints on the timing of marine versus isolated conditions identified in Gawthorpe 
et al. (2022). For each of the age data points in this model, we applied an outlier analysis method 
available in OxCal software, where outliers are assumed to follow a Student’s t-distribution (Bronk 
Ramsey, 2009b). A t-distribution–based approach is more robust than a normal distribution 
because it has heavier tails, which reduces the influence of extreme values rather than completely 
excluding them. In this model, the outlier detection is based on a t-distribution with 5 degrees of 
freedom, and the magnitude of the outliers is allowed to vary between 100 and 104 y. The code used 
in the OxCal software, as well as results, are available in Supplementary material.

Figure F1. Core photograph showing examples of the bed types describe in Gawthorpe et al., 2022, Site M0079 (core depth 
0–145 cm, borehole depth 242.30–243.75 mbsf). Gray = graded beds excluded during the modeling run with OxCal 4.4. 
software (Bronk Ramsey, 2009a). vfs = very fine sand, fs = fine sand, ms = medium sand.
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The resulting age-depth model reveals downhole variations in sedimentations rates that generally 
follow a pattern similar to those observed across the isolated and semi-isolated intervals described 
in McNeill et al. (2019a) and Maffione and Herrero-Bervera (2022). Higher sedimentation rates 
characterize the laminated and bedded stratal packages (~1.1 and ~1.5 mm/y on average, respec-
tively), whereas lower rates are observed in the bioturbated stratal packages (~0.8 mm/y on aver-
age), with the exception of the Holocene, which depicts the highest sedimentation rates (i.e., 2.5 
mm/y) (Figure F3). However, the differences in sedimentation rates between these intervals are 
notably smaller than those previously estimated. This discrepancy arises because earlier age-depth 
models were constructed by correlating subunit boundaries within Unit 1 (i.e., marine to isolated/ 
semi-isolated intervals) to sea level variations under the assumption of a constant Rion sill height 
(~60 m) at the connection between the Corinth Gulf and the open sea to the west. The age-depth 
model presented here, which integrates stratigraphic constraints from Gawthorpe et al. (2022), 
along with absolute and relative age data, is not tied to a constant sill height separating the Gulf of 
Corinth from the open ocean. The age-depth model predicts shorter-lived marine intervals tied to 
global sea level highstands that is in line with a progressively deepened sill height from ~400 ka 
onward.

Table T1. Age constraints used to establish the age-depth model for Site M0079. Download table in CSV format.
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Figure F2. Age-depth model for Site M0079. The model was produced in OxCal v.4.4 software (Bronk Ramsey, 2009a) using 
the age-constraints shown in Table T1.
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Table T2. Radiocarbon dating results, Site M0079. Download table in CSV format.

Table T3. Inferred ages from visible tephra layers, Site M0079. Download table in CSV format.
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