
This is a repository copy of Certification of machine learning algorithms for safe-life 
assessment of landing gear.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/226982/

Version: Published Version

Article:

El Mir, Haroun and Perinpanayagam, Suresh (2022) Certification of machine learning 
algorithms for safe-life assessment of landing gear. Frontiers in Astronomy and Space 
Sciences. 896877. ISSN 2296-987X 

https://doi.org/10.3389/fspas.2022.896877

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Certification of machine learning
algorithms for safe-life
assessment of landing gear

Haroun El Mir* and Suresh Perinpanayagam

Integrated Vehicle Health Management Centre, Cranfield University, Cranfield, United Kingdom

This paper provides information on current certification of landing gear

available for use in the aerospace industry. Moving forward, machine

learning is part of structural health monitoring, which is being used by the

aircraft industry. The non-deterministic nature of deep learning algorithms is

regarded as a hurdle for certification and verification for use in the highly-

regulated aerospace industry. This paper brings forth its regulation

requirements and the emergence of standardisation efforts. To be able to

validate machine learning for safety critical applications such as landing gear,

the safe-life fatigue assessment needs to be certified such that the remaining

useful life may be accurately predicted and trusted. A coverage of future

certification for the usage of machine learning in safety-critical aerospace

systems is provided, taking into consideration both the risk management

and explainability for different end user categories involved in the

certification process. Additionally, provisional use case scenarios are

demonstrated, in which risk assessments and uncertainties are incorporated

for the implementation of a proposed certification approach targeting offline

machine learning models and their explainable usage for predicting the

remaining useful life of landing gear systems based on the safe-life method.

KEYWORDS

explainable AI, landing gear systems, certification, risk management, safe-life design

1 Introduction

The aircraft maintenance, repair and operations (MRO) industry is seeing a rise in

demand for new aircraft, as well as an increased need for seamless integration and cost-

effective maintenance digitisation. Digital, or avionics systems, are rooted as a

progressively-important part of the predictive maintenance processes used in aircraft.

Examples of such systems are a division of structural health monitoring (SHM), named

damage monitoring systems. It consists of load monitoring, also known as operational

loads monitoring (OLM), and fatigue monitoring (Staszewski and Boller, 2004). With the

advancement in processing power, computing capabilities of onboard systems are

rendered able to effortlessly accommodate improved and more demanding loads

monitoring sensors and software. This paper explores the improvement of fatigue

monitoring systems for landing gear (LG). LG are certified for usage on aircraft using
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the safe-life fatigue approach. This approach attributes each

component of the LG with a predefined and unchanging

service life, after which the component is either:

1) Used as a replacement to a similar component onto the LG

assembly of another aircraft, wherein it is certified for a longer

life span due to the less impactful load profile on the aircraft in

which it will be used.

2) Scrapped and deemed unworthy of service.

The safe-life calculation consists of a load spectrum assigned

to the aircraft LG, which consists of an assumption that forms a

safety factor. This load spectrum estimation can accommodate

improvements, due to its high safety factors. The loads applied

in-service are highly probable to be less impactful on the life of

the part than what is proposed by the safe-life estimation. The

assigned service life may therefore be extended if the loads are

monitored with OLM equipment. The disparity in stress-life

(S-N) curves also contributes to the value of the safety factor

applied when setting the safe-life of the component (Irving et al.,

1999).

The safe-life method assumes a set of load profiles to result

with a number of trips that the LG will be safely able to travel.

Instead, basing the replacement of the LG on the amount and

severity of loads encountered can be accomplished by

collecting data with the use of sensors, thereby allowing for

the quantification and classification of the factors causing

imminent fatigue failure. Currently, such an ideology is

approached by a form of OLM systems, which consists of

strain gauges placed on military aircraft (Hunt and Hebden,

2001; Dziendzikowski et al., 2021) wherein the strain output is

transformed into digital signals that are thereby converted

into stress histories, resulting in a loading sequence.

Nevertheless, this method of fatigue assessment is

inadequate for structural damage detection, by virtue of

leaving out “a factor of two to three in fatigue life to be

gained if damage could be monitored more adequately”

(Staszewski and Boller, 2004). Furthermore, placing

additional devices for measuring such parameters invites

more reliability issues and an increase in maintenance costs

(Cross et al., 2012).

This has, in turn, given birth to the use of Artificial

Intelligence (AI)-handled solutions, with an expected growth

due to commercial demands, closing the gap where safety-critical

applications and the novelty of machine learning (ML)

algorithms are deemed to ultimately collide and remould the

way that the MRO industry has been assessing aircraft structural

health. Successively, the emergency of placing a basis for the

certification and risk management of such approaches arises,

ranging from the ML explainability levels to the uncertainties in

data exchange and collection in-service, due to the non-

deterministic qualities of ML when compared to currently-

used avionics software and equipment.

Aerospace industry regulators have put forward their interest

in the use of ML, for its data-driven benefits, in digital systems

related to all levels of the aircraft development cycle, from design

to manufacturing, maintenance and operation to

communication, by assigning committees and publishing

recommendations. EUROCAE created working group WG-

114, and SAE started committee G-34, both working in

conjunction with the aim of certifying AI for the safe

operation of aerospace vehicles and systems, including

Unmanned Air Systems. Their published work so far has been

the “SAE AIR6988 & EUROCAE ER-022 Artificial Intelligence in

Aeronautical Systems: Statement of Concerns” (SAE

International, 2021a; EUROCAE, 2021). It critically assesses

current aeronautical systems encompassing the whole lifecycle

of airborne vehicles and equipment and how they fall short of

covering AI and, more specifically, ML challenges.

A coverage of upcoming certification requirements for the

usage and collection of data from aircraft sensors to predict LG

remaining useful life (RUL) is employed in this paper. It is

based on:

1) The WG-114/G-34 SAE AIR6988 document (SAE

International, 2021a).

2) EASA AI Roadmap (EASA, 2020).

3) EASA CoDANN & CoDANN II reports (EASA and

Daedalean AG, 2020, 2021).

4) EASA Concept Paper: First Usable Guidance for L1 ML

Applications (EASA, 2021).

These documents have been chosen due to their relevance to

the subject of this paper. Nevertheless, the documents also

incorporate previous standardisation requirements (such as

ARP4754A and DO-178C, DO-254) and guidance by means

of addressing their limitations in light of AI requirements for

avionics applications. For a survey and taxonomy of the recently-

published proposals and guidance papers on practical ML

application for use in aviation, the article by the subgroups of

the SAE G-34/EUROCAE WG-114 standardisation working

group on ML lifecycle development (Kaakai et al., 2022) is

recommended to the reader. It sets out the ML development

lifecycle guidelines for certification in aeronautics, that are to be

the core of the forthcoming publication by SAE: the “

AS6983 Process Standard for Development and Certification/

Approval of Aeronautical Safety-Related Products

Implementing AI”.

2 Paper contribution

This paper encapsulates the certification approaches and

requirements currently available for landing gear (LG) and AI

applications in the aerospace industry, to cover all issues related

tomachine learning (ML) and safe-life, which will eventually lead
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to a philosophy for the certification of ML for LG, and whether it

may be employed using AI in the next decade. Major issues

related to AI that affect the LG environment will have been

identified by the reader. It is important to note that the goal of

this paper is to illuminate and ease the process of the

development of a certification methodology, where a ML

algorithm/set of algorithms are to be used for the purpose of

LG remaining useful life (RUL) prediction. The paper does so by

assisting with confusions a newcomer to this field may have, as

the area of certification is quite tough to manoeuvre. The reader

may then form a method with which to begin and is guided along

the way with the allocation of their requirements through the

elimination of current standards and allocation of assurance case

tools available, as well as building, block by block, a clearer image

of where they stand in the process of complying with those

standards, in order to develop adequate use case scenarios.

3 Current Safe-Life Assessment

Safe-life fatigue analysis of aircraft structures is a principle of

design in which an estimation is placed prior to the first

operation of a component in-service. This estimation is based

on the evaluation of the structure’s ability to sustain its original

crack-free status while being exposed to cyclic loads in-service,

such as landing, take-off, and taxiing, which all contribute to

impacting the fatigue life of the LG components (Ladda and

Struck, 1991). The safe-life analysis places a value of operational

hours for the part in question in which it would be replaced

afterwards, regardless of whether visible fatigue cracks form in

the structure. This approach therefore deems the part inoperable

and unsafe for use on the aircraft after those specified hours or

cycles. Looking towards how this approach begins, the

component’s lifecycle and its workarounds, as well as how

they fit into the whole aircraft’s production plan, come into

question.

3.1 Aircraft testing lifecycle

The life cycle and process of testing for aircraft components

begins, generally, with the pre-design (non-specific) phase,

consisting of material coupon and element testing. The

process may be compared to stages, or levels, where the

testing of each stage, with its corresponding attribute, is

required to be completed successfully in order for the next,

upper, and more structurally complicated stage to begin. At

the bottom of the pyramid in Figure 1, a coupon is stress-

tested physically; a specimen of material tested for the nature

of its properties. Then, to be more representative of the part used,

elements with a similar surface finish and treatment, in addition

to including notches characteristic of the part in question, are

tested. At the post-design phase, sub-component and component

physical testing, which considers the impact of environmental

conditions and key features of the LG e.g. piston-cylinder

assembly performance, leads to FSFT tests, where the whole

structure, or its vital system component sets, such as the shock

absorber system, steering system, and wheel and braking system

are flight-simulated. Finally, the structure is tested on-ground

and in-flight (Ball et al., 2006). The process shown in the figure is

also known as the “building block” test approach (Wanhill,

2018). The post-design phase is directly connected to

airworthiness certification due to the phase containing

components and parts of the aircraft ready for use and in

their final stage of design (Ball et al., 2006). Compliance with

airworthiness standards demands the identification of loads

encountered and the load cycles in order to schedule

corresponding component visual check-ups (Wong et al., 2018).

3.2 Safe-life requirements

Currently, the only components in the aircraft to which this

safe-life fatigue estimation may be applied are the LG. The LG’s

incapability of accommodating crack initiation and expansion is

due to its components consisting of high-strength alloys that

FIGURE 1

The life cycle and process of testing for aircraft components

begins, generally, with the pre-design (non-specific) phase,

consisting of material coupon and element testing. The process

may be compared to stages, or levels, where the testing of

each stage, with its corresponding attribute, is required to be

completed successfully in order for the next, upper, and more

structurally complicated stage to begin. At the bottom of the

pyramid, a coupon is stress-tested physically; a specimen of

material tested for the nature of its properties. Then, to be more

representative of the part used, elements with a similar surface

finish and treatment, in addition to including notches

characteristic of the part in question, are tested. At the post-design

phase, sub-component and component physical testing, which

considers the impact of environmental conditions and key features

of the LG e.g., piston-cylinder assembly performance, leads to

FSFT tests, where the whole structure, or its vital system

component sets, such as the shock absorber system, steering

system, and wheel and braking system are flight-simulated. Finally,

the structure is tested on-ground and in-flight. The process shown

in the figure is also known as the “building block” test approach.

Frontiers in Astronomy and Space Sciences frontiersin.org03

El Mir and Perinpanayagam 10.3389/fspas.2022.896877



motivate rapid crack propagation. Two fatigue detection

approaches may be used for the safe-life fatigue analysis of a

metallic aircraft component: the stress-life approach and the

strain-life approach (Wanhill, 2018). The ways in which a safe-

life is specified to obtain certification allowing the use of the

component on large aircraft requires:

1) Full-scale fatigue tests (FSFT) encompassing the whole

structure physically being tested with methods, such as

strain gauges mounted to localise and quantify strain

(Dziendzikowski et al., 2021).

2) The testing of specific components of that structure in

question–in the case of LG, that would be its individual

components each tested separately for fatigue resistance.

3) The use of hypotheses and the stress-life approach viaMiner’s

rule for damage accumulation, whereby damage fixated by

each repetition of stress due to load applications is assumed

equal (Federal Aviation Administration, 2005). The Miner’s

rule, also referred to as the Palmgren-Miner linear

accumulation hypothesis, states that the damage due to

fatigue is equal to a singular value of “one” as long as

cyclic application of this load has reached an amount

validating its appearance on the fatigue curve (Schmidt,

2021).

The LG encounters multiple loads in succession, contributing

to high cycle fatigue (HCF). Low cycle fatigue, which is correlated

with strain life curves, is characterized by plastic strain. Stress-life

curves, on the other hand, are used in high cycle fatigue, where

fatigue is mostly in the elastic region and plasticity can be

neglected. Landing gear stresses do not reach the plastic

deformation region of the material in each of its components,

which is why the stress-life fatigue approach is used. There is an

abundance of available data for the stress-life approach, and it is

applicable specifically to HCF. In addition to the pre-design

nature of the landing gear structural CS-25 airworthiness

certification requirements for large airplanes, the safe-life

fatigue analysis that is currently used in the LG certification

process utilises Miner’s rule for damage accumulation, using S-N

curves. These curves conform to a certain material coupon, where

the material must be the same as that used in the component in

question. As Pascual andMeeker (1999) discuss, an S-N curve for

a certain material is a representation of the fatigue data of a

coupon of that material, in the form of a log-log plot containing

cyclic stress ‘S’ values versus ‘N’, the median fatigue life

articulated in cycles to failure. It is key to note that S-N

curves are derived from a specific stress-ratio. They also

contain scatter, which is an uncertainty associated with failure

in fatigue. Additionally, two factors parametrise S-N curves:

probability of survival and probability of failure. Both

introduce uncertainty factors to be applied for the final

prediction of a component life. Fatigue is non-deterministic,

as opposed to static loads, e.g. Component A tested for fatigue

using the identical test parameters as Component B will result

with a fatigue life significantly different than that of its

proponent. This introduces scatter in S-N curves used for

fatigue prediction.

Required in addition to these curves is the fatigue spectrum:

data on the applied loads, how frequently they manifest, and how

their occurrence fits in the grand scheme of load sets applied, in

terms of their timing and repetitions. Flight profiles are a set of

load variances, representative of a certain flight block. These

profiles add up to form a spectrum for fatigue prediction

(Schmidt, 2021). The spectrum may also consist of flight

hours in addition to flight cycles if the nature of the mission

of the aircraft is mixed in terms of range duration. Established

design lives can be divided into three categories with their

corresponding cycle ranges:

1) 50,000 cycles for short-haul flight aircraft, e.g. A320.

2) 25,000 cycles for long-haul aircraft, e.g. A350.

3) 10,000 cycles for tactical aircraft.

The steps for safe-life fatigue analysis of LG are as follows,

summarised in Figure 2:

Step 1. S-N curves are generated by performing uniaxial

cyclic stress amplitude loads on numerous material samples until

failure. This material data may also be extracted from readily-

available scatter data and must comply with the 99/95 standard,

with an applied scatter factor of 3 at a minimum (Fatemi and

Vangt, 1998) The curves are also altered according to the in-

service factors of the landing gear environment, which are not

experienced by the coupons tested in monitored conditions. The

resulting curves are referred to as “working curves” (Wanhill,

2018).

Step 2. Meanwhile, a stress-time history plot is derived from a

load-time history plot for the LG component by referring to the

geometry of the component.

Step 3. Methods such as Bathtub/Rainflow counting are

performed on the load-time history plot which is a stress-time

history plot after Step 2, to result in stress cycles and amean stress

value for each cycle count (Le-The, 2016).

Step 4. The cycles are converted with their mean values to

fully-reversed stress cycles in order to extract equivalent data

when referring to the S-N curves for the material used in the

component of the LG (for data compatibility purposes). This is

done via mean stress correction techniques, such as the

Goodman mean stress correction Eq. 1. (σ0), as discussed by

Hoole (2020), is the value of the fully-reversed stress cycles. (σa)

is the stress amplitude value of those stress cycles, (σm) is their

mean stress level, and (σUTS) is the material’s defined ultimate

tensile strength.

Step 5. Fatigue damage (d) accrued by each applied cyclic

stress amplitude (σ0) is formulated using Miner’s rule. As per

Equation 2 (n) is the frequency at which (σ0) is applied, and

(Nf) is the number of cycles to failure. (DT) is total damage
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accumulated from the stress formed by the cycles. As (Hoole,

2020) mentions, a value of 1 for (DT) signifies failure of the part

in question, meaning it has reached the end of its fatigue life, and

representing failure Eq. 3.

Equation 1 Goodman mean stress correction

σ0 �
σa

1 − σm

σUTS

(1)

Equation 2 Fatigue damage, Miner’s rule

d �
n

Nf

(2)

Equation 3 Total damage, Miner’s rule

DT �∑ d (3)

3.3 Machine learning for safe-life
prediction

Studies performed by Holmes et al. (2016) attempt to form a

correlation between flight parameters and loads applied to a LG

structure attached to a drop test rig, via the use of two types of

nonlinear regression models as part of their ML approach: multi-

layer perceptron (MLP), and Bayesian MLP. The data

accumulated consists of inputs, such as wheel speed,

accelerations in the LG, and similar flight variables, consisting

of kinematic approaches; related with changes in velocity and

displacement, in order to result in load induced on the LG. Since

the MLP is Bayesian, it requires a specification of a prior. A

gaussian prior distributions was used. The functional efficiency of

the used neural network (NN) is calculated by acquiring the

mean-square error between the predictions formed by the model

and the measured targets. Optimising the NN is done using

gradient descent. As for the weight uncertainty of the NN, it is

reduced by assigning each weight a probability distribution.

Additionally, the input datasets were filtered due to noise in

acceleration measurements being higher than actual load values

recorded through strain. The physical test of the LG rig included

assumptions made to simulate a landing environment via

spinning the wheels before impact, changing the angle of

impact of the LG, and dropping the structure from variable

heights. These impacts were then measured using strain gauges

placed on the LG rig components and load cells placed on the

platform on which the LG drops. Another method used for data

collection and prediction included the use of Greedy algorithms

and Gaussian process (GP) regression; a class of Bayesian non-

parametric models. With the use of flight test data parameters to

predict landing gear vertical load. GP was used as it trains faster

than MLP, and the computations necessary for GP regression are

simplified by the fact that a distribution directly over candidate

functions can be defined, rather than over the parameters of a

predefined function (as would be necessary for a Bayesian neural

network for example). They are likewise compact. Cross et al.

(2013) found correlations with the general trend of data

prediction. Later studies put forth the requirement of physics-

informed data to predict landing gear loads to a usable level.

These ML approaches result in models that are able to predict

loads, where a model requires that it be aircraft-specific.

Nonetheless, different surfaces on which the physics-informed

ML model (using both LG drop test data and flight test data) was

used on still produced acceptable outcomes.

4 Machine learning techniques

As a branch of AI, ML is a computing field that operates with

the use of computational methods related to statistics,

probability, and computing theory. ML is used by systems to

FIGURE 2

Steps for safe-life fatigue analysis of landing gear.
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learn patterns or monitor data input and apply statistical

algorithms to infer the required output depending on the

type of algorithm being used. The method by which models

of ML operate may be described as follows: “a computer

program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its

performance at tasks in T, measured by P, improves with

experience E” (Mitchell, 1997). An example is the use of

statistical methods, where algorithms classify or foresee

similarities in data being extracted to suggest a best-case

scenario. The input data used to build the ML model, through

the stages of its creation, are categorised into three common

datasets, forming the ML algorithm: training, validation and

testing. Furthermore, ML may be categorised into four types

in terms of the method with which it learns: supervised,

unsupervised, semi-supervised and reinforcement learning.

These reflect the types of feedback-input relationships.

Supervised learning occurs when input and output pairs of

labelled data are monitored and a function is learned as a

result, mapping input and output accordingly. In

unsupervised learning, the unlabelled data input is studied

without any feedback and patterns are found within that

input. Semi-supervised learning trains on labelled and

unlabelled data, improving model accuracy when

compared to a supervised learning algorithm. As for

reinforcement learning, the algorithm is given a response

at the end of each set of decisions made, as part of each step in

its decision process. Its aim is twofold: the initial

improvement of performance due to learning from

previous action-result combinations, and the eventual

output of the most optimal long-term reward that it may

be assigned, e.g. lengthening the duration of a game in order

to win eventually instead of winning over an opponent earlier

on only to ultimately lose in a game of checkers (Russell and

Norvig, 2022).

4.1 Artificial neural networks

When ML involves layers of computing segments that are

adaptable and unembellished, that is the term known as deep

learning. Deep neural networks (DNN), a subset of ML, are the

most common form of deep learning. They are based on one or

more layers adapted for large data input sizes. When containing

less than 3 layers, the term neural networks is used. Figure 3 is a

demonstration of how a DNN may relate to shallower ML

models. A linear model (a) such as linear or logistic

regression is able to compute and take in a high number of

variables for input. Nevertheless, the path from input to output is

relatively short due to all of the variables being multiplied by a

single weight, in addition to the principle that these input

variables are not capable of communicating within themselves.

This renders them able to only act for linear functions and

boundaries related to the input space. Decision lists (b) allow for

these long paths of computation to occur, but depends on the

input variables being of a similar size to the output variables.

Neural networks (c) merge these two methods together, allowing

for the input variable interactions to be complex and incorporate

long computation paths. The benefit of this model is the ability to

represent applications, such as speech, photo and text

recognition (Russell and Norvig, 2022). DNN, which are

characterized by multiple layers instead of one (usually three

FIGURE 3

Neural networks in comparison to linear regression and decision lists. A linear model (A) such as linear or logistic regression is able to compute

and take in a high number of variables for input. Nevertheless, the path from input to output is relatively short due to all variables beingmultiplied by a

single weight, in addition to the principle that these input variables are not capable of communicating within themselves. This renders them able to

only act for linear functions and boundaries related to the input space. Decision lists (B) allow for these long paths of computation to occur, but

depends on the input variables being of a similar size to the output variables. Neural networks (C) merge these two methods together, allowing for

the input variable interactions to be complex and incorporate long computation paths. The benefit of this model is the ability to represent

applications, such as speech, photo and text recognition.
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layers or more), tend to be more accurate and effective in task

purveyance. A term commonly found when dealing with the

inexplicability of DNN, the black-box is scientifically associated

with a system of known and observable inputs and outputs, and

no knowledge or observation to be made on how the inner

mechanisms of that system may be. In the case of a NN, although

the code may be observed, it is functionally referred to as a black-

box due to the nature of constant reorganization of the

computational NN layers. Modelled based on the workings of

the brain; firing neurons with correlated weights to result with

decisions, the black-box model and nature of DNN has recently

been subjected to theories attempting to explain its method of

operation, some attempting to generalize to all types of DNN

modes of operations (Alain and Bengio, 2016; Zhang et al., 2016;

Schwartz-Ziv and Tishby, 2017; Poggio et al., 2020), and others

focusing on certain NN methods and the available interpretation

approaches (Guidotti et al., 2018; Montavon et al., 2018; Azodi

et al., 2020).

4.2 Machine learning challenges

In health monitoring of aerospace structures, an advisory

system provides recommendations that are backed up with

evidence, which are in the form of:

1) Sensor output from damage monitoring systems, which

consists of direct measurements from the aircraft

component/s in question.

2) Flight parameter and environmental conditions derived

outputs, that are indirect measurements. These materialize

in the form of operational monitoring systems (OMS).

The OMS is a sub-component of SHM, and a system similar

to damage monitoring, with the difference being that its

measurements are of a derived nature (SAE International,

2021b). The former is the system most useful for the purpose

of sensor replacement purposes. Nevertheless, MLmay be used as

a part of both damage monitoring and OMS. Requirement-wise,

the software that provides an envelope around the ML tool needs

to be developed to a defined quality process, according to a

distinct software control method. That occurs when embedding

the software. In addition, it must be demonstrated that the ML

black-box may be used in a reliable and robust manner.

Questions important for the setting of requirements in the

ML uncertainties capture are:

1) ‘Is it using recognized libraries?‘; code pre-written for

repeated usage. The reader is referred to (Nguyen et al.,

2019) for a description and comparison of current ML

libraries and frameworks.

2) ‘What was the quality process used in creating that software?’

A framework by Murphy, Kaiser and Arias (2006) proposes a

ranking for supervised ML algorithms, consisting of “tools to

compare the output models and rankings, several trace

options inserted into the ML implementations, and utilities

to help analyse the traces to aid in debugging”.

3) ‘What is the validation process of the model itself (the data-

driven part of the training)?’

Just as important, the training, testing and validation

processes must be robust and contain a level of assurance

that provides accurate predictions when implemented live, in

order to be moved from an advisory status to a fully-trusted

status. What data is used, its source, reliability, coverage

provided by the data (e.g., whether it covers all types of

landing for the aircraft type in question), and all operational

cases (e.g., heavy landing, light landing, crosswind

conditions, icy conditions on runway) are questions to be

asked when formulating a data-based rigorous selection

process. Moreover, whether the validation data is based on

physics data from finite element (FE) models, or testing rig

scenarios, plays a significant role in the assurance process.

Deep learning encounters challenges pertaining to its data in

which features are represented, specifically with the initial step of

obtaining that data, wherein labelling is required (Khan and

Yairi, 2018). Furthermore, challenges introduce themselves,

according to Khan and Yairi (2018) in the following aspects

and identifiers of the deep learning bubble:

1) Specific deep learning architectures and their categorisations

into the most suitable pertaining applications have not been

yet solidified due to researchers’ inadequate justifications of

why they used those specific methods and as to why a certain

number of layers was most suitable for their applications.

2) Comparison of the architectures has not been standardised,

whether it be in terms of time consumption, resource

management, computational requirements, or data loss.

3) With regard to structural health management, deep learning

applications will have to recognise the failures or faults

according to their corresponding environments and be able

to diagnose issues, such as no fault found (Khan et al., 2014a;

2014b).

Of the problems faced, imbalanced data issues arise. As

discussed by Liu et al. (2009), the cause of imbalanced data

results while learning is due to classification and clustering

situations, as a result of the classes being learned having

considerably more data when compared to their counterparts.

Furthermore, cases which are uneven occur due to the intrinsic

nature of those events, as well as the additional expense that may

result from obtaining these examples for learning in the

algorithm. These imbalanced data classification issues may be

overcome with the following approaches: pre-processing, cost-

sensitive learning, algorithm-centred, and hybrid methods (Kaur

et al., 2019).
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The data used for training an algorithm may be improved

with pre-processing methods, when the algorithm faces a class of

data containing an abundant number of examples while the other

class contains a lower amount. Due to the accuracy of

classification being negatively affected if not for sampling

methods, they represent an important step towards avoiding

bias (Barandela et al., 2004). The aim of these methods is to

balance the classes of data and result with less bias via either over-

sampling or under-sampling. These two methods operate by

manipulating the training data space.

Over-sampling: Of the classes available in pre-processing

data, the minority class that happens to bias the data is duplicated

in sample packets and the data is therefore balanced in terms of

the final dataset. Under-sampling, on the other hand, performs

the opposite by randomly extracting samples from the major

class (leading to the probable negative aspect of deleting

important data) in order to result in equal amounts of the

minor and major class. Over- and under-sampling may be

combined to form the hybrid sampling method, where they

are both used to result with balanced data for pre-processing

(Xu et al., 2020).

Bias and variance are concluded to be the key issues in ML

applications. They are to be addressed, according to (EASA and

Daedalean AG, 2020), based on the following twomethodologies:

1) Datasets with bias and variance need to be distinguished from

opposing datasets and effort shall be put into reducing such

bias and variance within the data itself.

2) The bias and variance need to be evaluated based on the level

of risk they impose upon the ML model.

Feature selection and extraction are another means of

selecting features more suitable for the classification at hand

at the pre-processing stage (Kursa and Rudnicki, 2011). The

classes of feature selection would be the filter method, wrapper

method, and embedded methods (Guyon and Elisseeff, 2003).

4.3 ML risk management

A ML workspace is a framework in which the algorithm’s

training takes place. The workspace allows for the specification of

the coding language package to be used, its training preferences,

and the workspace variables. According to SAE AIR6988, as part

of the advised requirements to forming certification standards for

the data selection and validation of ML systems, the workspace

should be covered with a certain level of protection to prevent

“data poisoning or tampering”, whether it be intentional or not,

by the workspace user or intruder. The effects of such an

intrusion would include false outputs and algorithm decisions,

e.g., importing additional data into the training dataset which

cause the algorithm to develop a deceptive result while assuming

that the training process is untampered with. Moreover, any non-

complying data must be detected and removed from the dataset

after the validation step. Additionally, the “probabilistic nature of

ML applications” must be taken critically when assessing and

forming the safety process analysis.

For the certification of the method in which data is selected

and validated, validation for ML would partition a block of data,

representing the entire operational profile of a landing system,

into 3 types:

1) Training, in which the model in this cycle is trained and

compared with the results from an independent dataset which

would be the validation set, and a decision is formulated: is

this model good enough or does it require further refinement?

This decision set is part of the training cycle, clarifying the

need for the validation set to be independent of the

training set.

2) Testing, where each of these datasets needs to conform with

IID (Independent Identity Distributed) and be of good

coverage. For example, in a scenario where hard landings

are part of the data input, a similar number of hard landings

in each of those three datasets must be clearly present in order

to avoid the inevitability of bias.

3) The validation process of the model itself, in which the safe-

life approach for LG RUL assessment would be the

benchmark for this paper’s purposes. The model’s

performance in this step is evaluated by means of using

the validation dataset (set aside and unused, as part of the

data partitioning procedure done beforehand) and observing

the output to decide whether it is acceptable, signalling the

readiness of the ML algorithm for use in a real-life scenario,

if so.

Risks in ML are categorised, in terms of robustness, into two

kinds (EASA and Daedalean AG, 2021):

1) Algorithm robustness, where the algorithm used for learning

is tested for robustness as the training dataset is changed.

2) Model robustness, in which perturbations in the input to the

algorithm are used for the identification and quantification of

the robustness of the training model.

As pointed out in AIRC6988, the traditional form of safety

assessment has always been to realise the orders of system failure

by means of its own component-level intercommunication with

other systems. This could be improved for the case of AI

applications due to their complicated ecosystem interactions.

The interaction of the system with “external factors” is one

improvement to be noticeably important, due to its

probability of forming failure conditions in the case of AI

applications. Such a safety approach already exists as part of

the SOTIF_ISO 21448 document for certification based on the

automotive industry’s “advanced algorithms” system inclusions.

This approach assesses the following:
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1) Both the system and sub-system levels of AI are tested for

functionality and performance.

2) The probable sources of failures mitigated by the functional

aspect of the system must be pointed out and their causes

reassessed.

3) These probable failures must be avoided by the means of

“functional modifications”.

Putting these advisories into effect, in the case of issues that

will arise due to the usage of black-box ML models in order to

model fatigue life, an advisory example is shown in Table 1. A

high-level mitigation, or requirement, is set up for each ML data

issue.

Certain ML infrastructures, such as continual learning

pipelines, allow for the ability to add continuous data points

in a well-formulated algorithm, allowing for the data output to be

optimised in terms of the assessment of structural integrity and

maintenance scheduling. This is deemed an improvement for

data collection purposes, but increases the risks for uncertainties

specifically when considering external data collection factors,

where the potential sources of data in the case of LG fatigue

detection include:

1) Fatigue tests implemented physically on the parts themselves

in a controlled environment.

2) Flight data of the same aircraft and landing gear from other

operators.

3) Maintenance observations.

4) IVHM data, including output from strain gauges on-board

the aircraft and LG assembly.

4.4 Explainability

Certification for ML applications in LG may be applied via

explainability, by the means of connecting data point values from

features; values and properties of a monitored process (Bishop,

2006). Among the important requirements for the acceptance of

a ML algorithm for use in an industry that is to accept AI

solutions over the coming years, trust reappears as a main

question at hand, which is where explainability comes into

play. Applications and methods for instilling trust into a

certain AI approach are reflected in the currently-adopted

Intelligence Community Directive (ICD 203) and the SAE

AIR6988 documents. These both serve the purpose of

proposing the standards required for the application of AI in

the aerospace industry, as well as emphasising the need for

explainability (Blasch et al., 2019). Additionally, explainability

is a part of the four building blocks of the framework in EASA’s

guidance for ML applications paper (EASA, 2021), in addition to

the DEEL white paper (DEEL Certification Workgroup, 2021)

that concentrates on the properties an ML system should have,

and specifies those to be “auditability, data quality, explainability,

maintainability, resilience, robustness, specifiability, and

verifiability” (Kaakai et al., 2022).

Explainability is a method by which the transparency of a ML

black-box may be improved, where the ML model being

explained gets its model prediction uncertainties specified by

the user, as well as the clarification of the method with which the

feedback of the model is interpreted takes place. Such explainable

methods have already been achieved by the means of the research

done by Smith-Renner et al. (2020):

1) Ensuring fairness in the model with which the end users may

interpret the meaning of the results in a language that

conforms with their own specific knowledge and

terminologies, while assessing bias in the meantime

(Dodge et al., 2019).

2) Adjusting the expectancies of end users to comply with the

end results of the explainable AI method being used in which

uncertainties in the ML model itself are incorporated for the

user to be prepared in terms of the model perception

(Kocielnik et al., 2019).

3) Enclose trust of an explainable AI agent in order for users to

return to such anML algorithm repeatedly for similar use case

scenarios encompassing the model’s features of its system, its

agents’ reliability, and the intentions with which trust is to be

instilled (Pu and Chen, 2006).

4) Improve the recommendation rigor of the explainability of

the black-box ML model by means of clarifying to the user

TABLE 1 RUL ML black-box issues and proposed mitigations.

RUL ML black-box issue Corresponding mitigation

ML models need to cater to the varying nature of fatigue life scatter in data points in
order to appropriately “characterise the probabilistic property of fatigue lives given a
specific condition”

Certification requirements must capture fatigue life scatter data and be able to predict
fatigue life probabilistically

ML models learn correlations between data input and output via the means of data
extraction, leading to the possibility of contradicting physics principles

Certification requirements must adapt to models trained with different datasets

Using a model trained on one data range may result inaccurately when the same
model is implemented on a different framework due to the possibility of data
overfitting

Certification requirements need to incorporate vital landing gear operational
uncertainties, such as hard landings, as well as temperature and environmental
variations
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which parts of the model are the most important for the use

case scenario at hand while referring to the conceptual model

in the user’s mindset (Herlocker et al., 2000).

Furthermore, explainability may be organised in regard to

its approach to the ML algorithm, in which feature selection

and feature extraction are two distinguished methods. Feature

extraction creates non-detectable features from those that

have already been found in the algorithm (Guyon et al.,

2006),whereas feature selection evaluates each and every

feature in the model after which these features are deemed

either adequate or inconsistent for use in the model (Guyon

and Elisseeff, 2003).

Another term important to the explainability approach is

whether it is local or global in reach. If local, when provided with

a conditional distribution, the input clusters of small regions of

that distribution lead to how the ML model’s predictions are

interpreted by the explainable method. As for the case of it being

global, average values are the lead source taken for interpretation

of distributions fully encompassing the model’s condition (Hall

et al., 2017).

The method of adopting a ML model’s features depends

on both the ML model being used, as well as the fatigue

failure model being implemented, resulting in the

dependence on the sensor data taken ultimately during

flight, take-off, and manoeuvres on the landing strip. The

usage of features has been resorted to due to the nature of the

way in which an ML model operates; by operating on ‘single

values per case’ (Ten Zeldam, 2018). As the ML model

formulated to operate on failure diagnosis trains on

maintenance data and usage data, while simultaneously

filtering outliers, and labelling each feature for the

readiness of the model, these labelled features will then

need to be categorised based on their relative importance

to the fatigue failure of the LG components being studied.

These values are compared to predefined value ranges that

dictate whether a component’s stress reactions qualify it as

leading to fatigue failure due to the likely repeatability of this

value and its cycling resulting in a HCF failure. The values

shall include tyre wear, side-stay loads, impact loads, shock

absorber travel distance, as well as distance travelled by the

wheel, in addition to forces applied on the axle of the LG. The

features are then transferred to classes, or diagnoses (Ten

Zeldam, 2018). This methodology does result in relative

feature importance, informing the end user of how critical

a feature is by relating its likelihood of occurrence to the

results of a simulated model.

The need for explainability in certification-required

applications is bringing forth work such as that by Viaña

et al. (2022), where an algorithm is formed of explainable

layers; using clustering for parameter initialisation,

overcoming state-of the-art algorithms when it comes to fuzzy

system-based combinations.

5 Certification and its challenges

Commercial avionics systems and equipment are composed

of software and hardware components, developed to comply with

their corresponding design standards. These standards are

covered by the two leading documents that the FAA and

EASA certification authorities refer to for the approval of the

systems in question: DO-178C/ED-12C for the compliance of

avionics software development with airworthiness requirements

(RTCA, 2012), and its complementary document, DO-254/ED-

80 for the design assurance of avionics equipment, consisting of

both hardware and software (RTCA, 2000). These documents

introduce an iteration of design assurance levels (DAL) that are

also used in other avionics certification requirement documents,

such as ARP4754A. DAL are measures assigned to each function

in the avionics system of an aircraft, be it software-based in the

case of DO-178C or hardware based for DO-254. The values of

these functional measures range from A to E in alphabetical

order. They correspond to cases of catastrophic effect to those of

no safety effect on the operation of the aircraft, any form of

overload on the crew, and therefore the safety of both (Fulton and

Vandermolen, 2017). ARP4754A separates DAL into two: FDAL,

function development phase, for aircraft functions and systems,

and IDAL, item development phase, for electronic hardware and

software items. The FDAL process assigns assurance cases

ranging from A to E severity levels for functions which are

allocated to items in a system. IDAL then assigns assurance levels

for each item that is a part of the function in question, as part of

electronic hardware or software. Detailed analyses examples may

be read in ARP4754A (SAE International, 2010).

Also emerging are assurance cases toolsets, such as

AdvoCATE, developed by Denney et al. (2012), offering an

alternative to the manual labour of creating safety cases, and

their linkage graphically with similar case scenarios, thus

reducing time by providing available risk and hazard options,

along with the assigning of requirements whether they be high or

low level, in a seamless manner. Furthermore, fragments of the

sources of documents for the assigned assurance cases can be

linked to each correlated node, creating an easily exportable

diagram, the software also works in coordination with

AUTOCERT, a tool that evaluates modelling-and-design-stage

flight and simulation code for safety violations, via clarifying it in

a form of wording for the purpose of certification (Denney and

Trac, 2008). “Guidance on the Assurance of Machine Learning for

Use in Autonomous Systems” (AMLAS) is provided with a tool

offered by the Institute for Safe Autonomy at the University of

York. It focuses on the development of assurance cases for the use

of ML in autonomous systems. The tool enables the addition of

objects for each ML component, and its corresponding safety

cases, while referring to AMLAS detailed means of compliance

(Hawkins et al., 2021).

The limitations of ML algorithms require a scope to be

identified within, and since they can handle non-deterministic
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behavioural scenarios, SOTIF (International Organization for

Standardization, 2022), which was developed to address the

new safety challenges that autonomous (and semi-

autonomous) vehicle software developers are facing, may be

used as part of the basis for certification application. Another

challenge for certification is the constitution of a dataset, and

whether it be sufficient for the required application and when

compared to the function in operation. In the case of

explainability, the lack of such a measure affects confidence

in the model’s learning capability. While ML is being

implemented, the deployment of such a program would not

be successful when supplied with a low-level set of tools for the

inference. New practices in the aeronautics domain for

certification encompass an initiative known as overarching

properties. Here, assurance cases, which have been

previously used in aeronautics and NN, may define

themselves as the bridge between the need to comply with

the overarching properties (which are intent, correctness and

innocuity) and the quality possession of the product being

considered by placing a strong argument. Artificial

Intelligence in Aviation workgroups (such as SAE G-34/

EUROCAE WG-114) are experimenting with the

aforementioned new practices in order to produce guidance

material for the standards being developed for ML in the

aeronautical domain.

As per EASA’s AI Roadmap, which has been formed with the

goal of placing standards for ML applications in the EASA-

related aerospace sector, seven ethical guidelines were placed for

the operation of AI deemed trustworthy, as can be seen in

Figure 4. They are subsequently managed by the four blocks

in the figure, wherein:

1) AI Trustworthiness Analysis supports the methodology on

how to approach the seven guidelines in the use case of civil

aviation.

2) Learning Assurance develops the ideology of making sure that

the ML algorithm in use is appropriate for the case at hand.

3) AI Explainabilityes focus on the reason behind why the

algorithm decides and its importance with respect to the

end user in terms of delivering the desired output.

4) AI Safety Risk Mitigation highlights the nature of how an AI

black-box may require supervision due to its

understandability and openness being limited in terms of

decisions made.

5.1 Load profile uncertainties and risk
management

Risk management for aircraft commences with following the

standards placed by regulatory bodies, such as EASA for the

European market, and the FAA in the US market. The next step

in uncertainty management would be the categorisation of failure

events and their probabilities, wherein there exists an inverse

relation between the failure condition of an aircraft and its

probability, and the resulting consequence on the aircraft and/

or its occupants. Classifications by EASA are defined as Minor,

Major, Hazardous, and Catastrophic, where they differ in their

FIGURE 4

EASA Ethical Guidelines and AI building-blocks for trustworthiness. As per EASA’s AI Roadmap, which has been formed with the goal of placing

standards for ML applications in the EASA-related aerospace sector, seven ethical guidelines were placed for the operation of AI deemed trustworthy.

They are subsequently managed by the four blocks in the figure, wherein: AI Trustworthiness Analysis supports the methodology on how to

approach the seven guidelines in the use case of civil aviation. Learning Assurance develops the ideology ofmaking sure that theML algorithm in

use is appropriate for the case at hand. AI Explainability focuses on the reason behind why the algorithm decides and its importance with respect to

the end user in terms of delivering the desired output. AI Safety Risk Mitigation highlights the nature of how an AI black-box may require supervision

due to its understandability and openness being limited in terms of decisions made.
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definitions on levels of workload and crew impairment as well as

passenger fatality probabilities. In addition, failure types must be

stated. These include (Au et al., 2022):

1) Particular Risk: Failures impacting the system from the

outside that could affect the system unfavourably.

2) CommonMode: Failure of a component as part of the system

that contains a component identical to it dictates that the

other component shall fail similarly.

3) Other Isolated Failures: The use of “undetected failures” on

systems ensures that a failure not specified explicitly is

encompassed in the placed standards and classifications,

confirming the robustness of a system, must it pass said

introduced diagnosis evaluation without any failure.

The LG operating environment consists of abrupt changes

and the electrical sensors are susceptible to such changes and

exterior elements. DO-160G covers avionics requirements in

terms of environmental test conditions and procedures

(Sweeney, 2015). For LG, these include waterproofness, shocks

and vibrations, brake temperature, atmospheric conditions,

lightning, electromagnetic emissions and susceptibility, and

contaminants, such as dust and sand (Au et al., 2022).

A LG’s components must be all tested against a “qualification test

plan” to prove its usability in the harshest of environmental conditions

(Au et al., 2022). This does not, however, include the component’s

entire life’s combinations, resulting with the need to add experience

from the industry and a “system development process” to add to the

system’s decisions in terms of verification for its use-case on-site.

Uncertainties resulting from the fatigue design process may

be realised in:

1) Material properties of the components.

2) Geometry of the components.

3) Loads applied in-service onto the components.

The process in which components are manufactured, e.g.

machining results with variations in the dimensions of the

components, thereby directly affecting stress values of the

components while in loading (Hoole, 2020). These variations

may add up and amount to a failure as was the case with an

aircraft nose landing gear strut examined by Barter et al.

(1993), failing due to the formation of a fatigue-induced

crack, as a result of an initial defect during manufacturing

that grew in-service until the part was overloaded. As for

material S-N curve datasets used for the stress-life approach,

they naturally contain variability for each stress amplitude

when compared to the cycles to failure. Furthermore, during

the aircraft manoeuvres, the changes in magnitudes of the

loads being applied, as well as when these loads occur, and the

order of these occurrences, are factors to be considered for

uncertainties. These are overcome via the use of safety factors

within the stress-life analysis.

Loads imposed on the landing gear as part of the aircraft’s life

cycle can be divided into two types:

1) High and unexpected landing loads that occur during the

aircraft’s manoeuvres on the ground e.g. touchdown (Tao

et al., 2009).

2) Loads that are repeated during the designated aircraft’s trip

and while on the ground, e.g. turning, braking, and taxiing,

and being towed.

When extracting data, the order in which landing gear loads are

applied may be inferred from load-time histories using open-source

data, e.g. Flightradar24 such as in the case of Hoole (2020). He

further categorises this variability in-service into the following:

magnitude of the load, number of manoeuvres on-ground, and

the order in which these manoeuvres occur. The latter two depend

on factors related to the airport’s structure and design, as well as the

weather conditions on the day of service, in addition to the aircraft

traffic at that point, changing the manoeuvres for an aircraft, also

based on each airport’s taxi operations locally, as well as gate

locations.

For fatigue analysis, and with referral to EASA CS-25,

(Hoole, 2020) mentions six methods that are commonly used

for RUL conservatism:

1) Safety factors placed on components directly impacting their

safe-life in order to indicate that they should be used ahead of

assumed failure.

2) A safety factor to adjust the Miner’s rule as part of the stress-

life life approach discussed previously.

3) A safety factor placed on the application of stress on the

components in order to assume that they are larger than their

actual values.

4) An S-N curve reduction derived statistically.

5) A downwards shift on the S-N curve, causing the assumed

stress required in order to reach failure for a certain number

of cycles to be decreased.

6) A shift acting to the left on the S-N curve, indicating the

assumption of a lower number of cycles needed in order for a

part to fail under the specified load.

6 Proposed scenarios

As is the case with applications that would be deemed safety-

critical, the following have requirements imposed upon them by

learning assurance standards:

1) Datasets that are important for the development of the

system.

2) The method and order in which this development takes place.

3) The behaviour of the system while both the development and

operational stages take place.
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FIGURE 5

EASA Development life-cycle in the case of ML implementation. The process begins and ends with requirements management and verification

while taking into reference ED-79A and ARP4754A documentation. In the midst of this life-cycle is data management where training, validation, and

test datasets are collected and labelled as well as validated in comparisonwith the system requirements while sustaining a reliable amount of bias and

variance within the data. Learning processmanagement then prepares themodel for training by selecting the appropriate algorithm for training,

as well as the corresponding functions required for performance maintenance, while risk-checking the frameworks being used in the training

environment. Model training merges the data management and process management steps to run the algorithm after which the data is validated

using the validation dataset to evaluate themodel’s bias, variance, and quality of execution. Learning process verification uses the test dataset only. It

evaluates the model’s quality of execution, data bias, and data variance. It is not related in any way to validation, which is the last step of the model

training stage. Model implementationmoves the trainingmodel into one thatmay be run on the hardware targeted for the use case intended and any

optimisations necessary aremade in this stage in terms of computing requirements and necessities accommodated for. Inferencemodel verification

is the process in which the performance of the final inference model is evaluated through comparisons with the trained model. Additionally,

compliance measures about software verifications are implemented according to ED-12C and DO-178C documentation.

TABLE 2 A use case advised by AIR6988. Shown is a predictive maintenance-involved system, where the ML-based system’s functionality is

summarized in the Example column, the ID column is “a unique identifier useful for reference in future work of the joint EUROCAE SAEG-34/WG-

114 committee”, theGoal details theML-based system’s functional operation is, Inputs counts the system’s sensors and type of data,Outputs returns

the message displayed as a result of the interaction between the ML-based system and the systems beneath, Details demonstrates the problems the

use case targets, and Integration narrows down the system to be used with this AI application, whereas Safety Concerns raise severity level of the

issues to be avoided for the completion of this use-case scenario.

Example ID Goal Inputs Outputs

Off-Board
Predictive
Maintenance

UC-
SC322

Predict with high-specificity and high-accuracy
an on-board failure with enough lead time to
plan an optimized reaction

Low-level time-series sensor data
collected and sent through a digital
acquisition unit or data gateway

Failure message (can be EICAS/ECAMS
message) + anticipated failure time +
confidence of failure prediction

Details Integration

Combination of existing data cleansing/ETL + ML and
other statistical methods to do big-data predictive
maintenance

Aircraft owner, maintenance operation

Safety Concerns

Minimal, assuming existing procedures + instructions for parts handling are followed,
and that scheduled maintenance is performed, as required

Example ID Goal Inputs Outputs

On-Board
Predictive
Maintenance

UC-
SC23

Predict with high-specificity and high-accuracy
an on-board failure without having to send data
to an off-board data center for analysis

Low-level time-series sensor data
managed through high-bandwidth digital
acquisition unit

EICAS/ECAMS message with predictive
notation + anticipated failure time +
confidence of failure prediction

Details Integration

Embedded NNs + other existing statistical methods
(embedded) + on-board hardware for complex analytical
processing

Aircraft owner, maintenance operation

Safety Concerns

Minimal, assuming existing procedures + instructions for parts handling are followed,
and that scheduled maintenance is performed, as required
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(EASA and Daedalean AG, 2020) placed a layout for such a

development life-cycle in the case of ML implementation, shown

in Figure 5.

The process begins and ends with requirements

management and verification while taking into reference ED-

79A and ARP4754A documentation. In the midst of this life-

cycle is data management where training, validation, and test

datasets are collected and labelled as well as validated in

comparison with the system requirements while sustaining a

reliable amount of bias and variance within the data. Learning

process management then prepares the model for training via

selecting the appropriate algorithm for training as well as the

corresponding functions required for performance

maintenance, while risk-checking the frameworks being used

in the training environment. Model training merges the data

management and process management steps to run the

algorithm after which the data is validated using the

validation dataset in order to evaluate the model’s bias,

variance, and quality of execution. Learning process

verification uses the test dataset only. It evaluates the

model’s quality of execution, data bias, and data variance.

It is not related in any way to validation, which is the last step

of the model training stage. Model implementation moves the

training model into one that may be run on the hardware

targeted for the use case intended and any optimisations

necessary are made in this stage in terms of computing

requirements and necessities accommodated for. Inference

model verification is the process in which the performance of

the final inference model is evaluated through comparisons

with the trained model. Additionally, compliance measures

with regard to software verifications are implemented

according to ED-12C and DO-178C documentation (EASA

and Daedalean AG, 2020).

The methodologies of certification discussed earlier may lead

to a suggested use case advised by AIR6988 (SAE International,

2021a). The use case in Table 2 is an example of a predictive

maintenance-involved system, where the ML-based system’s

functionality is summarized in the Example column, the ID

column is “a unique identifier useful for reference in future

work of the joint EUROCAE SAEG-34/WG-114 committee”, the

Goal details the ML-based system’s functional operation is,

Inputs counts the system’s sensors and type of data, Outputs

returns the message displayed as a result of the interaction

between the ML-based system and the systems beneath,

Details demonstrates the problems the use case targets, and

Integration narrows down the system to be used with this AI

application, whereas Safety Concerns raise severity level of the

issues to be avoided for the completion of this use-case scenario.

7 A Roadmap and further research

Additional methods of data extraction for the use of ML, such as

transfer learning, are currently being developed and seem promising

for the benefit of this paper’s direction. Transfer Learning is based on

the development of a model’s information for the use in another

model performing similar tasks, while maintaining a low

consumption of computationally-hungry processes and large

amounts of data-requiring techniques. The aim is to keep the

output and the task constant while changing the probability

distributions required for the operation that leads to these tasks

and outputs (EASA and Daedalean AG, 2020). Risks that may

arise in correlation with resorting to such an approach include the

necessity to verify the results of an empirical method-styled process,

since transfer learning does include this approach. Another risk

appears due to the requirement of transfer learning for a

FIGURE 6

The standards for ML usage in aerospace are still being introduced, with a planned completion of frameworks by 2028 set by EASA. The first

guidance development phase is to end by 2024, with the planned publication of ML use cases by the SAE workgroup, and the level 3 ML guidance

paper by EASA. The SAE AIR6988 and EASA Level 1 ML Application guidance papers shown to the left of the timeline have been discussed in this

paper.
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“representative test set for the target function” (EASA and Daedalean

AG, 2020), as a result of the source and target domain not being

adequately related, causing an extra step and risk mitigation, trying to

prevent what is known as a “negative transfer”. Additional risk is due

to uncertainty from using public dataset trained models as it may be

more difficult to confirm that they complywith the learning assurance

requirements. (Gardner et al., 2020) is an example of work in progress

in this field, where the focus is on structures that have no data on their

damage state obtained yet. The group uses data procured from an

analogous structure to inference the damage on the former structure

mentioned, using ML and non-destructive evaluation. The standards

for ML usage in aerospace are still being introduced, with a planned

completion of frameworks by 2028 set by EASA. Shown in Figure 6,

the first guidance development phase is to end by 2024, with the

planned publication of use cases by the SAE workgroup, and the level

3ML guidance paper by EASA.
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