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 A B S T R A C T

Deep learning (DL) has the potential to deliver significant clinical benefits. In recent years, an increasing 
number of DL-based systems have been approved by the relevant regulators, e.g. FDA. Although obtaining 
regulatory approvals is a prerequisite to deploy such systems for real world use, it may not be sufficient. 
Regulatory approvals give confidence in the development process for such systems, but new hazardous events 
can arise depending on how the systems have been deployed in the intended clinical pathways or how they 
have been used with other systems in complex healthcare settings. These kinds of events can be difficult to 
predict during the development process. Indeed, most health systems and hospitals require self-verification 
before deploying a diagnostic medical device, which could be viewed as an additional safety measure. This 
shows that it is important to carry on assuring the safety of such systems in deployment. In this work, 
we address this urgent need based on the experience of a prospective study in UK hospitals as part of the 
ARTICULATE PRO project. In particular, the system considered in this work is developed by Paige for prostate 
cancer diagnosis, which has obtained FDA approval in the US and UKCA marks in the UK. The methodology 
presented in this work starts by mapping out the clinical workflow within which the system has been deployed, 
then carries out hazard and risk analysis based on the clinical workflow, and finally presents a deployment 
safety case, which provides a basis for deployment and continual monitoring of the safety of this system in 
use. In this work we systematically address the emergence of new hazardous events from the deployment and 
to present a way to continually assure the safety of a regulatorily approved system in use.

1. Introduction

Prostate cancer is one of the most common cancers among men 
worldwide, with over 52,000 cases diagnosed each year on average 
in the UK [1], more than 290,000 estimated cases in the US [2] and 
over one million estimated cases worldwide [3]. A prostate biopsy is 
typically involved for confirming most prostate cancer diagnoses, and 
the utilisation of the Gleason grading system is essential for appropriate 
stratification and clinical management [4]. The presence or absence 
of cancer can typically be classified in most cases by the reporting 
pathologist or in difficult cases with additional testing or further opin-
ion by pathologists. There are occasional instances where pathologists 
may overlook small cancerous areas (resulting in false negatives), 
or incorrectly diagnose cancer (resulting in false positives) with the 
risk influenced by factors such as experience, training and degree of 

∗ Corresponding author.
E-mail addresses: yan.jia@york.ac.uk (Y. Jia), Clare.Verrill@ouh.nhs.uk (C. Verrill), Kieron.White@ouh.nhs.uk (K. White), monica.dolton@nds.ox.ac.uk 

(M. Dolton), margaret.horton@paige.ai (M. Horton), mufaddal.jafferji@paige.ai (M. Jafferji), Ibrahim.Habli@york.ac.uk (I. Habli).

specialism. In contrast, Gleason grading, which impacts treatment rec-
ommendations for patients, is inherently subjective, posing challenges 
in establishing clear and unequivocal classification boundaries for hu-
mans, despite international efforts to standardise [5]. For example, 
Flach et al. has shown that there are substantial variations in prostate 
Gleason grading between and within Dutch pathology laboratories [6]. 
This highlights opportunities for deploying DL technologies to assist in 
the assessment of complex cases and to improve the reproducibility of 
diagnosis. Indeed, recent years have witnessed significant promise in 
the integration of such technologies into medical diagnostics, e.g. the 
development of DL-based systems for prostate cancer detection and 
grading [7]. As these systems transition from research laboratories to 
real-world applications, it becomes imperative to ensure not only their 
efficacy but also their safety in their actual clinical settings.
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This paper explores the critical aspects of assuring the safety of a 
DL-based prostate cancer detection and grading systems produced by 
Paige [8], known as Paige Prostate Suite, as part of the ARTICULATE 
PRO project [9], which is a prospective study aiming to examine 
the impact of introducing artificial intelligence (AI) software into the 
prostate cancer diagnostic pathway on clinical care across 3 National 
Health Service (NHS) trusts in the UK. We illustrate this work based on 
insights from one of the NHS sites as the deployment differs across the 
three sites.

Paige Prostate Suite is designed to support pathologists in diverse 
facets of prostate needle core biopsy evaluation, which encompasses 
three separate modules, Paige Prostate Detection (PPD), employed for 
identifying potentially cancerous areas of tissues on digital whole-slide 
images (WSIs), Paige Prostate Grade & Quantify (PPGQ), used to grade 
and quantify tissue samples, and Paige Prostate Perineural Invasion 
Detection (PP-PNI), tasked with detecting perineural invasion within 
the tissue. In this study, our primary emphasis is on PPD and PPGQ, 
as currently they hold the most significance in aiding pathologists in 
their diagnostic assessments. Although PNI is prevalent and finding 
PNI can be time-consuming for pathologists, it is a more specialised 
diagnostic feature and whether PNI could act as an independent prog-
nostic predictor remains controversial for prostate cancer [10–12], 
therefore it has less direct impact on immediate treatment and it is 
not always required to be reported [13], e.g. by College of American 
Pathologists [14]. PPD has received regulatory approval from the US 
Food and Drug Administration (FDA) as a second-read modality (to 
check diagnosis after pathologists have made their own judgement) 
along with UKCA and CE-IVD marks in Europe for both concurrent 
and second-read modalities. On the other hand, PPGQ and PP-PNI have 
obtained UKCA and CE-IVD marks, but not FDA approvals. Despite 
the regulatory approvals, which do provide some confidence in the 
safe development of such systems, further hazards may still arise in 
deployment, e.g. due to deviations from the regulatory approval and 
depending on how the system is deployed in hospitals. There is a key 
difference as when applying for regulatory approval, it is practically 
impossible to predict all of the conditions that might be faced in de-
ployment given different hospitals have different ways of working. To 
an extent, this will be mitigated by various standards and requirements 
for healthcare systems, e.g. the United Kingdom Accreditation Service 
(UKAS) accreditation for laboratories and medical testing facilities, 
and hospital requirements for self-verification before deploying such 
systems. However, currently the adoption of such technologies is in the 
early stages, thus many hospitals are developing their own governance 
structures and processes to evaluate these technologies. To give one 
example, within the ARTICULATE PRO project, in order to deploy the 
Paige Prostate Suite in the hospital, it first had to go through internal 
validation and then departmental and trust level governance processes. 
Once approved, then the deployment has to be continually monitored 
by Department Governance Systems with the aim of achieving UKAS 
accreditation under ISO 15189 for providing confidence in the quality 
levels of performance and competence in the medical laboratories [15].

Currently, in the UK, the Royal College of Pathologists (RCPath) 
has issued a position statement where they stated the intention to 
develop more detailed guidelines for evaluating and deploying AI, 
including quality assurance and audit requirements [16] and in the 
US such guidelines have been provisionally developed by the Col-
lege of American Pathologists [17]. This shows the importance and 
urgency of developing methods for continually assuring the safety of 
DL-based medical devices in deployment. Therefore, in this paper we 
are attempting to‘‘bridge the gap’’ between regulatory approval and 
safety in real-world deployment, with the potential to inform relevant 
stakeholders to develop guidelines and standards for safe deployment 
of medical AI. We do this by presenting a methodology and apply it to 
the deployment of the Paige Prostate Suite, covering both the clinical 
context and integration with other healthcare IT systems.

The rest of the paper is structured as follows. Section 2 presents 
the background on the Paige Prostate Suite. Section 3 describes the 
methodology we have used in this work. Section 4 presents our results, 
based on applying the methodology set out in Section 3. Related work is 
presented in Section 5. A discussion is presented in Section 6. Section 7 
presents conclusions.

2. Background

PPD is intended to assist pathologists in the detection of prostatic 
acinar adenocarcinoma in digitised core needle biopsy specimens to 
reduce diagnostic errors. It is a DL-based system which can classify 
hematoxylin & eosin (H&E) stained WSI from prostate needle biopsies 
by producing a binary output identifying a given WSI as benign or 
suspicious for cancer. If the slide is classified as suspicious for cancer, 
a single Focus of Interest (FOI) showing the location with the highest 
probability of harbouring cancer will be presented and a tissue map, 
which is a visual overlay that fogs out the areas of tissue that are 
considered not to be suspicious, will also be available. This is depicted 
in Fig.  1. In order to overcome the need for any pixel-level manual 
annotations, PPD was developed using multiple instance learning [18], 
which is a type of weakly supervised learning approach where only 
the reported diagnoses are used for training, i.e. the ground truth for 
training is solely derived from the binary classification of each WSI 
as benign or cancerous as indicated in the corresponding pathology 
report. For example, slides classified as benign could include basal 
cell hyperplasia, prostatic intraepithelial neoplasia (PIN), atrophy and 
inflammation. WSIs containing invasive adenocarcinoma are treated as 
suspicious for cancer.
PPGQ is a DL-based system designed for grading and quantifying 

cancer on H&E stained WSI obtained from prostate core needle biop-
sies. If PPGQ detects any foci of cancer, it will produce a primary 
and secondary Gleason grade prediction, along with a percentage and 
length of tumour burden, as shown in Fig.  1. Tumour length is mea-
sured along the long axis of the core which has the most tumour if 
more than one core is present on a slide while tumour percentage is 
measured as the tumour length divided by the length of that core. 
Further, PPGQ also generates additional slide overlays to highlight 
the predicted location for each Gleason pattern, therefore the benign 
tissues will be faded leaving only the highlighted suspicious areas 
of tissue for review in the overlays. The Gleason score is the most 
common prostate cancer grading system; it describes the histologic 
pattern of gland formation and fusion in the prostate [19]. There are 5 
different patterns, graded from 1 to 5 where prostate adenocarcinomas 
with more gland formation and no fusion receive a low score. For 
each WSI, the primary Gleason grade describes the most predominant 
pattern and the highest remaining pattern in addition to the primary 
pattern is represented by the secondary Gleason grade [20]. The two 
Gleason grades will then be added together to determine the Gleason 
score, i.e. the most predominant grade and the highest grade should be 
recorded in the Gleason core [10]. Theoretically, Gleason scores range 
from 2–10. However, pathologists almost never assign Gleason scores 
of 5 or lower, i.e. Gleason pattern 1 or 2 are rarely used. Thus, Gleason 
scores normally range from 6 to 10, with 6 being the lowest grade 
cancer. In 2013, a new grading system was proposed, which simplified 
the number of grading categories from Gleason scores 2 to 10 to Grade 
Groups 1 to 5 with the lowest cancer grade 1 not 6 as in Gleason [21]. 
A lower-grade cancer typically grows more slowly and is less likely to 
spread than a high-grade cancer. The aim in using PPGQ is to help the 
pathologists to standardise the grading approach and to reduce inter- 
and intra-observer variability.
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Fig. 1. Paige Prostate Suite sample output.

Fig. 2. Overview of the safety analysis methodology.

3. Methodology

There are various safety measures related to medical devices, e.g. in-
tended use statements required for regulatory approval (e.g. by FDA), 
quality assurance and competence requirements set out by professional 
accreditation bodies (e.g. UKAS) and evaluation and deployment guide-
lines set out by professional organisations (e.g. RCPath) if such devices 
are going to be deployed in hospitals. For this study, we undertake 
additional activities to examine and analyse clinical context to develop 
a more holistic understanding of the safety of DL-based medical devices 
in deployment, i.e. in their usage context, where the guidance is sparse 
for DL technologies. In order to identify potential new hazards from 
the deployment of a system, we first endeavour to understand the way 
in which the tool is integrated into the clinical workflow, and how it 
is used in conjunction with other tools. Therefore, the first step in our 
methodology, illustrated in Fig.  2, is to map out the clinical workflow
in which the medical device is intended to be deployed. This will 
ensure that we not only consider how safe the DL tool is in isolation, 
but also consider the impact from the wider clinical context which 
introduces further factors with inherent unpredictability. Hence, the 
clinical workflow also gives us a basis for safety analysis.

The second step in the methodology is hazard identification, which 
is critical in safety analysis. A hazard is a potential source of harm [22]. 
If the hazards were not identified at this step then they would not be 
subject to the rigour of the risk management process, which could result 
in a failure to identify risk controls that could be implemented in the 
system to prevent or mitigate potential harms that may arise during 
the system’s use. There are many different methods for hazard iden-
tification, e.g. HAZard and OPerability studies (HAZOP) [23], which 
typically focus on deviations from intent that could be hazardous in 
context. Once hazards have been identified, the system or situation is 
analysed to determine potential causes of the hazards and the potential 
clinical consequences. Then for each identified hazard, the associated 
risk is estimated. Therefore, hazard identification also gives us a focus 
for risk analysis, which is the third step in the methodology.

Fig. 3. An example of Bow tie diagram.

In safety engineering, it is common to organise risk analysis and 
controls around the notion of a hazard, however risk analysis needs to 
be interpreted in the context of a particular system or situation [24]. 
Typically, the risk is expressed as the combination of the probability of 
occurrence and severity of the hazard’s consequences [25]. Sometimes 
the probability can be quantified; other times estimates are qualitative 
based on domain knowledge. In addition, the risk of the hazards will 
determine the priority for the introduction of risk controls (means of 
preventing the causes of hazards or mitigating the impact of hazards if 
they do arise). Once risk controls have been identified and introduced, 
then the risk associated with the hazards can be re-evaluated. This 
type of risk aversion approach is central to the development of medical 
devices for market release, ensuring that risk controls are implemented 
as appropriate.

In this study, we focus on the deployment phase, therefore it poten-
tially could uncover the need for new risk controls, which in turn could 
impact and inform further development efforts. During risk analysis, it 
is also useful to employ Bow tie diagrams, as illustrated in Fig.  3, to 
provide a clear and visual presentation of the relationship between the 
hazards, causes and consequences of the hazards, and the risk controls. 
By mapping out the potential causes of the hazards (left side of the 
bow tie) and their consequences (right side of the bow tie), with the 
risk controls in the middle, it can help to understand how the hazards 
are controlled, and systematically assess the risk landscape. The use 
of the Bow tie diagrams can help to expose the weak points in the 
system and identify the need for new controls if necessary. There will 
usually be iteration within risk analysis and bow tie diagrams can help 
to support the iteration. The value of the visualisation is that it gives a 
basis for discussion of risk controls with a wide range of stakeholders 
and supports the development of a safety case.

Finally, the use of safety cases is a long-established practice in many 
safety critical domains. Particularly in the UK, the development of a 
safety case is a mandatory requirement in key sectors such as defence, 
nuclear and railways [26]. For the NHS in England, compliance with 
the clinical safety standards, e.g. DCB0160 requires a safety case [27]. 
This might be legally mandated in addition to the requirements of 
the medical device regulations if the medical device needs to be im-
plemented within a Health IT system. A safety case for clinical risk 
management is ‘‘a structured argument which is supported by a body of 
relevant evidence that provides a compelling, comprehensible and valid 
case that a system is safe for a given application in a given operating 
environment’’ [27]. In our methodology, the safety case draws evidence 
from all the other phases in our analysis (see Fig.  2) and documents the 
safety rationale, or argument, and any available supporting evidence 
for the deployment of the DL tools in their clinical context.

By comparison with other approaches, our methodology has the 
following distinctive merits. Firstly we put the DL-based medical device 
into its clinical context where we not only consider how the tool is go-
ing to be used to support clinicians, e.g. second read or concurrent read, 
as has been stated in the intended use statements requirement during 
regulatory approval, but also consider other tools used in conjunction 
with it. We then go through hazard identification and risk analysis, 
as is required for regulatory approval. Risk analysis is a fundamental 
component for regulatory approval, guided by standards such as ISO 

Computers in Biology and Medicine 192 (2025) 110237 

3 



Y. Jia et al.

Fig. 4. Paige Prostate Suite clinical workflow in deployment (Concurrent read).

Fig. 5. One simplified example of Paige Prostate Suite technical workflow in deployment.

14971 [22] for medical devices. While many hazards and risks can be 
identified during the development phases, our approach incorporates 
the context of the clinical deployment pathway, which adds a depth and 
richness that cannot be fully achieved during the development phase. 
Finally we use the safety case to synthesise the evidence obtained 
during the assessment, using a safety argument to clearly present the 
links between the different stages. This shows that our methodology 
goes above and beyond other assessment frameworks in terms of safety 
assurance.

4. Results

4.1. The clinical workflow

Currently, most of the DL tools that have achieved regulatory ap-
proval are for clinical decision-support in the sense that they assist 
clinicians, and clinicians make the final decisions. The Paige Prostate 
Suite falls into this category, serving as a decision-support tool assisting 
pathologists in prostate needle core biopsy evaluation. Fig.  4 shows 
a depiction of the clinical workflow for the deployment of the Paige 
Prostate Suite, which is the same across the 3 NHS sites. Note that, this 
workflow is downstream of a complex clinical process to identify risk of 
prostate cancer, and hence a patient’s candidacy for biopsy. Therefore, 
the workflow starts with the prostate biopsies being taken from the 
patient by clinicians to send to the laboratory for examination. Then, 
the biopsies are processed in the laboratory and eventually digitised to 
WSIs, which will be reviewed by the pathologists. If the WSIs are of 
H&E stained samples, they will be also analysed by the Paige Prostate 
Suite. Then the pathologists have the option to click the ‘‘AI button’’ 
on their review screen to see the outputs from the Paige Prostate 
Suite. If the PPD detects cancerous tissues in the WSI, it will trigger 
further tumour grading and quantification with PPGQ. Therefore, when 
there is cancerous tissue detected in the WSIs, the output from the 
Paige Prostate Suite will include cancerous prediction, a single focus of 

interest for suspicious cancerous tissue on the WSI, tissue map overlay 
and also the primary and secondary Gleason pattern along with the 
length and percentage of the tumour. When there is no suspicious 
tissue detected, the only output from Paige Prostate Suite is ‘‘Suspicious 
Tissue not detected’’ as shown in Fig.  4. Then, the pathologist will make 
the final decision with the support from the Paige Prostate Suite, render 
the final diagnosis and send it back to the clinicians.

Implementing the clinical workflow involves integrating tools and 
providing appropriate user interfaces for healthcare staff. This can 
be quite challenging, as hospitals use many systems from different 
suppliers, and these may vary significantly between hospitals. For 
example, for the Paige Prostate Suite to work optimally, it has to be 
interfaced with the laboratory information management system (LIMS) 
and/or the digital pathology system in the hospital to obtain essential 
metadata associated with the relevant H&E stained WSIs and WSIs 
themselves. However, there may not be sufficient or appropriate access 
to or collaboration with the suppliers of other software tools deployed 
in the hospital to assist the integration with the DL tools. Indeed, 
this was one of the main issues that was highlighted, and overcome 
during deployment.1 In Fig.  5, we present one simplified example of 
the technical workflow that has been implemented during deployment 
(note that there are 3 different technical workflows for the 3 NHS sites). 
The exact technical workflow includes a tool to translate the messages 
between the different systems. For example, when the Paige system 
sends a request for de-identified (De-ID) Meta data for the slide it 
received, it has to pass the message to another tool, which will translate 
the message, then request the De-ID data from the LIMS, and then 
return it to the Paige system. In reality these interfaces will be different 
for every LIMS and AI vendor interaction, which reflects the inherent 
heterogeneity across hospital systems, so we kept this high level to 

1 At a meeting between the York, Paige, and Oxford teams in John Radcliffe 
Hospital, Oxford, June 2023.
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Fig. 6. One example of Reporting Prostate Cancer.

be more representative. In this case, one of the specific requirements 
from the local hospital was that the Paige Prostate Suite should not 
have direct access to any patient ID data and pathologists should still 
be able to review cases from the LIMS environment. Therefore, the 
relevant WSIs (i.e. H&E stained WSIs from prostate core needle biopsy) 
are flagged in the LIMS automatically using specimen code and stain 
code and de-identified before they can be sent to the Paige Prostate 
Suite. The metadata stored in the hospital systems can include patient 
ID, case ID, specimen ID, Block ID and slide ID. This allows the result 
from the Paige Prostate Suite to be re-associated with the patient in the 
LIMS when the results are returned through the slides’ URL. The Paige 
Prostate Suite has met HIPAA [28] and ISO/IEC 27001 compliance 
standards [29] and systematically addresses the confidential handling 
of patient data. However, this case shows how complex and variable 
the deployment environments and individual requirements can be. The 
requirements may also evolve: taking a longer term view, if the hospital 
decides to fully deploy the system after the initial trial, this specific de-
identification requirement for this NHS site may be lifted after further 
discussions with the relevant governance teams.

4.2. Hazard identification

In this section, we first use a variant of HAZOP for computer-based 
systems, i.e. SHARD [30], for hazard identification. Then we illustrate 
the clinical impact of the identified hazards. Finally, we applied SHARD 
again to identify the causes of the Hazards. SHARD, which considers 
information flows through systems, is suitable for identifying both 
hazards and causes of hazards. It provides a structured approach to 
the identification of deviations from intent by systematically applying 
the guidewords (omission, commission, early, late and incorrect) to each 
flow. Here we apply the SHARD method to the clinical workflow in Fig. 
4 with a specific focus on the Paige Prostate Suite to identify potential 
clinical hazards that can arise from the use of the DL tools. The analysis 
was carried out by a multidisciplinary team with clinical, ML and safety 
backgrounds.

4.2.1. Identified hazards
The clinical hazards identified by applying the SHARD method on 

the clinical workflow are as follows:

• H1: False negative classification (slide-level).
• H2: False positive classification (slide-level).
• H3: True positive classification but incorrect localisation as dis-
played by the single FOI.
• H4: True positive classification but under-annotated tissue map.
• H5: True positive classification but over-annotated tissue map.
• H6: True positive classification but incorrectly annotated tissue 
map.
• H7: True positive classification but Gleason score is discrepant 
with reporting pathologists.
• H8: Delayed output.

The guideword early is not applicable, as early output does not 
have a practical meaning here. The guideword omission is interpreted 
as H1: False negative classification on the slide-level. In this context,
commission means doing something that was not intended. Therefore, 
it is interpreted as H2: False positive classification on the slide-level. 
In these kinds of false positive cases, the Gleason score should be 
discarded. The guideword late is interprested as H8: Depalyed output 
from the Paige system.

The guideword incorrect is interpreted as part of the output is 
incorrect meaning right slide-level classification, but other parts of the 
output are not correct. This results in five further potential hazards H3 
to H7. The first incorrect hazard concerns the location of the single 
FOI, i.e. ‘‘H3: True positive classification but incorrect localisation 
as displayed by the single FOI’’. In this context we consider it is a 
hazard only when the area highlighted by the focus is benign. If the 
area highlighted by the focus is indeed cancerous, but not the most 
aggressive tumour, then it is not considered as a hazard as the FOI 
function is designed to highlight the single point that is predicted to 
most definitively contain cancer, which is different to a prediction 
for the highest grade of cancer. The second to fourth incorrect hazard 
concerns the border and coverage of the tissue map, resulting in three 
sub-hazards, i.e. H4, H5, H6: (i) under-annotated tissue map (i.e. parts 
of tumour are labelled but not all); (ii) over-annotated tissue map 
(i.e. all of tumour labelled as well as benign areas); (iii) incorrectly 
annotated tissue map (i.e. only benign tissue labelled, adenocarcinoma 
tissue is not).

The fifth incorrect hazard concerns Gleason score, i.e. H7: ‘‘True 
positive classification but Gleason score is discrepant with reporting 
pathologists’’. Note that we use ‘‘discrepant’’ over ‘‘wrong’’ here. There 
are two reasons for this. First, when AI’s Gleason score differs from 
the reporting pathologists’ opinion or final authorised report, it is 
not necessarily that the AI is incorrect. Determining the ‘‘correct’’ 
Gleason score is challenging and in reality more than one score may 
be reasonable especially in ambiguous or borderline grading cases. The 
use of discrepancy indicates when the Gleason score suggested by the 
AI tool differs from the reporting pathologists. Second, although the use 
of DL technology for predicting Gleason score is intended to improve 
reproducibility of diagnosis since the Gleason score is inherently sub-
jective as we mentioned in the introduction, the ground truth used for 
training such DL tools is still human opinion based. Therefore, having 
a more consistent DL tool does not mean that such subjectivity will 
disappear. Future AI developments may consider this by identifying 
robust prognostic indicators such as distinct phenotypic signatures that 
can be detected by AI, rather than training AI to replicate a subjective 
human classification system. 

Finally, although one of the outputs from Paige Prostate Suite is 
tumour percentage & length as shown in Fig.  4, we have not included 
‘‘True positive classification but wrong tumour percentage & length’’ 
as one of the hazards because the tumour percentage & length is 
calculated based on the annotation on the tissue map, similar to the 
Gleason pattern percentages which are also calculated based on the 
annotated tissue map. An example of such an annotated tissue map 
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Table 1
Paige Prostate Suite hazard and risk analysis.
 Guide word Clinical Hazards Possible Causes Risk controls Probability Severity Risk 

Rating
Comparison 
to 
development

 

 Omission H1: False negative 
classification 
(slide-level)
Clinically at a case 
level significant if no 
cancer is flagged at all 
by Paige when cancer
is present on any 
slide(s) and the 
pathologist 
making a case-level 
false negative diagnosis
(see Fig.  6). In a case 
containing cancer, if
slides within the case 
are already flagged 
correctly as cancer and 
reported as so by the 
pathologists, then a 
false negative read on 
one or more other 
slides in the case are 
of  
lesser significance.

1. Information
mismatch
2. PPD DL model 
produced false 
negative 
prediction (e.g. 
when out of 
focus slides are 
analysed and 
given a false 
negative 
classification)

1. Contextual 
launch
2. Model 
testing/tuning, 
analytical 
performance and 
clinical 
validation
3. User Training: 
extensive 
training 
is provided to 
pathologists with 
examples of 
potential failure 
mode
4. Instructions 
for Use: 
pathologists 
should make the 
final decision 
with 
the support from 
the tool
5. The use of 
immunohisto-
chemical 
(IHC) testing

Low Significant Moderate Extra risk
controls are 
identified, 
i.e. 
contextual 
launch, but 
overall risk is 
deemed 
unchanged

 

 Commission H2: False positive 
classification 
(slide-level)
Clinically at a case 
level significant if a 
case 
is entirely benign/PIN 
but Paige has flagged 
an area or areas 
suspicious of cancer 
and the 
pathologist also calls 
this cancer leading to 
a case-level false 
positive diagnosis. In a 
case 
containing cancer, if 
slides within the case 
are already flagged 
correctly as cancer and
reported as so by the 
pathologists, then a 
false positive read on 
one or more other 
slides
in the case are of 
lesser significance.

1. Information
mismatch
2. PPD DL model 
produced false 
positive 
prediction

1. Contextual 
launch
2. Model 
testing/tuning, 
analytical 
performance and 
clinical 
validation
3. User Training: 
extensive 
training 
is provided to 
end users with 
examples of 
potential failure 
mode
4. Instructions 
for Use: 
pathologists 
should make the 
final decision 
with 
the support from 
the tool
5. The foci 
generated by the 
tool will 
further act as a 
risk control
6. The use of 
immunohisto-
chemical 
(IHC) testing

Low Significant Moderate Extra risk
controls are 
identified, 
i.e. 
contextual 
launch, but 
overall risk is 
deemed 
unchanged

 

 
(continued on next page)

can be seen in Fig.  1. Therefore wrong tumour percentage & length 
is a result of the tissue map being under-annotated, over-annotated or 
incorrectly annotated rather than a stand-alone hazard. The identified 
hazards are presented in Table  1. Examples of the potential AI failure 
modes that could contribute to these hazards include: prostate biopsy 
cores may be spaced very closely together in one slide so that the 

algorithm cannot distinguish them as separate cores leading to over-
annotated tissue map; over-annotation where a benign area is marked 
as suspicious in one core due to sensitivity; core is fragmented or not 
complete leading to under-annotated tissue map. In the case of false 
negatives, a previous investigation [31] has reported this could arise 
in instances of glandular atypia.
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Table 1 (continued).
 Guide word Clinical Hazards Possible Causes Risk controls Probability Severity Risk 

Rating
Comparison 
to 
development

 

 H3: True positive 
classification
but incorrect 
localisation as 
displayed by the single 
FOI

1. PPD DL model
misidentifies 
suspicious areas

1. Model 
testing/tuning, 
analytical
performance and 
clinical 
validation
2. Tissue map 
overlay
3. User Training: 
pathologists are 
trained not to 
locate a single 
focus
4. Instructions 
for Use: 
pathologists 
should make the 
final decision 
with 
the support from 
the tool

Low Negligible Minor Extra risk
controls are 
identified, 
i.e. 
the tissue 
map, 
thus overall 
risk is 
reduced

 

 H4: True positive 
classification
but under-annotated 
tissue map

1. PPD DL model
produced 
under-annotated 
tissue map

1. Model 
testing/tuning, 
analytical
performance and 
clinical 
validation
2. User Training: 
extensive 
training is 
provided to 
pathologists to 
be aware of 
such potential 
failure mode& 
frequency
3. Instructions 
for Use: 
pathologists 
should make the 
final decision 
with 
the support from 
the tool

Low Minor Minor More refined
Hazard 
definition

 

 H5: True positive 
classification
but over-annotated 
tissue map

1. PPD DL model
produced 
over-annotated 
tissue map

1. Model 
testing/tuning, 
analytical
performance and 
clinical 
validation
2. User Training: 
extensive 
training is 
provided to 
pathologists to 
be aware of 
such potential 
failure mode& 
frequency
3. Instructions 
for Use: 
pathologists 
should make the 
final decision 
with 
the support from 
the tool

Medium Minor Moderate More refined
Hazard 
definition

 

 
(continued on next page)

Computers in Biology and Medicine 192 (2025) 110237 

7 



Y. Jia et al.

Table 1 (continued).
 Guide word Clinical Hazards Possible Causes Risk controls Probability Severity Risk 

Rating
Comparison 
to 
development

 

 H6: True positive 
classification
but incorrectly 
annotated tissue 
map

1. PPD DL model
produced 
incorrectly 
annotated tissue 
map

1. Model 
testing/tuning, 
analytical
performance and 
clinical 
validation
2. User Training: 
extensive 
training is 
provided to 
pathologists to 
be aware of 
such potential 
failure mode& 
frequency
3. Instructions 
for Use: 
pathologists 
should make the 
final decision 
with 
the support from 
the tool

Low Minor Minor More refined
Hazard 
definition

 

 
Incorrect

Part of the 
output is 
incorrect

H7: True positive 
classification
but Gleason score is 
discrepant 
with reporting 
pathologists

1. PPGQ DL model
produced discrepant 
Gleason score

1. Model 
testing/tuning, 
analytical
performance and 
clinical 
validation
2. User Training: 
extensive 
training is 
provided to 
pathologists to 
be aware of 
such potential 
failure mode& 
frequency
3. Instructions 
for Use: 
pathologists 
should make the 
final decision 
with 
the support from 
the tool

Medium Moderate Moderate More refined
Hazard 
definition

 

 
(continued on next page)

4.2.2. Clinical impact of the hazards
In order to understand the clinical impact of the hazards identified 

above, it is important to understand prostate cancer management. In 
the clinical context of managing prostate cancer, there are three impor-
tant histopathology factors to consider [32], i.e. a case-level diagnosis, 
Gleason score, and tumour burden assessment. Among them, a case-
level benign/malignant diagnosis along with other clinical findings, 
e.g. multiparametric MRI result, have a significant impact on further 
management, usually whether patients enter a prostate cancer path-
way or are discharged. Once malignancy is confirmed, Gleason score 
then becomes the next important feature in determining management 
options. To a lesser extent the number of cores involved and tumour 
burden are used to assess suitability for surveillance or other options. 
All of the clinical hazards identified above are related to individual 
slide analysis as the Paige Prostate Suite analyses individual WSIs. The 
final diagnosis involves consolidating information from individual WSIs 
into a case-level assessment. There will be small variations between 
labs in workflows, sample preparation and reporting practices which 
can influence the clinical impact of the hazards. We illustrate this 
based on one of the NHS trusts participating in this study, see Fig. 
6. In this case, multiple core needle biopsy samples are usually taken 

from various sites in the prostate by either a transrectal or templated 
transperineal protocol (LATP), including specific lesions on MRI scan 
which may be targeted. The biopsies from each sample or area are 
blocked into one paraffin wax block and 3 sections or levels from 
the block are cut for analysis. This ensures thorough examination 
and reduces the risk of missing any cancerous tissues in the prostate. 
Two levels go on one slide, i.e. L1 and L2 go on one slide (see Fig. 
8(a)), and L3 goes on a second slide (see Fig.  9). Pathologists do not 
report on individual WSIs; instead, they often report on whether each 
sampled site has been infiltrated by adenocarcinoma, i.e. sample-level 
assessment. Finally, pathologists will summarise all of the sample-level 
information to produce an overall diagnosis, i.e. case-level diagnosis.

Therefore, WSI-level false negative classification does not neces-
sarily result in false negative diagnosis for the patient if other slides 
from that core needle biopsy sample contain cancer tissues and have 
been analysed correctly. Nor does it result in an overall false negative 
diagnosis if other core needle biopsy samples in the case contain cancer. 
Similarly, WSI-level false positive classification does not necessarily 
result in false positive diagnosis for the patient if other slides from 
that core needle biopsy sample contain cancer tissues and have been 
analysed correctly. Nor does it result in an overall false positive diag-
nosis if other core needle biopsy samples in the case contain cancer. 
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Table 1 (continued).
 Guide word Clinical Hazards Possible Causes Risk controls Probability Severity Risk 

Rating
Comparison to 
development

 

 Late H8: Delayed output 1. Paige Prostate
Suite technically 
fails ingestion, 
analysis and/or 
visualisation 
2. Paige Prostate 
Suite processed 
slides returned late
3. DL model is not 
triggered on a slide

1. Retry sending 
notifications for
processing slide
2. Warnings and 
Error Messages
3. Inherent 
Safety by 
Design: CPU
fallback, 
software 
configuration, 
error 
handling, 
integrity 
verification 
etc. . .
4. Slide 
pre-processing 
component
5. Code review 
and test 
coverage 
analysis of 
production code
6.User Training: 
extensive 
training is 
provided to 
pathologists with 
examples
of potential 
failure mode, 
with 
pathologists 
reverting to 
reporting 
without AI
7. Instructions 
for Use: the tool 
only 
process H&E 
stained prostate 
needle 
biopsy that meet 
specified quality 
criteria

Low Negligible Minor Unchanged  

 Early N/A  

The Gleason score is also assessed and in this hospital, the maximum 
Gleason score from any one specimen in the case is reported in the 
bottom line of the case. Possible variations in other medical centres 
include embedding individual cores each in a block, putting all levels 
on 1 or 3 slides, and the use of the overall Gleason score, see RCPath 
standards for more information [10].

It is important to understand how the hazards identified here might 
impact the clinical management of prostate cancer in determining 
the severity level of the hazards and overall risk, as outlined in Sec-
tion 4.3, since this informs the prioritisation of risk mitigations and the 
acceptance of the product.

4.2.3. Causes of the hazards
After the identification of the hazards for the clinical workflow, we 

applied SHARD to the technical workflow in Fig.  5 to identify technical 
failures that can contribute to the clinical hazards identified above. A 
technical failure arises where a system or item of software does not 
carry out its intended function, e.g. does not transmit a WSI. But a 
failure mode, in itself, is not a hazard. It could act as a trigger event 
that could lead to harm by activating exposure to one or more hazards. 
The analysis was carried out with the help from the IT manager of 
Cellular Pathology in one of the hospitals. It is important for the 

analysis to consider the interdependencies between different sources 
of hazards. Once this is established, separating technical failures and 
clinical hazards might allow more efficient engagement of the relevant 
expertise and thus optimising the use of resources. Further, it also helps 
to improve communication about safety issues within the healthcare 
organisation, e.g., between technical and clinical teams, enabling a 
collaborative approach to addressing safety concerns which ultimately 
contributes to a safer and more robust healthcare environment.

The resulting potential technical failures were identified by applying 
the SHARD method to the technical workflow are as follows:

• Omission — Paige Prostate Suite technically fails ingestion, anal-
ysis and/or visualisation.
• Commission — N/A
• Incorrect — Information mismatch, i.e. slide images do not match 
patients.
• Early — N/A
• Late — Paige Prostate Suite processed slides returned late.

Commission and early are considered not applicable as Paige Prostate 
Suite returning an output when not requested or early is not plau-
sible. After the identification of the potential technical failures, we 
have further analysed their impact, i.e. what clinical hazards they 
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can contribute to. This shows that the technical failures are possible 
causes of the clinical hazards. It is likely that all of these potential 
technical failures would have been considered when assessing the tools 
for regulatory approval. However, analysis of the technical workflow 
would potentially identify more specific causes of these failures. For 
example, the cause for ‘‘Paige Prostate Suite technically fails ingestion, 
analysis and/or visualisation’’ can be ‘‘WSI and metadata are unable to 
be processed by Paige’’, which could be due to image quality issues, 
file corruption, data issues, or specifically the de-identification step 
introduced here does not translate the request properly. In this work, 
we did not further analyse the causes for technical failures as our 
focus is on DL technologies, but this example highlights the merit in 
working through the technical workflow to identify the complete set 
of potential failure causes. Further, there is also value in exploring 
how varying technical workflows could influence the risk analysis of 
DL tools, however it is outside scope of this study.

Table  1 presents a summary of the identified clinical hazards, possi-
ble causes for the hazards, and the existing risk controls for mitigating 
the hazards, integrating the results of the analysis of the clinical and 
technical workflows. The possible causes of the hazards, as shown in 
Table  1, are mainly from DL models themselves and the high-level 
technical failures without going back to potential root causes, e.g. file 
format incompatibilities. For risk controls, note that we have not listed 
all of the traditional software risk controls in the table, e.g. fixed 
dependencies in a given software version, merely enumerating some 
for illustrative purposes. However, we would like to highlight one 
of the risk controls, i.e. contextual launch where a unique URL will 
be generated for each patient in the LIMS for pathologists to access 
the results, which is specifically introduced to prevent information 
mismatch after patient de-identification. Further, DL model testing/-
tuning, analytical performance and clinical validation performed by the 
vendor are the main risk controls for the DL model itself. There is no 
institution-specific tuning involved. Once a version of Paige Prostate 
Suite is released, the algorithm is fixed and remains immutable with no 
adjustable operating points specific to individual sites. This shows that 
it is difficult to have inherently safe design for DL due to its ‘‘black box’’ 
nature. However, the presentation of foci and the tissue map can be 
thought of as a form of explanation which also provides risk controls for 
the DL models. Additionally, discussion of the probability, severity and 
risk rating columns are provided in Section 4.3, while the comparison 
to development column is elucidated in Section 4.4.

4.2.4. Hazards in real-world scenarios
In this section, we present examples of the hazards encountered 

during the hospital deployment to illustrate their real-world manifes-
tation. These examples demonstrate that the identified hazards are 
not merely theoretical but occur in practice, showing the effectiveness 
of our safety analysis methods. Specially, we show three real-world 
scenarios associated with hazards, H2, H3, H5, H7 (see Fig.  7, Fig.  8, 
Fig.  9).

Patient scenario 1: Slide-level false positive classification (H2)

Patient A underwent multiple prostate core needle biopsy sam-
ples/specimens and was diagnosed with adenocarcinoma as 
there was Gleason Score 7 (3+4) adenocarcinoma in specimen 
3. However one of the WSIs from specimen 5 of this case 
was benign, but the Paige system incorrectly predicted it as 
cancerous, as shown in Fig.  7. Therefore, the area highlighted 
by the single FOI was benign as well. This shows a slide-level 
false positive classification (H2), although it did not result in a 
case-level false positive. Further, the indicated Gleason Score 
6 (3+3) in this case should be discarded as well.

Patient scenario 2: True positive slide-level classification but 
incorrect localisation as displayed by the single FOI (H3) and 
over-annotated tissue map (H5)

Patient B underwent multiple prostate core needle biopsy 
samples/specimens and was diagnosed with adenocarcinoma. 
The Paige system correctly identified a slide from specimen 
6 as cancerous with Gleason Score 6 (3+3) adenocarcinoma. 
However, the area highlighted by the single FOI was actually 
benign, while the true adenocarcinoma area is indicated by 
the red arrow in Fig.  8. This is associated with hazard H3. No-
tably, the invasive carcinoma tissue map successfully detected 
this adenocarcinoma area, but also incorrectly identified some 
benign areas as containing adenocarcinoma. This shows the 
hazards H5 – True positive classification but over-annotated 
tissue map where all adenocarcinoma are highlighted as well 
as benign areas. Other specimens in this patient case also con-
tained adenocarcinoma. This scenarios combines the hazards 
H3 and H5, illustrating that pathologists rarely rely solely on 
the FOI when making diagnosis, thereby reducing the clinical 
significance of H3 in diagnostic decision-making.

Patient scenario 3: True positive slide-level classification but 
Gleason score is discrepant with reporting pathologists (H7)

Patient C underwent multiple prostate core needle biopsy sam-
ples/specimens and was diagnosed with adenocarcinoma. One 
of the WSIs was correctly flagged as cancerous by the Paige 
system but assigned a Gleason Score of 8 (4+4). However, 
the reporting pathologist did not agree with this and assigned 
a Gleason Score of 7 (3+4) in the final report. The patholo-
gist’s decision was based on histological features evident at 
5x magnification, which revealed predominantly well-formed 
discrete glands characteristic of a primary Gleason pattern 3, 
not pattern 4 as the system suggested. The presence of a few 
poorly formed glands supported the secondary Gleason pattern 
4 (see Fig.  9).
This scenario highlights the hazard H7 – True positive classifi-
cation but Gleason score is discrepant with reporting patholo-
gists. In routine clinical practice, each patient case is typically 
reviewed by a single pathologist, unless the pathologist re-
quires a second opinion from senior colleagues. Therefore, in 
this study as in real life, not all patient cases have had a 
second opinion. Thus, the hazard H7 refers to discrepancies 
between AI system and the reporting pathologists’ opinion or 
the final authorised report, rather than a reference standard 
such as a panel of experts as the former more closely repli-
cates real world practice. Establishing a definitive reference 
standard or ground truth for Gleason score is difficult in an 
area with known inter and intra-observer differences. Even 
among expert panels, consensus is not always reached as more 
than one Gleason score may be reasonable in reality. However, 
hospitals regularly hold quality assurance meetings to discuss 
the difficult cases. For example, in this study, there was a 
consensus review where participating pathologists discussed 
how they would grade selected cases – though not all cases. 
Further, there are efforts to standardise Gleason score through 
external quality assurance (EQA) schemes as well.
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Fig. 7. Patient scenario 1 – slide-level false positive classification (Hazard H2). This area highlighted by the single FOI and this WSI from specimen 5 of this patient case is benign, 
showing some inflammation which can often produce some mild atypia and there are also prominent basal cells. There was Gleason Score 7 (3+4) adenocarcinoma in another 
part of the case (specimen 3). 5x zoom.

Fig. 8. Patient scenario 2: True positive slide-level classification but incorrect localisation as displayed by the single FOI (H3) and over-annotated tissue map (H5). This figure 
shows the different views of the same slide from specimen 6 of the patient case. The panel (a) shows the slide from specimen 6 was correctly flagged as cancerous and showing 
Gleason Score 6 (3+3) adenocarcinoma. However, the area highlighted as most suspicious for adenocarcinoma in the circle by the Paige system is benign and the 0.6 mm area of 
adenocarcinoma is adjacent to the red arrow. The area of adenocarcinoma was highlighted in the invasive carcinoma tissue map, as we can see in panel (b). The panels (c) and 
(d) show the higher power view of adenocarcinoma area near the red arrow and the benign area highlighted by the FOI.

4.3. Risk analysis

As noted in Section 3, after the hazard identification, the level of 
risk associated with each hazard is estimated. In order to analysis risks, 
two components, i.e. probability and severity of the harm, should be 
analysed.

In this study, a qualitative risk analysis is performed by a multi-
disciplinary team comprising experts with backgrounds in clinical, 
AI, and safety. Specifically, the team first collaboratively developed 
a three-level scale for probability and a four-level scale for severity, 
presented in Tables  2 and 3. Then the team developed the risk matrix, 
as shown in Table  4. Combining the probability and severity gives a 
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Fig. 9. Patient scenario 3: True positive slide-level classification but Gleason score is discrepant with reporting pathologists (H7). This WSI from specimen 2 was assigned a Gleason 
Score of 8 (4+4) by the Paige system, but the reporting pathologist did not agree with this and assigned a Gleason Score of 7 (3+4) in the final report. 5x zoom.

Table 2
Three qualitative probability levels.
 Levels Description  
 Low Unlikely to happen, rare, remote  
 Medium Can happen but not frequently  
 High Likely to happen, often, frequently 

Table 3
Four qualitative severity levels.
 Levels Description  
 Negligible No injury or slight injury  
 Minor Minor injury from which recovery is expected  
 Moderate Severe injury or severe incapacity from whichrecovery is expected 
 Significant Death or permanent harm  

risk matrix with twelve combinations. Each cell in Table  4 is given 
an overall risk rating (minor, moderate or major). For example, low 
probability of the occurrence of the harm with a significant severity is 
classified as Moderate.

The overall risk level also identifies the approach to mitigation, viz:

• Overall Risk = Minor: no injury or damage to health possible; 
Mitigation: No mitigation is required
• Overall Risk = Moderate: non-serious injury possible; Mitigation: 
If no mitigation is applied, there must be justification that the 
benefits outweigh the risk
• Overall Risk = Major: unacceptable/death or serious injury pos-
sible; Mitigation: All major risks must be mitigated

Finally, utilising the aforementioned matrices, the team assessed the 
probability and severity separately for each hazard entry, as outlined in 
Table  1, based on the authors’ real-world experience of using the Paige 
system. However, we acknowledge that hazards may be of differing 
significance depending on the specifics of different hospitals and their 
local clinical practices.

Table 4
A qualitative 3 × 4 Risk Matrix.
 Qualitative severity levels
Risk assessment

Negligible Minor Moderate Significant 
High Minor Moderate Major Major  
Medium Minor Moderate Moderate Major  Qualitative 

probability 
levels Low Minor Minor Minor Moderate  

When assessing probability, it is important to take a Paige-oriented 
focus. This means that we estimate the likelihood of the hazard itself 
occurring, rather than the likelihood of its consequences, i.e. clinical 
harm. In healthcare, clinicians are highly effective at preventing harm 
from reaching patients. Therefore, understanding system behaviour 
is more important than focusing solely on the ultimate harm. When 
assessing severity, it is important to understand the clinical impact of 
the hazards, i.e. how they might change the clinical management of 
prostate cancer, as we mentioned in Section 4.2.2. Case-level diagnosis 
will determine whether patients enter a prostate cancer pathway or not. 
A false negative case-level diagnosis could result in a missed opportu-
nity for timely cancer treatment while a false positive diagnosis could 
lead to unnecessary repeated biopsy, exposing patients to associated 
comorbidities. Therefore, we classified the severity of H1 and H2 as 
significant. Although, incorrect Gleason scoring could also potentially 
lead to severe consequences, e.g. over-treatment, under-treatment or 
potential long term side effects from inappropriate interventions we 
classified the severity of H7 as moderate rather than significant. There 
are two reasons for this. The first reason is related to the specific 
architecture of the Paige Prostate Suite. As illustrate in Fig.  4, the WSIs 
first are processed by PPD, which identifies suspicious tissue in WSIs. 
Only WSIs with tissue defined as ‘‘suspicious’’ by PPD are passed to 
PPGQ. This workflow means that if cancer detection is not accurate, 
such as in cases of false negative classifications, those cases will not 
proceed to the Gleason scoring stage. Therefore this severity rating 
reflects the system’s operation logic. Secondly, once the presence or 
absence of cancer is established, Gleason scoring, while crucial, only 
exists within a broader diagnostic process. The overall clinical decision-
making for treatment involves multiple factors, such as PSA levels, 
cancer staging and other clinical data. This integrative approach means 
no single diagnostic metric determines treatment in isolation, therefore 
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further supports the rating of Gleason score misclassification as mod-
erate. Finally, we classified the severity of H4 to H6 as minor and the 
remainder as negligible. The severity classification directly reflects the 
degree of importance of the key factors impacting clinical management, 
i.e. case-level diagnosis, Gleason score, and tumour assessment. In gen-
eral, it is crucial to take a clinical focus when conducting risk estimation 
rather than just focusing on the technical level of the medical devices. 
For example, for hazard H8: delayed output, the severity was deemed 
as negligible as the pathologists can revert to reporting without AI. 
However, this would be a significant hazard if we took a technical 
perspective that a piece of software is not producing the intended 
output. Finally, the resulting risk rating for the Paige system indicates 
the risk associated with the hazards post-implementation of the existing 
risk controls within the Paige system and before the intervention of 
clinicians, which are all documented in Table  1. Based on the risk 
matrix in Table  4 and risk assessment approach mentioned above, the 
overall risk level for all of the hazards falls within acceptable level, thus 
does not require further mitigations or risk controls.

4.4. Comparison to development hazard log

To continually assure the safety of DL-based medical devices in 
deployment, it is important to understand safety-relevant changes that 
have occurred since their development. In this section, we compare the 
hazards identified in Table  1 to the development hazard log to identify 
changes. As a result, the risk associated with one of the hazards identi-
fied during development has been reduced due to the implementation 
of additional risk controls. More refined hazard definitions have also 
been established from deployment based on one of the general hazards 
that was identified in development, i.e. false quantification and/or 
grading for cancer. Note that the development hazard log submitted to 
the regulator is far more comprehensive than Table  1, as our intention 
here is to highlight the changes in hazards specially related to DL 
technologies after the initial development.

Specifically, we have derived four more refined hazard definitions, 
see Table  1: H7 arises out of the clinical workflow due to the use of two 
Paige AI tools (PPD and PPGQ) together in the deployment context (see 
the green area in Fig.  4). Another three, i.e. H4, H5, H6, are related to 
the tissue map overlay which was introduced for the UKCA and CE-
IVD marked version of PPD compared to the FDA-approved version. 
These detailed hazard definitions enable clinical risks to be further 
contextualised and elucidated by performing this analysis in a real-life 
deployment setting. Further, the risk associated with H3 ‘‘True positive 
classification but incorrect localisation as displayed by the single FOI’’ 
has been reduced due to the introduction of the tissue map as it 
highlights all of the suspicious areas of cancerous tissue discouraging 
the pathologist from focusing on just one location. Extra risk controls 
are also identified, i.e. contextual launch to prevent information mis-
match, which could further contribute to hazards H1 ‘‘False negative 
classification’’ and H2 ‘‘False positive classification’’. However, the risk 
associated with these two hazards, H1 & H2, are not deemed reduced 
compared to development due to the extra risk introduced by the de-
identification step. Therefore, we consider the overall risk associated 
with these two hazards, H1 & H2, to be unchanged. The risk associated 
with H8 ‘‘Delayed output’’ is deemed unchanged as well.

This underscores the significance of ongoing and systematic safety 
assurance for such systems in deployment and demonstrates that we 
are not merely duplicating the regulatory efforts or clinical governance 
& validation requirements or scrutinising the manufacturer’s work.

4.5. Risk control visualisation

Bow tie diagrams are a useful means for visualising how hazards 
are controlled. Here we present a bow tie diagram for Hazard H3: 
‘‘True positive classification but incorrect localisation as displayed by 
the single FOI’’ in Fig.  10 for illustration. There are five important 
elements of a bow tie diagram:

• Context (square with the black and yellow border) — an activity 
or condition that is part of normal operation, but which can be 
a source of harm. In this case, the context is ‘‘Output from the 
Paige Prostate Suite’’ in Fig.  10;
• Top event (amber circle) — the occurrence of the hazard. In 
this case, it is H3: ‘‘True positive classification but incorrect 
localisation as displayed by the single FOI’’ occurred;
• Threats (round-cornered blue box) — a cause that contributes to 
the hazard. In this case, there is one threat identified for H3, 
arising from the DL model itself, as shown in Table  1;
• Consequences (Orange box) — the potential result from the oc-
currence of the hazard. In this case, it might cause ‘‘fail to detect 
potential cancerous tumours for the slide’’, but if the focus was 
not activated by the pathologist, then the right result might still 
arise;
• Risk controls (Grey boxes) — measures taken to reduce the risk. 
If they appear on the left side, they help to reduce the likelihood 
that a threat can cause the top event. if they appear on the right 
side, they help to mitigate the impact of the top event. In this 
case, five risk control measures, as shown in Table  1, have been 
presented in addition to pathologists. Notably, the ‘‘tissue map 
overlay’’ emerges as an additional control to help to mitigate the 
impact of hazard H3 by offering a holistic view of areas exhibiting 
suspicious cancerous tumours on a slide image. Therefore, the 
overall risk associated with hazard H3 is deemed reduced as we 
indicated in Section 4.4.

Hazard and risk analysis is exploratory, so it is important to assess 
the credibility of the analysis. One of the difficult aspects for producing 
the bow tie diagram in Fig.  10 is assessing the consequences of hazard 
H3 as even for the same hazard, different credible consequences might 
occur. In one of the retrospective studies conducted previously without 
the tissue map using Paige Prostate Suite [33], one pathologist changed 
the initial correct classification (Cancerous) to (Benign) after reading 
the Paige system output, which presented a correct cancerous predic-
tion but with an incorrect location as indicated by the focus, i.e. it was 
benign where it was highlighted in the WSI.

This shows that one of the possible consequences of hazard H3 
is ‘‘Fail to detect potential cancerous tumours for the slide’’, but it 
occurred prior to the inclusion of the tissue map, so it also shows the 
value of the tissue map as an additional risk control. However, the 
worst credible consequence from this hazard H3 is successful detection 
based on the current deployment experience. Therefore, the severity 
for this hazard is negligible, as indicated in Table  1. However, this 
is limited by the observation period and if over time, this led the 
pathologist not to vigilantly search the rest of the tissue for the presence 
of cancer or more aggressive cancer, then the severity of this hazard H3 
would need to be updated.

The bow tie diagram does not just repeat Table  1. Instead, it offers 
a more refined view of the relationship of the causes of the hazards 
and the controls for the hazards. It helps to show the whole process of 
the propagation of a cause to the consequence if all of the controls fail. 
Further, it helps us to see more clearly what types of risk controls we 
have introduced. If all of the controls appear on the right hand side, 
i.e. for mitigation after the hazards occur, then it is likely to be useful 
to think about what controls can be introduced to prevent the hazards 
occuring or to reduce the probability of occurrence.

Finally, it is important to continue to monitor systems in operation 
to confirm the credibility of the analysis, the effectiveness of the 
controls, and to prompt action if new hazards arise which were not 
predicted.

4.6. Safety case

All the phases of the methodology in Fig.  2 feed into the safety case. 
The safety case draws together and integrates the work in the different 
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Fig. 10. Bow tie diagram for H3: ‘‘True positive classification but incorrect localisation as displayed by the single FOI’’.

Fig. 11. Goal Structuring Notation.

phases of the methodology, showing and critically evaluating how the 
information produced might assure the safety of the ‘‘system’’ which, in 
this work, is taken to mean the Paige Prostate Suite. Before we describe 
the safety case we have developed, we briefly introduce the notation.

In this work we present the safety argument using the Goal Struc-
turing Notation (GSN) [34]; a legend showing the key elements of 
the notation is presented in Fig.  11. The goals – claims that we wish 
to make and support – are shown as rectangles and they can be 
decomposed into sub-goals thus forming a tree. Goals are understood 
in a context – for example, the clinical setting of the system. Where the 
decomposition of goals is not obvious this is explained through a strat-
egy, represented as a rhombus. In a complete safety case all leaf-level 
goals are supported by solutions, represented as circles; the solutions 
provide evidence references to support the argument. Incomplete parts 
of the argument are shown with a diamond, meaning that part of the 
argument is to be developed. The detailed description of the notation 
can be found in https://scsc.uk/r141B:1?t=1

Here we present a snapshot of the safety argument in Fig.  12 with 
the top goal G0 ‘‘Sufficient controls are in place for risks associated 
with deploying Paige Prostate Suite into the hospital’’. As we mentioned 
above, goals should be understood within their context, thus G0 should 
be interpreted in the context of the deployment hospital as the risks 
associated with deploying Paige Prostate Suite might vary in different 
hospitals along with the risk matrix. G0 is decomposed using the 
strategy ‘‘argument over risks associated with hazards when deploying 
Paige Prostate Suite’’.

In Section 4.2, we have identified eight hazards in total after apply-
ing SHARD method to the clinical workflow in Fig.  4. Hazards H3 to H7 
are the detailed hazards arising from ‘‘part of the output is incorrect’’, 
so we combine them into one goal G3. Therefore, G0 is decomposed 
into four subgoals G1 to G4. For each subgoal G1 to G4, we use the 
strategy ‘‘argument over risk controls for hazards’’ to decompose it 
further. For G1, two hazard causes are identified, therefore it is further 
decomposed to G5 – ‘‘PPD DL model produced false negative prediction 
is controlled by model testing/tuning, analytical performance and clin-
ical validation, user instructions, user training and IHC testing’’ and G6 
– ‘‘Information mismatch is controlled by contextual launch’’ with each 
representing one of the hazard causes. For G2, one of the hazard causes 
is the same, i.e. information mismatch, therefore G6 also supports G2.

There are five hazard causes for G3, i.e. PPD DL model misidentifies 
suspicious areas, PPD DL model produced under-annotated tissue map, 

PPD DL model produced over-annotated tissue map, PPD DL model pro-
duced incorrectly annotated tissue map, and PPGQ DL model produced 
discrepant Gleason score. However, the risk control for all of them is 
model testing/tuning, analytical performance and clinical validation, 
user instructions and training except H3 has an additional control of 
tissue map overlay, therefore we combined them into one subgoal G8. 
For G4, there are three hazard causes associated with it. However, 
the risk controls for these three hazard causes are intertwined in that 
retry sending notifications, warnings and error messages, inherently 
safe design etc could act as a barrier for all of the three hazard causes, 
therefore we have combined these into one subgoal G9 ‘‘possible causes 
for Paige Prostate Suite to process slides unsuccessfully are controlled 
by retry sending notifications, warnings and error messages, inherent 
safe design etc’’.

Finally, the evidence to support the leaf goals G5, G6, G7, G8, G9 
all should come from the data, documents and evaluation conducted 
by the wider evaluation and the local clinical safety teams (hence the 
use of the ‘to be developed’ diamond symbols for these goals).

By developing the safety case for deploying Paige Prostate Suite in 
the hospital, it shows how the different phases in the methodology link 
together and support each other to evaluate the safety of the DL tools 
in their clinical context. Further, safety cases can enhance transparency 
by documenting the risk controls implemented (enabling reviews) and 
also critically challenging the reasons behind them, which is crucial 
for organisations to continue monitoring the safety of the system in 
operation.

5. Related work

The number of regulatory-approved AI/ML-based medical devices 
has increased significantly over the past decade. However, even AI 
tools that have received regulatory clearance for clinical use may 
underperform when deployed in new clinical settings due to poor 
generalisation or off-label use [35]. Studies have highlighted that some 
FDA-approved AI/ML medical devices lack sufficient published infor-
mation about their validation datasets, making it difficult to justify 
their clinical applications [36]. These cases highlight the difficulties 
faced for deploying AI in healthcare. Some commentaries have em-
phasised the necessity of establishing a comprehensive framework of 
quality assurance and training procedures to ensure consistent safety 
and effectiveness of AI tools in deployment [37–39]. However, there is 
little published work investigating continual assurance of the safety of 
AI/ML-based clinical decision support systems in deployment, based on 
real-world experience. This is unsurprising as the introduction of such 
technology in hospitals is still at an early stage. More work exists on 
exploring the safety of the AI tools in development [40]. Some work 
focuses on how to assure the technology, and other researchers have 
explored the robustness of the underlying AI/ML model. For example, 
Assurance of ML in Autonomous Systems (AMLAS) [41] provides a 
systematic approach to evaluating the safety of an ML component 
during development, producing an associated safety case. Here, we 
mention some relevant work on exploring the robustness of the AI/ML 
algorithms for prostate cancer detection based on WSIs.
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Fig. 12. Safety argument for deploying Paige Prostate Suite in the hospital.

Swiderska-Chadaj et al. [42] investigated the impact of scanner 
types and staining protocols on the performance of the DL model 
they produced in WSI classification of prostate cancer. They found 
that scanner variation only partly affects the performance of the DL 
model, whilst the staining protocols are more critical to the DL model 
performance. Other studies have investigated the error patterns that 
have been made by the DL models for prostate cancer detection. Mun 
et al. [43] has found that for the false negative cases, the DL model 
missed small-sized cancers which consisted of only several cancer 
glands or cancer glands located on the outer sample margin of the 
WSI, whilst for false positive cases, they often exhibited diffuse infil-
tration of lymphocytes and atrophic glands. Singhal et al. [44] found 
that misclassifications were occasionally discovered, particularly in the 
stromal regions and at the margins of the tissue borders. The majority 
of tissue border misclassifications are caused by preparation artefacts 
that the network does not recognise. They proposed to train an extra 
neural network to detect artefact regions and eliminate them as a pre-
processing step to avoid such misclassifications. Arvaniti et al. [45] 
found that most misclassifications at the tissue borders are due to tissue 
preparation artefacts, which are not recognised by the DL model. They 
also propose to train an additional neural network to detect stromal and 
artefact regions and exclude them as a pre-processing step. This shows 
that there are many variables outside of this study that could affect 
the performance and potentially the safety impact of the DL models. In 
this study, the same Paige DL model is deployed across all three NHS 
sites without adjusting the operating point, unlike other systems which 

often calibrate their algorithms for each deployment site so that they 
are performant.

There is considerable value if a comprehensive set of systematic AI 
failure modes tailored to pathology applications can be established. 
Such failure modes could be used as a dictionary of prompts for 
evaluating DL-based medical devices. This does not mean that every 
system will have the same problems but it could help to discover 
potential issues in the design of the DL-based medical devices. Further, 
regulators could also use such information to ensure the analysis has 
addressed common failure modes. We view this as complementary to 
our work as it can support a more granular analysis for false positive 
and false negative classifications, which could further help to achieve 
inherently safe design of the DL model or to identify risk controls.

6. Discussion

Obtaining regulatory approval for AI/ML-based medical devices 
marks a crucial milestone in ensuring their safety. However, it is 
imperative to recognise that regulatory approval is only the initial 
step in assuring safety. Even if a device receives clearance from reg-
ulators, real-world application may still reveal unforeseen risks or 
challenges that were not apparent during the approval process. This 
underscores the fact that safety remains an ongoing, lifelong process 
that requires continual evaluation and assurance, especially at the point 
of deployment where actual harm can occur. Through the course of 
this study, we have acquired several valuable insights which could 
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potentially contribute to safety assurance of such systems, especially 
in deployment.

First, the use of DL-based medical devices together with other 
tools during deployment presents a potential source of hazards that 
needs careful investigation. Moreover, different technical deployment 
workflows present different risks. In this study, the three NHS trust 
hospitals all used a different integration strategy. For example, one site 
had direct LIMS integration; while another site had specimen tracking 
system integration; and the third site’s integration involved daily image 
exports from the local image management system that were directly 
uploaded to the cloud. This can further complicate the process for 
pathologists who not only need to access LIMS when making the final 
diagnosis but also navigate additional interfaces if the integration is 
not directly within LIMS, opening up the possibility of discrepancies in 
interactions (perhaps mis-associating patients and WSIs). This indicates 
that some integration strategies can be more hazardous than others 
and it reinforces the need for careful analysis of the DL-based medical 
devices in their technical as well as clinical workflow.

Second, whilst it is important to identify hazards in the deployment 
environment and the associated risks, understanding potential AI fail-
ure modes that could contribute to these hazards is equally, if not more, 
important in the context of a clinical decision support tool. Currently, 
all of the regulatory cleared AI/ML-based medical devices are clinical 
decision support tools in the sense they cannot produce a decision 
automatically without human oversight. Therefore, educating clinicians 
on AI failure modes will enable the clinicians to develop a deeper 
understanding of the tools they interact with. Thus, it will empower the 
clinicians to critically evaluate the AI-generated recommendations, en-
abling them to discern when to trust AI recommendations and when to 
exercise caution or seek additional opinions. For example, in this study, 
when cores were spaced very closely together in one slide, the Paige 
system might over-annotate the tissue map which can lead to incorrect 
calculations of lengths of tumour. If the clinicians are equipped with 
such knowledge, they will know in this kind of scenario they should 
be more careful with the AI recommendations. Therefore, educating 
and training clinicians about potential AI failure modes for DL-based 
medical devices is paramount to foster more effective human-AI team-
ing to ultimately achieve better diagnostic performance and deliver 
safer patient care. Moreover, imparting this knowledge encourages a 
culture of transparency in healthcare, fostering collaboration between 
clinicians and AI developers to continuously improve AI algorithms, 
although when the AI algorithm has been updated, it has to undergo 
a new review based on the current health regulations, and clinicians 
need to be appraised of new behaviours and changes in failure modes 
as well.

Third, when assessing the probability for Hazard H1 ‘‘False negative 
classification’’ and H2 ‘‘False positive classification’’, it is noted that 
both are determined to be low in Table  1. However, it is observed that 
the probability for H2 is higher than that for H1. This reflects the design 
choice for the Paige system to prioritise sensitivity over specificity. As a 
result, the Paige system sometimes marks areas of tissue with Atypical 
Small Acinar Proliferation (ASAP) as being suspicious for cancer as 
well despite that PPD was trained only to distinguish adenocarcinoma 
from benign tissue, i.e. ASAP was not used in training PPD. ASAP, 
although not diagnostic of cancer itself, is considered as a marker for 
heightened risk of developing prostate cancer. Further, some studies 
have found that pathologists are more likely to make false negative 
errors than false positive ones [46,47]. This shows the merit to enhance 
the sensitivity of the DL-based medical device to support pathologists in 
order to avoid missing cancer. Again, for a clinical decision support tool 
to realise its full potential, it is important to understand what kind of 
errors human pathologists are likely to make, so the tool can be tuned 
to best support the pathologists to achieve better human-AI teaming 
diagnostic performance. Vice versa, it is also important to understand 
what kind of errors that AI might make, so that humans learn to 
be more cautious in such scenarios as we discussed above. However, 

it inevitably leads to an increase in false positive rates in order to 
avoid missing cancer. Therefore, clinicians utilising the Paige system 
may encounter a higher volume of false positive results, necessitating 
additional scrutiny, resources, and time for follow-up procedures such 
as repeat biopsies and patient consultations.

Fourth, in biomedical image analysis, the current ML performance 
metrics are not necessarily reflecting the domain of interest, and thus 
can hinder translation of ML techniques into practice. Currently for 
multiple class classification, weighted kappa score [48] is often used 
when reporting the accuracy of the DL model. However, if Gleason 
pattern 3 classified as 4 (and vice versa) is potentially more harmful 
than a Gleason pattern 4 classified as 5, then the kappa score might 
not be sufficient to report the real performance - indeed it may be 
misleading in terms of the safety of the model. Thus, standard ML 
performance metrics might not always reflect the true clinical safety, 
consequently they should not be relied upon as indicators for how 
successful a system will be when applied in practice. Rather, refined 
or adjusted performance metrics that can reflect the real clinical safety 
situations should be used and the reasons should be documented in the 
safety case. This also shows that collaboration between ML develop-
ers, safety engineers and domain experts (pathologists in this case) is 
necessary for effective and safe deployment of DL tools in healthcare.

Finally, it became clear that introducing DL-based medical devices 
into hospitals presents a challenge to, and a significant demand for, 
specialist IT support. Unlike conventional medical equipment, DL-based 
systems require sophisticated digital infrastructure, extensive data man-
agement, and seamless interoperability with existing hospital systems. 
For example, in order to use the Paige Prostate Suite, it is necessary to 
have a digital pathology solution, e.g. a scanner, to process the glass 
slides to produce WSI. Achieving this integration requires substantial 
investment in IT infrastructure, including hardware upgrades, network 
optimisation, and cybersecurity measures to safeguard sensitive patient 
data, exacerbating the strain on scarce healthcare IT resources. There-
fore, there is a need for strategic planning and resource allocation 
in hospitals to facilitate successful integration and to maximise the 
potential benefits of DL-based medical devices. Fortunately, in this case, 
the hospital has their own IT specialists who addressed the above issues 
by developing extra tools, such as contextual launch, to integrate the 
Paige system smoothly into their existing workflow.

6.1. Limitation and future work

The work reported here is constrained by lack of operational data. 
Although the hazard and risk analysis is systematic, it is primarily 
qualitative as it has not been possible to calculate the exact frequency 
of occurrence of events in practice to validate the results at this stage. 
Further, the probability assigned to each hazard reflects the likelihood 
of the hazard itself occurring, i.e. how the Paige system behaves, 
rather than the likelihood of its consequences, which depends on how 
effective clinicians are as a risk control in this context. Consequently, 
we are unable to fully evaluate the effectiveness of the human-AI 
teaming. However, we view our work as an important first step in the 
safety assessment of human-AI interactions by fully establishing and 
characterising the risk profile of the AI system, which has been the 
focus of this study.

Thus, future work can build on this study and explore two key areas:

• Designing a comprehensive monitoring framework for AI-
based tools. Safety assurance of the AI system is a continuous and 
ongoing effort. Thus, having a monitoring framework is important 
for maintaining the safety and effectiveness of the AI-based tools. 
Our view is that addressing this issue will require a multi-faceted 
approach that considers both technological and clinical validation 
perspectives. A robust framework should integrate automated 
technical monitoring – such as detecting data drift and model 
performance degradation. For example, when the distribution 
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of new data significantly deviates from the training data and 
impacts the model performance, it may be necessary to update the 
AI system. Further, it is also important to systematically collect 
and monitor data related to each hazard associated with the AI 
system, e.g. false negative, false positive and incorrect localisation 
of the focus, and the consequences of the hazards, which means 
clinical validations will be necessary to monitor all outputs from 
the AI system and also the final decisions made by pathologists. In 
cases of human-AI disagreement, documenting the reason behind 
the pathologists’ differing decision would also be valuable to 
understand the limitations of the AI system.
Furthermore, it is also important to establish a structured process 
to analyse collected data in order to support continuous im-
provement. This will include using the understanding of hazards 
consequences to update the hazard log, to inform updates of the 
AI system, to introduce new risk controls when necessary and to 
support clinicians’ training. These changes need to be considered 
holistically. For example, significant guideline changes may re-
sult in adjustments to the AI-based decision support tool being 
required. Further, continuous monitoring needs to be backed 
up with periodical reviews to implement a feedback integration 
mechanism to use insights effectively.
• Understanding the dynamics of human-AI interaction. In this 
study, we have not explored these issues as the Paige system is 
still at an early stage of clinical use. However, it is important 
to assess the risks associated with human decision-making when 
supported by AI systems. Some hazards may be mitigated by 
the human users correcting the system, but other hazards may 
be introduced due to under- and over-reliance on AI tools. For 
example, over time pathologists may gradually develop implicit 
trust in AI systems, which could undermine their role as an 
effective risk control as repeated confirmations of AI predictions 
might reduce their critical scrutiny. Conversely, if the pathologists 
perceive the system as limited, they may frequently disregard 
its outputs even when it is correct. This shows the complexity 
of human-AI interaction in healthcare and highlights a crucial 
potential hazard associated with the introduction of AI tools.
To ensure pathologists continue to perform their independent 
assessment, it is important to design the system in a way to 
encourage pathologists to exercise their independent assessment. 
One practical example in this study is a feature in Paige system 
that requires pathologists to explicitly click the ‘‘AI button’’ in 
the interface to reveal the AI prediction otherwise the AI predic-
tion remains hidden. Further, it is also important to maintain a 
comprehensive log of diagnostic outputs from both human and 
AI and conduct regular detailed analysis of these data. Thus, 
establishing a structured process for periodic clinical audits to 
compare pathologists’ diagnostic outputs with AI outputs will be 
necessary. We understand that best practice recommendations 
for pathologist validation and ongoing audit with use of AI is 
likely to be produced by the Royal College of Pathologists in the 
future. Beyond that, nationwide surveillance schemes may need 
to be developed, with clinical validations conducted for extending 
product use cases, evaluating/ comparing new AI offerings when 
workflow components are altered, etc. Significant planning will 
be required to develop a suitable nationwide surveillance pro-
gramme, to ensure consistent and safe reporting for AI products 
across multiple vendors.
To contextualise any future work, we hypothesise that (i) the 
issues relating to over- and under-reliance on AI will be very 
specific to individual behaviours and preferences, (ii) this needs 
to be assessed in actual clinical settings to reflect real-world risk, 
and not in a retrospective simulated setting; and (iii) we would 
not have a robust baseline on the complexity and risks of human 
decision-making in the absence of AI for comparison. While a very 
important area of research, we anticipate that it will be quite 

complex to fully assess and measure these factors in any future 
studies and that it will be critically dependent on having effective 
monitoring frameworks.

In summary, the stand-alone performance of the AI system, the 
dynamics of human-AI interaction and the clinical consequences of 
the system’s use can evolve over time. Ensuring the safety of AI-
based systems is therefore a continuous process, requiring regular 
evaluations, particularly at critical points like deployment and system 
updates. Addressing through-life safety will be an important aspect of 
any future work in this field. 

7. Conclusion

In this paper, we investigated how to bridge the gap from regulatory 
approval of DL models to their safe deployment in the clinical context. 
We presented a systematic method to show how to assure the safety 
of the DL-based system in deployment taking into account the clinical 
workflow. We applied our methodology to the use case of deploying 
the Paige Prostate Suite in the UK. In doing so, we identified new 
hazards which arise from the deployment, which cannot be identified 
in the development, and hence would not be addressed by regulatory 
approvals. Further, we have also summarised the insights we gained 
from this study, which should be valuable for developing guidelines for 
the deployment of such technology in healthcare. This work is timely 
and should not only inform the safety community but also influence the 
regulatory and ML communities. New regulatory requirements need to 
reflect these insights, e.g. there needs to be a two-stage regulatory pro-
cess with the second stage focusing on the specifics of the deployment 
context, as explored here.

In conclusion, the safety assurance of real-world DL-based decision-
support tools demands a joint effort from ML developers, safety experts, 
healthcare professionals, and regulatory bodies. By fostering collabora-
tion, we can facilitate the introduction of AI technology that enhances 
diagnostic capabilities while prioritising patient safety. This work con-
tributes to this aim, encouraging a responsible trajectory for the safe 
integration of AI in healthcare.
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