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The recently introduced “fuzzy-sphere” method has enabled accurate numerical regularizations of
certain three-dimensional (3D) conformal field theories (CFTs). The regularization is provided by the
noncommutative geometry of the lowest Landau level filled by electrons, such that the charge is trivially
gapped due to the Pauli exclusion principle at filling factor ν ¼ 1, while the electron spins encode the
desired CFT. Successful applications of the fuzzy sphere to paradigmatic CFTs, such as the 3D Ising model,
raise an important question: How finely tuned does the underlying electron system need to be? Here, we
show that the 3D Ising CFT can also be realized at fractional electron fillings. In such cases, the CFT
spectrum is intertwined with the charge-neutral spectrum of the underlying fractional quantum Hall state—
a feature that is trivially absent in the previously studied ν ¼ 1 case. Remarkably, we show that the mixing
between the CFT spectrum and the fractional quantum Hall spectrum is strongly suppressed within the
numerically accessible system sizes. Moreover, we demonstrate that the CFT critical point is unaffected by
the exchange statistics of the particles and by the nature of topological order in the charge sector. Our
results set the stage for the fuzzy-sphere exploration of conformal critical points between topologically
ordered states.

DOI: 10.1103/bf4k-phl9 Subject Areas: Condensed Matter Physics,
Particles and Fields, Statistical Physics

I. INTRODUCTION

Understanding the universal properties of continuous
phase transitions has been a long-standing area of focus [1].
A powerful tool in this endeavor have been conformal field
theories (CFTs) [2]—a class of interacting field theories
with a rich symmetry structure that can emerge in statistical
mechanics models tuned to a critical point [3]. In two
dimensions (2D), the symmetry is further enhanced, which
leads to the exact solvability of such CFTs [4], enabling
tremendous progress in the analytical understanding of
critical phenomena [5].
In contrast to this elegant framework, progress on CFTs

in d > 2 dimensions has been hindered due to their
different algebraic structure, requiring the use of sophis-
ticated techniques such as conformal bootstrap [6]. One
promising direction for numerical studies of lattice models

realizing CFTs is to use the so-called state-operator
correspondence [5], which allows for the direct extraction
of CFT data from a quantum Hamiltonian. This procedure,
however, is exact only when the quantum theory is defined
on Sd−1 ×R [7,8], i.e., when the lattice model is embedded
on a (d − 1)-dimensional sphere Sd−1. For one-dimensional
(1D) quantum systems, the “sphere” is simply a ring with
periodic boundary conditions, which allows for treatment
by standard numerical techniques [9–12]. Unfortunately,
for d > 2, the Sd−1 manifold displays nonzero curvature,
and lattice models can no longer be seamlessly embedded
into it.
In the special case d ¼ 3, this challenge has recently

been circumvented in Ref. [13] by abandoning the lattice
description and instead embedding the CFT into a con-
tinuum gas of electrons that fill the lowest Landau level
(LLL) in a perpendicular magnetic field. The projection of
the electrons’ Hilbert space to the LLL results in non-
commutativity of their coordinates, ½X̂; Ŷ� ¼ −il2

B, where
lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

is the magnetic length [14]. This uncertainty
relation smears the notion of a point, and the electrons can
be viewed as living on the surface of a “fuzzy sphere” [15],
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with the magnetic field generated by a Dirac monopole at
its center [16]; see Fig. 1(a).
The numerics on the fuzzy sphere have successfully

demonstrated conformal invariance and extracted CFT data
in a number of Wilson-Fisher theories [13,17–25]. More
recently, this scheme has been applied to deconfined
quantum phase transitions in the SO(5) [26] and related
SpðNÞ theories [27], showcasing its applicability to critical
points both within the Landau-Ginzburg paradigm and
beyond. In these applications, the electrons completely fill
the LLL, forming an integer quantum Hall (IQH) state.
However, a partially filled LLL can host a multitude of
exotic fractional quantum Hall (FQH) phases, such as
Laughlin [28], composite fermion [29], and Moore-Read
[30] states, in which electrons fractionalize into anyons
[31]. Does the fuzzy-sphere approach still work if the
electrons form such complex many-body states? In other
words, is the method applicable to the cases illustrated in
Fig. 1(a), where the underlying degrees of freedom are
composite fermions, i.e., electrons dressed by an even
number of magnetic flux quanta [32]?
In this paper, we argue that the fuzzy-sphere regulari-

zation can indeed be applied to large classes of gapped
FQH phases hosted in the charge sector. We illustrate this
by realizing the 3D Ising CFT using several Abelian and
non-Abelian FQH states. The key difference with previous
work is that the low-energy spectrum of FQH states
generically exhibits a gapped collective mode [33,34], as
observed in numerous experiments [35–37]. In the long-
wavelength limit, this mode is described by a variant of
gravitational Chern-Simons theory whose formulation has
attracted much effort over the past decade [38–45]. In the
scenario explored here, the gapped FQH spectrum persists

for all values of the tuning field h [see Fig. 1(b)], while
precisely at criticality, the CFT branch comes down and
dominates the low-energy description. While we show that
there is only weak “hybridization” between the CFT and
FQH spectrum in the examples considered below, the setup
developed here may, in principle, allow one to probe the
intriguing possibility of strong coupling between such
theories.
The remainder of this paper is organized as follows. In

Secs. II and III, we introduce the model and investigate its
ground state through exact diagonalization and mean-field
theory. After presenting evidence for an Ising transition, we
then assess the conformal symmetry at the critical point in
Sec. IV through finite-size scaling and conformal pertur-
bation. We observe good agreement between the spectrum
of the model and the operator scaling dimensions of the 3D
Ising CFT, even when such states are energetically near the
charge-neutral excitations of the underlying FQH state. In
Sec. V, we demonstrate the decoupling between the charge
and spin sectors of the model through the lens of F
theorem. We find that, once accounting for the interacting
nature of the charge sector (by subtracting its topological
entanglement entropy), the remaining entropy exhibits an
almost identical behavior to that of the ν ¼ 1 model. In the
Appendixes, we present additional data for the ν ¼ 1=3
model, and we demonstrate the broader applicability of our
results to different filling factors and topological orders,
with further details on the construction of minimal models.

II. MODEL

We employ the model of the fuzzy sphere similar to that
of Ref. [13]. ConsiderN particles on a sphere with radius R,
with a magnetic monopole of strength 2Q placed at its
center [16]. The particles carry an SU(2) internal degree of
freedom which we can physically think of as a “layer”
index, ↑;↓. The monopole generates a radial magnetic field
B ¼ ð2Qϕ0=4πR2Þr̂, where ϕ0 is the flux quantum. The
magnetic field leads to the Landau level quantization for a
particle on the surface of the sphere. Restricting to the LLL
gives rise to an effective noncommutative geometry, where
the notion of a point is not defined on length scales smaller
than lB. In the LLL, the single-particle states are given by
monopole harmonics [46,47]. The monopole harmonics are
approximately localized (to within approximately lB)
around the circles of latitude [see Fig. 1(a)], and there are
2Qþ 1 such orbitals that are linearly independent and form
the basis of the LLL. The ratio of the number of particles and
the degeneracy of the LLL allows us to define the filling
factor ν in the thermodynamic limit, ν ¼ limQ→∞N=ð2QÞ.
Our model is described by the Hamiltonian

H ¼ Hintra þHinter þHt; ð1Þ

where the first two terms, corresponding to interactions
between particles belonging to the same (“intra”) or

FIG. 1. (a) Fuzzy sphere with a magnetic monopole at its center
(star). In contrast to previous works that considered electrons as
underlying degrees of freedom, we consider composite fermions,
i.e., electrons dressed with two magnetic flux quanta (yellow
arrows). The composite fermions carry an internal layer degree of
freedom (depicted by blue and red). (b) A schematic of the phase
diagram as a function of the tuning parameter h, with prototype
spectra, energy E vs angular momentum L, in the gapped phases
(gray boxes) and at the critical point (red box). In gapped phases,
the low-lying spectrum consists of an FQH ground state and the
gapped magnetoroton collective excitation (dashed line). In the
ordered phase h < hc, the ground state is twofold degenerate,
while it is unique in the disordered phase h > hc, signalling an
Ising-type transition. At the critical point, a gapless spectral
branch described by CFT emerges (yellow triangle).
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opposite layers (“inter”), produce an effective Ising cou-
pling for the layer degrees of freedom while the final term
Ht plays the role of a transverse field. Specifically, in the
second-quantized form, the three terms are given by

Hintra ¼
X
a¼↑;↓

XQ
j1;2;3;4¼−Q

V intra
j1j2j3j4

ðc†j1σacj4Þðc†j2σacj3Þ; ð2Þ

Hinter ¼ 2
XQ

j1;2;3;4¼−Q
V inter
j1j2j3j4

ðc†j1σ↑cj4Þðc†j2σ↓cj3Þ; ð3Þ

Ht ¼ −h
XQ
j¼−Q

c†jσ
xcj; ð4Þ

where cj ¼ ðcj↑; cj↓ÞT is the bilayer annihilation operator
for the jth LLL orbital, σ↑;↓ are projectors onto the ↑ and ↓
components, respectively, and h is the local magnetic field
in the transverse x direction which couples to the standard
Pauli matrix σx.
Because of the rotational invariance of the interactions,

the Hamiltonian matrix elements V intra
j1j2j3j4

and V inter
j1j2j3j4

are
fully specified by a discrete set of numbers fVmg called the
Haldane pseudopotentials [16], where integer m represents
the relative angular momentum of a pair of particles. For
the illustrative example of the ν ¼ 1=3 state that we focus
on throughout the main text, the pseudopotentials are
chosen according to

V intra ¼ fV0; V1g ¼ f0; 1g;
V inter ¼ fV0; V1; V2; V3g ¼ f1; 1; 0.49; 0.09g: ð5Þ

Note that the allowed values of pseudopotentials are
constrained by the exchange statistics of the particles
and their layer index. This is why, for example, we can
set V intra

0 ¼ 0 when we consider fermions [48]. In
Appendix A, we provide further justification for the model
in Eq. (5), while the pseudopotentials for other filling
factors are presented in Appendix D.
In contrast to Ref. [13], we are interested in the cases

ν < 1 when the LLL is not entirely filled by electrons. For
the Laughlin ν ¼ 1=3 state [28] considered below, we set
the monopole strength according to 2Q ¼ 3N − 3, with the
constant offset representing the Wen-Zee shift [49].
Another difference with respect to Ref. [13] is that we
require the presence of both intra- and interlayer inter-
actions in our Hamiltonian. Furthermore, as we have move
away from integer filling, the microscopic particle-hole
symmetry is no longer present in our case. Instead, the
principal microscopic symmetry that we exploit is the Ising
Z2 symmetry, which relates the two layers by cj → σxcj.
Finally, unlike Ref. [13], which considered only particles
with fermionic statistics, in Appendix D, we show that our

results also hold for bosonic particles with an appropriate
interaction.

III. GROUND STATE

In the ν ¼ 1 case, when the spin is fully polarized by the
transverse magnetic field, the ground state is necessarily
gapped due to the Pauli exclusion principle: It is not
possible to add another electron (with the same spin) to
the already filled LLL. For fractional ν, the behavior of the
charge sector is far more complicated, even if the spin is
fully polarized: Depending on the filling and the interaction
potential, a large variety of phases can be realized, includ-
ing different gapped and compressible FQH states, such as
the composite fermion Fermi liquid and symmetry-broken
phases [50].
In this section, using a combination of exact diagonal-

ization (ED) and mean-field (MF) theory, we argue that the
ground state of the model in Eq. (5) at filling factor ν ¼ 1=3
and for all values of the transverse field h is described by
the Laughlin state [28]:

ψν¼1=qðfui; vigÞ ¼
YN
i<j

ðuivj − ujviÞq; ð6Þ

which has been written in terms of standard spinor coor-
dinates uj ¼ cosðθj=2Þ expðiϕj=2Þ and vj ¼ sinðθj=2Þ ×
expð−iϕj=2Þ on the fuzzy sphere [16]. The wave function
in Eq. (6) describes only the orbital state of the electrons; i.e.,
the full wave function is given by a tensor product
jΨi ¼ jψν¼1=qi ⊗ jχi, where jχi describes the spin compo-
nent of the wave function. The latter depends on the value of
the transverse field h, as we discuss below. Note that, if jχi
does not have maximal spin polarization, the full wave
function jΨi needs to be explicitly (anti)symmetrized to
make it consistent with the exchange statistics of the
particles.

A. Exact diagonalization

For our interaction in Eq. (5), the existence of the
Laughlin state in the h ≫ 1 limit is ensured by the
dominance of V1 pseudopotential. Namely, the large x
field polarizes the system, and the resulting single-layer
system is described by an effective “symmetrized” inter-
action, ðV intra þ V interÞ=2 [51]. Consequently, in that limit,
the even pseudopotentials V0 and V2 in Eq. (5) drop out,
while the V1 pseudopotential—the parent Hamiltonian of
the ν ¼ 1=3 Laughlin state [16]—remains as the leading
contribution to the interaction. This analysis furthermore
predicts that the entire low-energy spectrum at h ≫ 1
should correspond to that of the Laughlin state, with the
characteristic gapped collective mode known as the mag-
netoroton or the Girvin, MacDonald, and Platzman mode
[33,34]. This is confirmed in Fig. 2.
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To obtain an Ising-type transition, we need two degen-
erate ferromagnetic ground states in the limit of no trans-
verse field (h ¼ 0). Furthermore, those ground states
should still belong to the same Laughlin phase, or else
we may have another phase transition in the charge sector,
which would severely complicate the analysis. In Fig. 2, we
confirm that, at h ¼ 0, the ground state is fully spin
polarized by evaluating the expectation value of magneti-
zation (layer polarization):

M ¼
XQ
j¼−Q

c†jσ
zcj; ð7Þ

which is a good quantum number in the absence of h. As
expected, the ground state is twofold degenerate,M ¼ �N.
For general values of h, the ground state is identified with
the Laughlin state by examining the counting of the
entanglement spectrum, which matches the counting of
edge modes of a chiral boson [52]—see Fig. 3.
The system in both h ¼ 0 and large-h limits exhibits a

finite energy gap that quickly converges with respect to the
system size, as demonstrated in Fig. 4. By contrast, around
h ∼ 0.1, the gap in both Z2 symmetry sectors is seen to be
closing with system size, indicative of a continuous phase
transition—see Appendix B for further details. This critical
point is analyzed more carefully in Sec. IV below.

B. Mean-field approximation

To understand the nature of the ground state at inter-
mediate values of the field h, we apply a MF treatment in
the spin sector. We approximate the ground state of the
bilayer model with a Laughlin state (or a state close by),
rotated by an optimal angle θopt. Numerically, such a MF
state can be constructed as follows [53]. We project the
fermionic operators onto any chosen direction θ:

cj ¼ ðcj↑; cj↓ÞT → c̃j ¼
�
cos

θ

2
cj↑ þ sin

θ

2
cj↓; 0

�
T
: ð8Þ

Bilayer density terms, defined by an arbitrary spin matrix
σa acting in the spin space, take the form

c†j1σ
acj2 → c̃†j1

�
Rθ=2σ

aRT
θ=2

�
c̃j2 ; ð9Þ

FIG. 2. Energy spectrum of the bilayer model in Eq. (5) plotted
as a function of angular momentum L. All data are for N ¼ 8
particles at filling ν ¼ 1=3, obtained by ED. Left: ferromagnetic
phase at h ¼ 0, where the magnetization M [Eq. (7)] is a good
quantum number that has been resolved. The spectrum is
invariant under M → −M, and only M ≥ 0 is shown. Thus, there
are two degenerate ground states with E ¼ 0 (one at M ¼ 8 and
one at M ¼ −8), which are the exact Laughlin states. The
corresponding magnetoroton branch in the fully layer-polarized
part of the spectrum can be observed, although it is partially
masked by other low-lying excitations corresponding to spin
waves (e.g., in sector M ¼ N − 2). Right: paramagnetic phase at
h ¼ 1. There is now a unique Laughlin ground state, with the
magnetoroton branch present in the even-parity sector.

FIG. 4. Gaps to the first excited states above the ground state in
the Z2-even (left) and Z2-odd (right) sectors. The even sector is
gapped on either side of the transition. In the odd sector, we can
observe the ground state degeneracy being lifted across the
transition, while the next excited state also has a finite gap in
the ferromagnetic regime. The decrease (and subsequent closing
in the thermodynamic limit) of the shown gaps is consistent with
a continuous phase transition around h ∼ 0.1.

FIG. 3. Real-space entanglement spectrum of the ground state
of interaction (5) in the ferromagnetic (h ¼ 0.1) and para-
magnetic (h ¼ 0.3) regimes. Data are for N ¼ 8 particles, in
the NA ¼ 4 sector. The state counting in both Z2 sectors is
1; 1; 2; 3; 5;…, following that of a chiral boson edge mode, while
the entanglement gap between the two sectors increases with the
transverse field.
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where Rθ=2 is the rotation matrix. This similarly applies to
the density-density interactions in Eq. (2), from which we
can extract the effective pseudopotentials:

Ṽm ¼
�
cos4

θ

2
þ sin4

θ

2

�
V intra
m þ 2 cos2

θ

2
sin2

θ

2
V inter
m : ð10Þ

Upon diagonalizing this single-layer interaction, we obtain
the MF state jψMFðθÞi. It is important to note that, while
this treatment discards correlations in the spin sector, it
preserves the interacting nature of the charge sector. The
effective Hamiltonian also preserves the Z2 Ising sym-
metry, as it is invariant under θ → π − θ.
The optimal angle θopt is chosen such that the bilayer state

jψMFðθoptÞiþ ¼ ðjψMFðθoptÞi þ jψMFðπ − θoptÞiÞ=
ffiffiffi
2

p
max-

imizes overlap with the ground state of the bilayer system;
note that this approach can also be used to automatically
construct the lowest state in the Z2-odd sector,
jψMFðθoptÞi− ¼ ðjψMFðθoptÞi − jψMFðπ − θoptÞiÞ=

ffiffiffi
2

p
. This

approximation has a twofold benefit. First, the evolution of
the effective polarization offers a simple physical intuition
for the phase transition, as shown in Fig. 5. The ground state
starts out as effectively layer polarized and gradually
tilts toward θ ¼ π=2 in the paramagnetic phase. However,
the overlap shows a characteristic dip in the vicinity of the
critical point,where the spin correlationsbecomesignificant.
In addition, theMFpicture can improveour understandingof
the underlying field theory and is applied to the study of
state-operator correspondence and entanglement entropy, in
Secs. IV and V, respectively.
In a similar manner, we can construct MF approxima-

tions to the magnetoroton states by embedding single-layer

states into the bilayer system. In the long-wavelength limit,
the states are well described by the single-mode approxi-
mation (SMA) [34]:

jϕSMA
L i ¼ 1ffiffiffi

2
p ðρ̃L;0ðθoptÞjψMFðθoptÞi

� ρ̃L;0ðπ − θoptÞjψMFðπ − θoptÞiÞ; ð11Þ

where ρ̃L;0 is the ðL; 0Þ component of the Fourier transform
of the single-layer density operator ρ̃. This construction is
useful for identifying energy levels that form part of the
non-CFT magnetoroton branch in the following section.
Note that the different sign allows us to construct magneto-
roton modes in both parity sectors in the following section.

IV. ISING CONFORMAL CRITICAL POINT

Thus far, we have established that the ground state
changes from a Z2 ferromagnet to a paramagnet as the
transverse field is increased; hence, we expect a continuous
Ising-type transition along the way. In this section, we
demonstrate that the critical point falls in the universality
class of the 3D Ising CFT, and one can use radial
quantization on the fuzzy sphere to make predictions about
the spectrum and critical exponents at the phase transition.

A. Finite-size scaling and state-operator
correspondence

Before attempting to match CFT operators with energy
levels of finite systems, we first need to locate the critical
point as accurately as possible. We do this with the help
of magnetization in Eq. (7) as the order parameter. The
critical point is identified as the crossing in the quantity
hM2i=ð2Qþ 1Þ2−Δσ , where we use

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Qþ 1

p
as the length

scale of the model (i.e., the radius of the fuzzy sphere) and
Δσ ¼ 0.518 148 9 is the scaling dimension of the σ primary
operator [54]. The scaling of the order parameter is shown
in Fig. 6; by extrapolating the finite-size crossings, we
identify the critical point at hc ≈ 0.135. Note that the
fractional filling considerably increases the dimension of
the Hilbert space, limiting the exact diagonalization to N ≲
10 particles; the largest Hilbert space used has dimension
149 674 426.
State-operator correspondence [7,8] can be achieved by

foliating R3 into S2 ×R and defining the Hilbert space—
the physical space of the electrons—on each leaf of
foliation S2. Different leaves are connected by the time
evolution operator U ¼ expð−DτÞ; hence, the Hamiltonian
is equal to the dilation generator D. Since the dilation and
the Lorentz spin generators commute, we can classify the
states of the spectrum according to their scaling dimension
Δ and spin L, in one-to-one correspondence with the
operators of the CFT.
The spectrum at the critical point consists of conformal

towers, emerging from the primary operators of the theory.

FIG. 5. Mean-field approximation for the bilayer Laughlin
ground state. The polarization θopt is found by maximizing the
overlap of the MF state, defined via Eq. (10), with the bilayer
ground state using gradient descent (inset). In the ferromagnetic
limit, the ground state is fully layer polarized, while in the
paramagnetic regime it approaches full transverse polarization.
As expected, the MF approach worsens with increased system
size at the critical point.
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By definition, these operators are annihilated by the
generator of special conformal transformations, which
has been explicitly verified for the Ising point on the fuzzy
sphere at ν ¼ 1 [55,56]. For any such primary O of
dimension Δ and spin L, we can construct an infinite
number of descendants of the form ∂ν1…∂νj∂μ1…
∂μi□

nOμ1μ2…μL , of dimension Δþ 2nþ iþ j and spin
L − iþ j, where i ≤ L and□ denotes the Laplace operator.
In Fig. 7, we show the spectrum at the identified critical

point hc ¼ 0.135 for N ¼ 8 particles. After accounting for
the speed of light, the broad features of the spectrum
resemble the expected CFT spectrum, albeit there remain
visible quantitative differences between the two. One could
envision two possible explanations for this discrepancy:
Either the CFT spectrum is perturbed due to the small finite
size of the system and less-than-optimal interaction param-
eters, or there is a mixing with the charge-neutral FQH
excitations that renormalizes the energies. The FQH mag-
netoroton can be seen at large momenta in both parity
sectors in Fig. 7. To identify the spinless excitations that
affect our finite-size CFT spectrum, we have applied the
MF treatment in Sec. III B, by checking overlaps with the
magnetoroton states of the effective single-layer problem
(which, at small L, are identified using the SMA). At
sufficiently large L ≥ 5, the magnetoroton states in Fig. 7
can be unambiguously identified as having large overlap
(exceeding 0.90) with a single eigenstate. However, at
smaller momenta where the magnetoroton enters the
continuum of the spectrum, e.g., L ¼ 3, 4, we see that
the MF approximation can have overlap over multiple
eigenstates.
In the next subsection, we show that the mixing with

FQH spectrum does not have a major influence on the CFT
spectrum by deforming the model in accordance with
conformal perturbation theory. In the thermodynamic limit,

the lack of mixing may be anticipated due to the fact that
the magnetoroton branch remains gapped throughout the
transition; hence, it is pushed upward in energy as the
system size is increased—this can be seen clearly in
Appendix B and is due to the normalization imposed on
the spectrum by fixing the energy-momentum tensor to
ET ¼ 3, while in absolute units ET decreases as approx-
imately 1=R. However, the very weak mixing between the
CFT and FQH spectra in small finite systems, where their
energies are of the same order, is unexpected.

B. Conformal perturbation

The microscopic Hamiltonian H near the critical point
can be interpreted as the “pure” CFT Hamiltonian which is
perturbed by integrals of the CFT operators:

H ¼ 1

α

�
HCFT þ

X
V

gV

Z
d2ΩVðΩÞ

�
; ð12Þ

where V are Z2-even primaries and gV are their respective
couplings. This approach, known as conformal perturbation
theory [57], was recently applied to the 3D Ising CFT
realized by a small system of spins arranged on an
icosahedron [58]. We consider only the relevant operator
ϵ and the first irrelevant operator ϵ0, as they are enough to

FIG. 6. Finite-size scaling of the order parameter in the ground
state of the model in Eq. (5). Assuming the scaling dimension
Δ ≈ 0.518 148 9 [54], the rescaled data for system sizes N > 5
show an approximate collapse. By extrapolating the crossings of
the finite-size pairs (N, N þ 1), as shown in the inset, we extract
the critical field in the thermodynamic limit at hc ≈ 0.135.

FIG. 7. Energy spectrum of the model in Eq. (5) with N ¼ 8 at
the critical value hc ¼ 0.135, estimated in Fig. 6. Empty circles
are ED data and have been rescaled such that the energy-
momentum tensor (i.e., the lowest state with an even parity
and Lorentz spin L ¼ 2) is at ET ¼ 3 [13]. The lines are scaling
dimensions (obtained by conformal bootstrap) corresponding to
towers of CFT operators in the legend. Filled green circles mark
the magnetoroton states, with their color intensity determined by
the overlap with the corresponding MF state. In the L ¼ 3 sector,
the MF magnetoroton state (shown in the Z2-even sector) sits
inside the continuum but is still sharply peaked over a single
eigenstate, with overlap 0.89; for the L ¼ 4 sector, the even-
parity sector splits over the three lowest eigenstates with overlaps
0.69, 0.16, and 0.09, while in the odd-parity sector it has a single
peak of 0.90. In higher momentum sectors, e.g., L ¼ 5, 6, the
magnetoroton is a sharp excitation (overlap > 0.90 with a single
eigenstate), while for L ¼ 2 it resides deeply in the spectral
continuum beyond the scale of this figure.
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capture most of finite-size effects. We study their effect on
the energy levels σ, ϵ, ∂σ, and ∂ϵ.
A given energy level of the microscopic model is

proportional to the scaling dimension of the corresponding
operator ΔO, corrected by an energy δEV

O that depends on
both the perturbation and the state. In other words,

EO ¼ 1

α

�
ΔO þ δEðϵÞ

O þ δEðϵ0Þ
O

�
; ð13Þ

where 1=α is the speed of light of the model and δEV
O ¼

gVfOVO (for primaries, with slightly different form for
descendants [58]). We assume that the operator product
expansion (OPE) coefficients fOϵO and fOϵ0O are known
(e.g., using the values obtained by conformal bootstrap in
Ref. [54]), and we minimize

δ ¼
X

O∈ fσ;∂σ;ϵ;∂ϵg

�
αEO − ΔO − δEðϵÞ

O − δEðϵ0Þ
O

�
2 ð14Þ

over the chosen operators to find the couplings gϵ and gϵ0 .
Figure 8 shows the uncorrected energies αEO alongside

the corrected ones ðαEO − δEðϵÞ
O − δEðϵ0Þ

O Þ across the tran-
sition. The application of the conformal perturbation visibly
improves the matching between the ED data and the
theoretical values.
Figure 9 shows the coupling of the ϵ and ϵ0 perturbations.

The latter is an irrelevant operator, and, indeed, we observe
that the coupling associated with it monotonically
decreases with system size. On the other hand, ϵ is a
relevant operator; hence, the transition can be located as the
point hc where its coupling goes to zero, gϵ½hcðQÞ� ¼ 0.
Our model exhibits a strong dependence of the critical
field on the particle number; extrapolating the value of
hcðQÞ, we obtain the critical value of the field in the

thermodynamic limit hc ≈ 0.13 [linear extrapolation in
1=ð2Qþ 1Þ]. This is close to the previously determined
crossing in the order parameter, serving as an important
consistency check for our estimate of the transition.
However, it is worth emphasizing that being able to
determine the finite-size critical fields hcðQÞ is, in fact,
one of the strengths of the fuzzy-sphere regularization. This
allows us to extract CFT data from system sizes as small as
N ¼ 4 electrons. We use the knowledge of hcðQÞ in the
next section to further demonstrate agreement between the
entanglement properties of integer and fractionally filled
models.
After obtaining some insight into the effect of conformal

perturbations, we make another attempt at extracting the
state-operator correspondence. In Fig. 10, we present the
spectrum for N ¼ 8 particles at its own critical field value
hcðQÞ ≈ 0.183, which was determined in Fig. 9. At low
energies and angular momenta, we notice a one-to-one
correspondence between the microscopic states and the
Ising CFT operators, now with better agreement with their
scaling dimensions. Similar to Fig. 7, in both parity sectors
we still observe the non-CFTmagnetoroton states that can be
clearly identified by their overlaps with the MF states, even
when they are close in energy to CFT states (e.g., at L ¼ 3).

C. The drift of the critical point

One immediate question concerns the drift in the values of
hcðQÞ extracted in Fig. 9 andwhether further fine-tuning can
remove it. One cause for the drift could be the coupling
between the spin and the neutral excitations of the ν ¼ 1=3
state that are absent at ν ¼ 1. To test this hypothesis,wemake
use of the fact that the energy of the magnetoroton can
be tuned by varying V intra

1 pseudopotential. In Appendix C,

FIG. 8. The evolution of energy levels σ, ϵ, ∂σ, and ∂ϵ across
the transition for N ¼ 4–9 particles (colors represent different
system sizes, with darker colors corresponding to largerN). Solid
lines are the raw values (after a single-parameter fit using the
speed of light 1=α), dashed lines are corrected values using the ϵ
and ϵ0 perturbations, and horizontal lines are predictions based on
conformal bootstrap.

FIG. 9. Coupling of the ϵ and ϵ0 perturbations as a function of
system size and transverse field. For the relevant ϵ, the coupling
needs to be zero at the phase transition, allowing us to identify the
intercepts with the x axis as the finite-size critical transverse fields
hcðQÞ. For the largest system sizeN ¼ 10, we have collected data
only in the vicinity of the crossing. A linear extrapolation in
1=ð2Qþ 1Þ gives a critical point of hc ≈ 0.13—close to the value
predicted by the order parameter. In contrast, the ϵ0 coupling
shows behavior indicative of an irrelevant operator, as its
magnitude scales inversely with the system size.
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we repeat the conformal perturbation analysis for different
values ofV intra

1 , finding that the drift in Fig. 9 remains present
even when the magnetoroton is completely gapped out from
the low-energy spectrum. This suggests that a more likely
explanation for the drift is the significant difference in the
correlation length, when compared to the IQH case. A
particular issue sensitive to this correlation length was
discussed in the recent study [59], where similar drifts in
models at ν ¼ 1with different values ofV inter

0 were attributed
to the curvature of the fuzzy sphere. This points toward a
generic feature that is not specific to our anyonic model.
Surprisingly, tuning the drift to zero at ν ¼ 1 coincides with
an almost vanishing gϵ0 , where the conformal spectrum can
be matched with very high accuracy. We have found this to
not be the case in the ν ¼ 1=3model, as removing the drift in
gϵ significantly increases the value of gϵ0 and leads to large
deviations in the spectrum.
Another interesting feature in Fig. 9 is the approximate

collapse of the finite-size gϵ curves around the value
hc ≈ 0.12. The finite-size crossings of the order parameter
curves around the same point seen in Fig. 6 is not
coincidental, and the two can be linked using conformal
perturbation. At first order, the conformal vacuum mixes
with other even-parity states:

j0i ∝ jIi −
X
V

gV
ΔV

jVi þ � � � ; ð15Þ

where the sum includes only scalar primaries and the
ellipsis stand for higher-order contributions from the
descendants. Accordingly, the value of the order parameter
changes as

hM2i
R4−2Δσ

∝ hIjσσjIi − 2
X
V

gV
ΔV

hIjσσjVi þ � � � ; ð16Þ

where the omitted proportionality constant has no system-
size dependence and the symbols hIjσσjIi and hIjσσjVi
represent quantities that depend on only the scaling
dimension of Δσ and ΔV , respectively. The corrections
are, thus, proportional to the OPE coefficients fσσV , with
fσσϵ ≈ 1.051853 being by far the largest one involved.
Consequently, the crossing in the rescaled order parameter
can be attributed to a collapse in the finite-size values of gϵ,
even though this appears at a nonzero value.

V. ENTANGLEMENT ENTROPY
AND THE F THEOREM

Our results so far hint toward a “clean” separation
between the charge and spin degrees of freedom: The
FQH spectrum does not strongly perturb the CFT spectrum,
even when the two coexist at similar energies. In this
section, we probe this further using bipartite entanglement
entropy SA ¼ −trρA ln ρA, where ρA ¼ trĀjψihψ j is the
reduced density matrix of the subsystem A, obtained
by tracing its complement Ā. We choose a real-space
bipartition with A being a spherical cap defined by the
polar angle θA [60,61].
In 2þ 1D, both gapped and gapless (described by a

CFT) systems obey the area law for bipartite entanglement
entropy:

SA ¼ ηR sin θA − γ; ð17Þ

where the proportionality constant η is model dependent
and γ is a universal subleading constant term that can
contain information about both spin and charge sectors. For
states described by CFT, γ is known as the F function, and
it decreases monotonically along any RG flow [62–64]. It
can be viewed as a higher-dimensional generalization of a
renormalization group irreversibility known as the c theo-
rem in 2D CFTs [57,65]. On the other hand, in generic
gapped states, the F function is also known as the
topological entanglement entropy [66,67].
The 3D Ising F function is less than the value of γ for any

topologically ordered state [68]. Hence, the transition out of
any topologically ordered phase cannot be simply captured
by a single Ising CFT. Consequently, the topological
entanglement entropy of any underlying FQH state in
the charge sector must remain constant throughout the
transition, and any changes can be attributed to the spin
degree of freedom. In the fuzzy-sphere bilayer model
[Eq. (5)], the evolution of the universal constant can be
understood as follows. The Laughlin paramagnet has
γpara ¼ γtopo ¼ ln

ffiffiffi
3

p
, while in the Z2 Laughlin ferromag-

net we expect γferro ¼ γtopo − ln 2. The ln 2 correction
comes from working in the even-parity sector such that
jψi ¼ ðjψM¼Ni þ jψM¼−NiÞ=

ffiffiffi
2

p
and ensures there is no

discontinuity in γ. At the critical point, we therefore
expect γcritical ¼ γtopo þ FIsing.

FIG. 10. Spectrum of the model in Eq. (5) at h ¼ 0.183, where
the coupling to the ϵ perturbation vanishes at the given system
size, N ¼ 8. The ED data (empty circles) are rescaled such that
ET ¼ 3. Filled green circles are identified by having high overlap
with the MF magnetoroton states (> 0.85, with the minimum
attained at L ¼ 3). For low energies and spin, we observe a one-
to-one correspondence between states and CFT operators, as
expected, and their energies are expected to agree as N → ∞.
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We implement the method of Ref. [69] for the extraction
of the universal constant:

γ ¼ ðtan θ∂θ − 1ÞSAjθ¼π=2: ð18Þ

Similarly to the ν ¼ 1model, to observe the RG flow of the
F function in the Ising CFT, we need to account for the
charge sector by subtracting the single-layer entanglement
entropy. In the integer case, the correction denoted by
γIQHðQÞ can be calculated efficiently [70] and vanishes in
the thermodynamic limit, γIQHðQ → ∞Þ ¼ 0. However, in
our case, the correction needs to be field dependent—the
effective single-layer interaction depends on the polariza-
tion (due to the nonzero interlayer V3 pseudopotential), and
this affects how the topological entropy of the Laughlin
state approaches the thermodynamic value of γtopo. We,
therefore, resort to the MF approximation in Sec. III B,
using the predetermined optimal polarizations θopt, to
compute the corresponding corrections γFQHðQÞ.
A direct comparison between ν ¼ 1 and ν ¼ 1=3 is

shown in Fig. 11. After applying the regularization scheme,
we observe nearly identical behavior of the universal
constant in the two models, reinforcing the idea that, in
this case, the charge sector is “invisible” to the Ising CFT.
This serves as a numerical demonstration of the F theorem
in 2þ 1D. A nonperturbative estimation of the Ising F
function can be obtained by extrapolating the value of γ at
the critical point; this was carried out at ν ¼ 1, obtaining

FIsing ¼ 0.0612ð5Þ [69], very close to that obtained through
the 4 − ϵ expansion [71]. Unfortunately, at ν ¼ 1=3 the
accessible system sizes preclude a reliable extrapolation of
the F function.

VI. CONCLUSIONS

We have presented evidence for the 3D Ising transition in
a fractionally filled fuzzy-sphere model, where the charge
sector realizes a strongly correlated state with topological
order. We have illustrated our approach with the ν ¼ 1=3
Laughlin state, while the Appendixes show that similar
results are obtained for both fermionic and bosonic FQH
states with different kinds of topological order. We have
applied conformal perturbation theory to extract CFT data
with improved accuracy. The real-space entanglement
entropy was used to show the decoupling of the charge
and spin sectors, illustrating the robustness of the fuzzy-
sphere regularization.
The approach presented here opens up a number of

interesting directions. An immediate question concerns the
possibility of realizing other kinds of CFTs beyond the 3D
Ising using FQH states as a platform. While our approach is
expected to work more generally, the formulation of the
effective interactions that give rise to suitable FQH states is
subtle and needs to be verified on a case-by-case basis.
Furthermore, given that the charge and spin degrees of
freedom can be separated efficiently, could models be
engineered where the interactions of the two lead to new
CFTs? The recent study [27] has revealed possible parity-
breaking CFTs by fractionally filling multiple flavors of
particles. Our approach also lays the foundation for
identifying conformal critical points in various models that
are relevant for FQH bilayer experiments [72–76], where
the interactions can be conveniently tuned by changing the
distance between FQH layers [77], their widths [78],
imbalance of charge [79], and even the underlying band
structure via doping [80]. Finally, an interesting question is
whether stronger coupling between the CFT and FQH
spectra could be induced. Such a situation could arise if the
charge sector is described by a FQH nematic state [81–84],
which is gapped to charge excitations, while it also has a
charge-neutral Goldstone mode due to a spontaneously
broken continuous rotational symmetry.
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APPENDIX A: MODEL OPTIMIZATION

The difficulty of locating the optimal point for observ-
ing the conformal transition is considerably increased
once more interaction pseudopotentials are introduced in
the model. Fortunately, we are able to restrict the space of
pseudopotentials directly relevant to the transition to a
small subset by fixing the rest. In this appendix, we
exemplify this method for the ν ¼ 1=3 model, while
generalizations to other fractions are presented in
Appendix D.
We begin by fixing the overall energy scale by setting

V intra
1 ¼ V inter

1 ¼ 1. Furthermore, for fermions we can
neglect the even intralayer pseudopotentials; hence, we
can set V intra

0 ¼ 0. Although higher odd pseudopotentials
do have an effect on the spectrum, they are not necessary;
thus, we set them to zero. In order to have a gapped state in
the h ¼ 0 limit, we require a nonzero V inter

0 . Its precise
value was found to have a weak effect on the spectrum at
the critical point, and we set V inter

0 ¼ 1 (for example, the
low-energy spectrum is qualitatively unchanged for
V inter
0 ¼ 10 even near hc). This leaves the question:

How far in interlayer pseudopotential range do we need
to go? The minimal model must contain V inter

3 , as this
ensures the Ising Z2 symmetry is not accidentally
enlarged. To see this, we look at the interaction matrix
elements [87]:

Vj1j2j3j4 ¼
X
l

Vmð4Q − 2mþ 1Þδj1þj2;j3þj4

×

�
Q Q 2Q −m

j1 j2 −j1 − j2

��
Q Q 2Q −m

j3 j4 −j3 − j4

�
:

ðA1Þ

The symmetry property of the Wigner 3j symbols, in
combination with the fermionic statistics, allow us to
split the interlayer interaction into singlet (for even
pseudopotentials) and triplet actions (for odd pseudo-
potentials):

Hinter ¼
X

Vodd
j1j2j3j4

ðc†j1↑c
†
j2↓

þ c†j1↓c
†
j2↑

Þ
× ðcj3↑cj4↓ þ cj3↓cj4↑Þ
þ Veven

j1j2j3j4
ðc†j1↑c

†
j2↓

− c†j1↓c
†
j2↑

Þ
× ðcj3↑cj4↓ − cj3↓cj4↑Þ: ðA2Þ

From this, it becomes evident that the minimal model at
ν ¼ 1=3 needs a V inter

3 term. Otherwise, the ground state
takes the form of a degenerate S ¼ N=2 Laughlin
multiplet, regardless of the ratio V intra

1 =V inter
1 .

In summary, we are left with three parameters to
optimize over: V inter

2 , V inter
3 , and h. To find the optimal

tower structure, we perform a simple gradient descent,
where the cost function is the sum of squared differences
between ED energies and conformal bootstrap:

δ ¼
X

ðEi − ΔiÞ2; ðA3Þ

where the energies Ei have been rescaled such that ET ¼ 3
and the set of states we optimize over is fσ; ∂σ; ∂∂σ;□σg in
the odd-parity sector and fϵ; ∂ϵ; ∂∂ϵ;□ϵg in the even-parity
sector.
The optimal point at system size N ¼ 8 was found to be

V inter
3 ≈ 0.087, V inter

2 ≈ 0.488, and h ≈ 0.185. The optimal
values of V inter

2 and V inter
3 slightly drift with system size; to

compare with bootstrap data, we rely on conformal
perturbation, as detailed in the main text. For the optimal
value of the h field predicted by the ϵ perturbation in system
size N ¼ 8 shown in Fig. 10, we list the scaling dimensions
of the lowest five primaries in Table I.

APPENDIX B: CHARGE AND SPIN GAPS

A prerequisite for observing the 3D Ising universality
class is a nonzero charge excitation gap. In a state with
fractionalized excitations such as the Laughlin state, the
charge gap is defined as the energy cost of creating a
quasiparticle (at flux 2Q − 1) and a quasihole (at flux
2Qþ 1). The charge gap is defined as

ΔEc ¼ Ẽ0ð2Q − 1Þ þ Ẽ0ð2Qþ 1Þ − 2Ẽ0ð2QÞ;
Ẽ0ð2QÞ ¼ E0ð2QÞ − C2QðN2 − n2qe2qÞ=2; ðB1Þ

TABLE I. Scaling dimension comparison between conformal
bootstrap and the ν ¼ 1=3 fuzzy-sphere model with N ¼ 8
particles. The lowest five primaries are included, except the
stress-energy tensor Tμν.

σ ϵ ϵ0 σμν σμνρ

Fuzzy sphere 0.528 1.362 3.798 4.139 4.514
Bootstrap 0.518 1.413 3.830 4.180 4.638
Relative error 1.9% 3.6% 0.8% 1.0% 2.7%
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where E0ð2QÞ is the ground state energy at a given flux and
Ẽ0ð2QÞ is the total energy that includes a uniform neu-
tralizing background charge [88,89]. The correction factor
in the total energy depends on the number of charge
excitations (nq ¼ 1 in the quasihole or quasiparticle case
and nq ¼ 0 in the vacuum), on their charge (e.g., eq ¼ 1=3
for the Laughlin state with m ¼ 3), and on the average
charging energy per particle pair [90]:

C2Q ¼
X2Q
m¼0

Vm
4Q − 2mþ 1

ð2Qþ 1Þ2 : ðB2Þ

For a generic value of the transverse field h, our model does
not conserve the layer particle number; therefore, we use
the averaged pseudopotentials Vm ¼ ðV intra

m þ V inter
m Þ=2.

The computed charge gaps for different system sizes are
presented in Fig. 12(a) and show good convergence to a
finite value in the thermodynamic limit. On the other hand,
the gaps of CFT states in the neutral sector are expected
to vanish in the thermodynamic limit. Figure 12(a) con-
trasts the finite-size scaling of the first excited states in
L∈ f0; 1; 2g sectors with the charge gap defined in
Eq. (B1). All of the neutral gaps extrapolate to a value
much smaller than the charge gap and in the vicinity of
zero. Some of the extrapolated values are slightly below
zero, which is attributed to the uncertainty of the extrapo-
lation due to limited system sizes available.
At higher angular momenta, we expect that the magneto-

roton states will appear at lower energies and mix with the
CFT spectrum. In Fig. 12(b), we show the energies of all
low-lying states with L ¼ 3 in the Z2-even sector. In the

smallest system size, the roton state—identified by high
overlap with the MF magnetoroton state—appears as the
second-lowest state in the given angular-momentum spec-
trum. However, the trend of its energy dependence on
system size is opposite to that of CFT states: While the
latter decrease with N, the roton energy grows with N.

APPENDIX C: INTERPLAY BETWEEN CHARGE
AND SPIN DEGREES OF FREEDOM

In this appendix, we examine the effect of the charge
sector on degrees of freedom in the spin sector. In
particular, we inquire whether the low-lying gapped exci-
tations of the Laughlin state, i.e., the magnetoroton, could
affect the CFT spectrum and even cause the systematic drift
in hcðQÞ that was absent in the original study at unit
filling [13].
As shown in Sec. IV, we can clearly identify magneto-

roton excitations on top of both the vacuum and the σ state
even in the presence of CFT states at similar energies. This
observation motivates the following assumption. Near the
critical point, the low-energy part of the Hilbert space is a
tensor product of the CFT part and a gapped part coming
from the FQH degrees of freedom, H ≈HCFT ⊗ Hgapped.
Assuming a perturbative coupling between the two sectors,
the low-energy effective Hamiltonian reads

H ¼ H0 þ V;

H0 ¼ HCFT þHgapped; V ¼ λ

Z
d2ΩϵðΩÞδρðΩÞ; ðC1Þ

where λ is the coupling strength, ϵ theZ2-even primary field
in the CFT, and δρ an operator that creates the magnetoroton
excitation. Under the SMA, which is known to be valid over
only a limited range of momenta smaller than the roton
minimum [92], δρðΩÞ is the density fluctuation operator as
we have analyzed in Eq. (11). Noting that the rotation in the
CFT descends from the magnetic translation in the LLL, one
can verify that V is indeed the simplest symmetry-allowed
coupling between the two sectors.
Upon projection into the CFT subspace, the perturbation

in Eq. (C1) may generate additional ϵ terms that affect the
finite-size critical fields hcðQÞ; this can be shown by
integrating out the magnetoroton modes via a standard
second-order perturbation approach. Let jαi denote the
CFT states and jψ1=qi the FQH vacuum. Then, we
introduce the spectrum projector onto the low-energy
space P ¼ P

α jαihαj ⊗ jψ1=qihψ1=qj and its complement
Q ¼ 1 − P. The effective Hamiltonian reads

Heff ¼ PH0Pþ PVQ
1

E −QH0Q
QVP; ðC2Þ

where the perturbed energy E is determined self-
consistently through Heff jψi ¼ Ejψi. In the regime where

FIG. 12. (a) Finite-size scaling of the charge and spin gaps at
the phase transition point hc ¼ 0.135, for system sizesN ¼ 5–10.
The charge gap (black triangles) [Eq. (B1)] converges to a finite
value in the thermodynamic limit. The spin gaps in each of the
L∈ f0; 1; 2g sectors with either Z2 parity (colored circles) vanish
in the thermodynamic limit. We apply the density correctionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Qν=N
p

to all gaps, which accounts for the deviation of the
particle density in a finite system compared to the thermodynamic
limit [91]. (b) The neutral excitation gaps in the L ¼ 3, Z2-even
sector. Most states belonging to the CFT sector have polyno-
mially decreasing gaps (empty circles), while the roton state
(green circle) has energy that increases with system size.
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the energy of exciting magnetoroton is large, it suffices for
a qualitative analysis to assume a flat dispersion for the
whole branch and have E −QH0Q ≈ −ΔMR. We write the
perturbation more explicitly as

PVQVP ¼ λ2
Z

εðΩ1ÞεðΩ2ÞGðqÞðΩ12ÞdΩ1dΩ2; ðC3Þ

with GðqÞðΩ12Þ ¼ hψ1=qjδρðΩ1ÞδρðΩ2Þjψ1=qi being the
two-point function of the density fluctuation. The gap of
the magnetoroton mode enforces an exponential decay for
GðqÞðΩ12Þ at long distances [34], and the right-hand side of
(C3) is dominated by the short-distance contributions.
Accordingly, we can replace the product of the CFT
primaries by their OPE

ϵðΩ1ÞϵðΩ2Þ ¼ fϵϵϵjΩ12j−ΔϵϵðΩCÞ þ � � � ; ðC4Þ

where ΩC is the center-of-mass coordinate, and replace
GðqÞ by its short-distance form

GðqÞðΩ12Þ ≈ ρ21=qð−1þ AqjΩ12j2qÞ; Aq > 0: ðC5Þ

Namely, we have

Heff ≈HCFT − λ2
fϵϵϵ
ΔMR

Z
ϵðΩCÞdΩC

Z
GðqÞðΩ12Þ
jΩ12jΔϵ

dΩ12;

whereGðqÞðΩ12Þ takes the short-distance form (C5). Noting
that GðqÞ < 0, the integral over Ω12 is also negative.
We have

Heff ≈HCFT þ λ2fϵϵϵ
aρ21=q
ΔMR

Z
ϵðΩÞdΩ; ðC6Þ

where a is a positive constant arising from the second
integral, whose specific value is less important.
As expected, the coupling between the CFT and the

gapped neutral modes of the FQH sector generates an
additional contribution to the effective coupling gϵ, which,
consequently, shifts the critical point hcðQÞ by a constant
amount. Notably, such a generated perturbation decreases
inversely proportional to the magnetoroton gap. In our
microscopic model, we test this by varying the roton gap
through the pseudopotential V intra

1 , and the results are
shown in Fig. 13. The gϵ coupling decreases as the strength
of V intra

1 is increased, in agreement with the results of
Eq. (C6) and, thus, confirming the treatment of Eq. (C1).
However, as we see from both the analytical and numerical
analysis, the change is constant across system sizes,
meaning that the coupling to the magnetoroton does not
account for the drift in hcðQÞ.
A more likely explanation of the drift in hcðQÞmay lie in

the structure of the vacuum rather than the excitations of the
charge sector. Indeed, there is a significant difference in

correlation length between the IQH and FQH states, e.g.,
ξ ≈ 1.4lB in the Laughlin ν ¼ 1=3 state [93]; thus, we
might expect that the restriction to smaller system sizes
compared to ν ¼ 1 causes a stronger effect on hcðQÞ.

APPENDIX D: DIFFERENT FILLING FACTORS

In this appendix, we briefly investigate the existence of
the 3D Ising transition, discussed in the main text, for a few
other filling factors and particles with bosonic exchange
statistics.We show that the 3D IsingCFT can be successfully
encoded onto different charge “substrates,” either by placing
electrons at different fractional fillings or by taking bosonic
particles instead of electrons. We recall that bosonic FQH
states can be generally defined by taking a fermionic FQH
wave function and dividing through by an overall Jastrow
factor,

Q
i<jðuivj − ujviÞ [94,95]. Consequently, a bosonic

FQH state is distinguished from its fermionic counterpart
by a different filling factor: ν−1b ¼ ν−1f − 1. Small droplets
of ν ¼ 1=2 bosonic Laughlin states have been realized in
recent experiments on ultracold atoms [96] and photonic
circuits [97].

1. Other models

We propose the following approach for finding models at
fractional filling for which the 3D Ising transition can be
observed. The starting point are single-layer Hamiltonians
that realize the desired topological order, where m is the
highest relative angular momentum that is projected out. In
the case of Laughlin states, for example, we have the
relation ν ¼ 1=ðmþ 2Þ. Let us fix the intralayer interaction
according to

V intra
p ¼

�
1 p ≤ m

0 otherwise;
ðD1Þ

(a) (b)

FIG. 13. Conformal perturbation couplings, gϵ in (a) and gϵ0 in
(b), as a function of h for different values of V intra

1 ∈ ½0.5; 5�. The
effect of varying V intra

1 on the couplings is small and inversely
proportional to the roton gap. Moreover, even as the magneto-
roton gap is tuned to energies much higher than the energies of
the low-lying CFT states, the hcðQÞ still shows significant drift.
We note that lowering V intra

1 below 0.5 makes the underlying
Laughlin state unstable.
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while the fine-tuning can be performed in the interlayer
interaction. For simplicity, we preserve SU(2) layer sym-
metry up to themth pseudopotential and then add two more
pseudopotentials, which are found through optimization.
This ensures that, in the h → ∞ limit, the ground state
deviates as little as possible from a pure Laughlin para-
magnet. Specifically, the interlayer interaction is

V inter
p ¼

8<
:

1 p ≤ m

Vp m < p ≤ mþ 2

0 otherwise:

ðD2Þ

Note that the original ν ¼ 1 model from Ref. [13] also
fits in this framework: Since there is no energy scale set by
the intralayer interaction, one can arbitrarily fix one of the
interlayer pseudopotentials and optimize only over the
remaining pseudopotential and the transverse field, i.e.,
two parameters in total. At any fractional filling, optimi-
zation needs to be done over three parameters instead.
Below, we showcase this method at fillings ν ¼ 1=2
(bosons) and ν ¼ 1=5 (fermions). We note that the optimal
CFT points were empirically found to display similar
pseudopotential ratios: V0=V1 ≈ 4.75 (ν ¼ 1), V1=V2 ≈
5.88 (ν ¼ 1=2), V2=V3 ≈ 5.61 (ν ¼ 1=3), and V4=V5 ≈
6.16 (ν ¼ 1=5), with a slight drift toward larger ratios as the
filling factor is reduced. This suggests that the effective
model in the spin space is similar in all cases; however, at
present, we do not have a quantitative understanding of the
relation between pseudopotential ratios and the filling
factors or why the proposed model works, in general.

2. Some examples

Here, we provide some illustrations that our model,
defined by Eqs. (D1) and (D2) above, works. Using the
same cost function as discussed in detail in Appendix A, we
optimize the spectrum for N ¼ 8 bosons at ν ¼ 1=2 and
find V1 ¼ 0.49, V2 ¼ 0.10, and h ¼ 0.25. Figures 14(a)
and 14(b) show the spectrum at this special point, dem-
onstrating good agreement with the 3D Ising based on the
corresponding bootstrap data. Similarly, we optimized the
spectrum for N ¼ 6 electrons at ν ¼ 1=5 and found
V4 ¼ 0.37, V5 ¼ 0.06, and h ¼ 0.11. Figures 14(c) and
14(d) show the spectrum at this special point, once again
demonstrating good agreement with the bootstrap data.
According to the optimized cost function [Eq. (A3)], the
finite-size effects at the critical point do not appear to
significantly increase as the filling factor is decreased.
Finally, we demonstrate a non-Abelian model with

bosons at filling ν ¼ 1 featuring the 3D Ising CFT. It is
known that, for spinless bosons at ν ¼ 1, V0 interaction can
stabilize the Moore-Read Pfaffian state [30,98], whose
quasihole excitations behave as Ising anyons with non-
Abelian braiding statistics [99]. We find that this state is
also realized in our generic model above. Upon optimizing
for the lowest-lying states of the CFT tower, we find the

optimal parameters of V1 ¼ 0.45, V2 ¼ 0.09, and
h ¼ 0.43. In the limits of small and large h field, the
bosons form the Moore-Read state, as confirmed by the
characteristic counting in the entanglement spectrum,
corresponding to a chiral boson coupled to a Majorana
fermion. Figures 15(a) and 15(b) show the optimal spec-
trum in the even particle sector. While finite-size effects are
stronger than for the previously studied Laughlin states, the
low-lying CFT states for L ≤ 2 can still be distinguished
clearly.
One new feature in the non-Abelian case is the sensitivity

to the parity of the particle number. Figures 15(c) and 15(d)
show the spectrum in the odd particle number sector, for
N ¼ 11 bosons and 2Q ¼ 9. TheMoore-Read phase can be
viewed as a pþ ip paired superconductor [72]; hence, it
does not have a ground state for odd particle numbers on
the fuzzy sphere. Instead, its low-lying spectrum consists of
a “neutral fermion” excitation [100,101], which is inter-
preted as a Bogoliubov quasiparticle of the underlying pþ
ip superconductor. Intriguingly, while the neutral fermion
mode is visible in Figs. 15(c) and 15(d), there is no visible
trace of the evenly spaced CFT tower structure that is

(a) (b)

(c) (d)

FIG. 14. Spectra of the optimal models for other examples of
Laughlin states. (a),(b) Bosonic ν ¼ 1=2 Laughlin state with N ¼
8 particles at the optimal interaction point (see the text). (c),(d)
Fermionic ν ¼ 1=5 Laughlin with N ¼ 6 electrons at the optimal
interaction point (see the text). In all cases, the ED data are
represented by empty circles. The states with high overlap with
the MF magnetoroton are filled green. The spectra are in good
correspondence with the conformal bootstrap data of the 3D Ising
transition, indicated by line markers.
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present in the even particle sector. We attribute this to the
absence of a conformal vacuum for oddN, and it remains to
be understood if any CFT information can be extracted in
such cases.
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