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Abstract

Objective: Map time to key clinical milestones in amyotrophic lateral sclerosis (ALS), highlighting underlying genotypic
and phenotypic prognostic factors. Background: Understanding the ALS disease trajectory and factors influencing the
heterogeneous disease course is important to guide clinical care and stratify individuals to effectively assess therapeutics
in clinical trials. Methods: Population-based datasets from nine European ALS care centers were collated. Time-to-event
analysis was conducted for key clinical milestones: symptom onset, diagnosis, gastrostomy insertion, noninvasive ventila-
tion (NIV) initiation, and survival. Independent prognostic factors were determined. Results: 21,820 people with ALS
from nine ALS centers were included. Median age of symptom onset was 63.9 years. Median diagnostic delay was 1.0
years, with median survival of 33.7 months from onset. Prognostic factors for survival included age at onset, baseline
vital capacity, progression rate, diagnostic delay, site of onset, and C9orf72-positive status. SOD1 variants D91A and
G94C had protective prognostic effects in the whole cohort. Median time from diagnosis to gastrostomy insertion in
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bulbar-onset disease was 2.34 years. Median time from diagnosis to NIV initiation in those diagnosed between 2010
and 2019 was 3.61 years. Significant differences between ALS clinical center cohorts were seen in time to gastrostomy
insertion, time to NIV initiation, and in overall survival time. Conclusion: Our analysis of a large, well-defined,
population-based European cohort provides detailed insight into the natural history of ALS, highlighting phenotypic and
genetic factors affecting time to key clinical milestones. Further study is needed to determine the drivers in observed dif-
ferences between ALS clinical center cohorts in time to clinical interventions and overall survival.

Keywords: Time-to-event, survival analysis, clinical milestones, disease trajectory, disease progression

Introduction

Heterogeneity is seen throughout the amyotrophic
lateral sclerosis (ALS) disease process, from geno-
type through to translated phenotype. An increas-
ing number of disease-associated genetic variants
interact across neuronal and non-neural cell types,
contributing to complex biological heterogeneity
(1,2). Genetic background is a key determinant of
the clinical phenotype, however observed differen-
ces in disease course between individuals seem-
ingly harboring similar genetic variants suggest
other factors, such as gene-gene interaction or epi-
genetic control, are implicated (3,4). Clinical vari-
ation in people with ALS (pwALS) occurs with
respect to age at diagnosis and site of onset, rela-
tive involvement of upper and lower motor neu-
rons, rate of disease progression, and presence of
cognitive and behavioral change.

This heterogeneity leads to difficulties in pro-
viding accurate estimates of progression to specific
ALS milestones, for example the need for gastros-
tomy insertion, or noninvasive ventilation (NIV)
initiation (4–6). Accordingly, clinical services are
reactive to the needs of pwALS rather than pro-
active, leading to delays in procedure scheduling
and equipment delivery (7,8). From a clinical trial
perspective, heterogeneity ultimately complicates
trial design. If recruited pwALS follow a variable
disease trajectory, inflated variability in measured
endpoints requires a larger sample size to mitigate
this measurement noise and effectively assess
therapeutic efficacy (9–12).

Studying the natural history of ALS can help to
provide insight into the factors that influence clin-
ical variation. Analysis of population-based data is
well placed to address this, collecting real-world
data from a large, diverse, and representative
population of pwALS. Such data have played a
crucial role in defining the breadth of disease phe-
notypes, with ALS registers providing new insights
to help accurately classify pwALS into different
clinical and prognostic subgroups which, in turn,
helps to stratify pwALS in clinical trial recruitment
(13,14). This study aims to bring together popula-
tion-based registries from across Europe, carrying
out time-to-event analysis to better understand the
trajectories pwALS follow between ALS care cen-
ters and the factors that influence the disease
course, ultimately informing clinical practice and

trials with the aim to improve outcomes for
pwALS.

Methods

Data sources and pre-processing

Data for this study originated from the
PRECISION-ALS Extant Study. In brief, nine
European specialized ALS centers comprising the
PRECISION Consortium provided data from pro-
spective population-based, or extensive clinic-based
registers. On completion of GDPR compliant data
sharing agreements, each center provided patient-
level, de-identified data on demographic and disease
characteristics obtained at diagnosis. All patients
presenting with possible, probable (laboratory sup-
ported) or definite ALS, according to the revised El
Escorial criteria, were eligible. Patients fulfilling the
criteria for Primary Lateral Sclerosis, Progressive
Muscular Atrophy or atypical ALS were excluded.
Centers provided all consecutively diagnosed
patients from the beginning of their registry until
December 2022. Complete survival data (date of
death or last follow-up) were obtained by checking
the municipal population register at three-monthly
intervals. Datasets were harmonized and combined
into a single database, together with an indicator
variable for each cohort.

Data regarding the genotype of SOD1,
TARDBP, FUS and C9orf72 genes were collected.
A pathological cutoff of 25 repeats was applied for
hexanucleotide C9orf72 expansions. SOD1-posi-
tive patients were further categorized according to
the predicted change at the protein level using the
new numbering nomenclature, that is counting the
first (ATG) codon of the sequence NP_000445.
Longitudinal follow-up of the ALS Functional
Rating Scale revised (ALSFRS-R) collected during
the disease course was collated. Delta-FS scores at
baseline were calculated as previously published
(15) utilizing ALSFRS-R scores at least six months
after disease onset.

Using the delta-FS at baseline from the entire
PRECISION ALS cohort, pwALS were stratified
in three progression categories; those with a delta-
FS below the 25th percentile (p25¼0.28) were
defined as “slow” progressors, pwALS with a
delta-FS between the 25th and 75th percentile
were considered “intermediate” progressors, and
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those with a delta-FS over the 75th percentile
(p75¼0.91) were deemed “fast” progressors.

Outcome data were available for the following
clinical milestones: onset of symptoms, diagnosis,
NIV initiation, gastrostomy insertion, and death.
Time to initiation of NIV was also derived from
ALSFRS-R scores and used as a proxy for missing
data where appropriate. Vital capacity at baseline
was defined as either a forced vital capacity or a
slow vital capacity assessment available from the
first six months following diagnosis (16,17).

Clinical phenotypes as reported by cohorts
were harmonized into the following categories:
ALS, ALS/FTD, FTD, PLS, PMA, PBP, UMN-
or LMN- predominant, flail-arm and flail-leg dis-
ease. Data on site of onset were harmonized into
the following categories: bulbar, spinal, cognitive,
respiratory, or generalized. pwALS diagnosed with
FTD were classified as having cognitive onset.
Generalized disease was defined as the presence of
symptoms in two or more domains at onset.

Data were aggregated for pwALS regarding
sex, age at onset, elapsed time between symptom
onset and time of diagnosis (diagnostic delay),
delta-FS at diagnosis, clinical phenotype, genetic
status for C9orf72, SOD1, TARDBP or FUS, and
percentage predicted vital capacity at baseline.
Data on time of diagnosis was not available for
pwALS from three clinical cohorts.

Statistical analysis

All analyses, including imputation, were performed
using R (version 4.3.2) (18).

Survival analysis. Kaplan-Meier analysis on time
from birth to onset of clinical symptoms, from
symptom onset to diagnosis, and from diagnosis to
clinical milestones, were produced using the sur-
vival package (version 3.5-8) (19). pwALS were
censored when lost to follow-up, or after a prespe-
cified maximum observation time of 100 years for
symptom onset, 10 years from onset to time of
diagnosis, and 10 years from time of diagnosis to
other clinical milestones.

SOD1-positive patients were grouped by their
specific mutation. Their survival was compared
against that of patients with no known mutation.
Only SOD1 variants with at least 3 observed cases
are reported.

Imputation. To prepare the dataset for Cox sur-
vival analysis, multiple imputation by chained
equations was performed on the dataset using the
mice package (version 3.16.0) (20). Imputation
quality was assessed visually; density plots com-
pared the distribution of observed and imputed
values for continuous variables, and the distribu-
tion of continuous variables across categorical vari-
ables. The frequency of missing data, along with

the variables imputed and distributions of observed
and imputed values are available in e-Methods.

Cox survival analysis. To determine independ-
ent prognostic factors for time to clinical mile-
stones from diagnosis, mixed-effects Cox
proportional hazards regression analysis (21) was
performed using the coxme package (version 2.2-
18.1) (22). Effect estimates were pooled among
the imputed datasets using Rubin’s rules (23). The
proportional hazards assumption was assessed by
visual inspection of the Schoenfeld residuals of
pooled analyses. Description of how variables were
handled in the analysis is available in e-Methods.
To limit the effect of data/concept drift (24), likely
in part due to the advent of widespread NIV use
during our dataset lifespan (1990–2022), only
pwALS diagnosed from 2010 onwards were
included in the analysis. Consequently, pwALS
from the three clinical cohorts not reporting date
of diagnosis could not be included. Analysis com-
paring the “whole” cohort and post-2010 cohort is
available in e-Table 1 in Supplementary Material.

To investigate differences in time to clinical
milestones between cohorts from each ALS clinical
center, stratified Cox proportional hazards regres-
sion analysis was performed using the survival
package (version 3.5-7) (19). As in the mixed-
effects analysis above, only pwALS diagnosed from
2010 onwards were included, effect estimates were
pooled, and the proportional hazards assumption
was assessed by means of visual inspection of
Schoenfeld residuals. Detail of stratification and
included covariates is available in e-Methods.

Given the relatively small number of SOD1-
positive patients available in each cohort using the
aforementioned criteria, data on survival by SOD1
mutation was analyzed by means of non-stratified
Cox proportional hazards regression with only sex,
age at onset and site of onset as covariates, in con-
cordance with most published literature.

In our analysis of NIV use, we assessed the
vital capacity at which pwALS started NIV. In this
analysis, we used the % predicted values for forced
vital capacity and slow vital capacity interchange-
ably (16,17), taking the vital capacity measurement
closest to the time of NIV initiation, with a time
window of up to six months.

Results

Cohort

Time-to-event data were available in 21,820
pwALS from nine European care centers (Table 1).
The cohort total aggregated follow-up time was
61,884 person-years from symptom onset, with a
median follow-up time per pwALS of 2.68 years
(IQR ¼ 2.64 years). There was a male cohort pre-
dominance, with a 1.35: 1 ratio of males-to-females.
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Spinal-onset disease was seen in 62.3% of individu-
als, with bulbar-onset in 27.8%. C9orf72 was the
most common gene mutation seen; of those tested,
8.9% were C9orf72-positive, 2.9% SOD1-positive,
1.6% TARDBP-positive, and 0.8% FUS-positive.

Time to clinical milestones

Symptom onset. The median age at symptom
onset was 63.9 years (95% CI: 63.7–64.0). Age at
onset was earlier in males and in those with spinal-
onset disease, a known gene mutation, and slow
progressors, as defined by the delta-FS (Table 2).

Diagnostic delay. Median diagnostic delay across
the cohort was 1.00 years (95% CI: 1.00–1.00).
Diagnostic delay was longer in spinal- and cogni-
tive-onset disease, and in those with slow and
intermediate disease progression (Table 2).

Overall survival. Median time from onset to
death was 2.81 years (95% CI: 2.77–2.85).
Survival time was shorter in pwALS who were
female, had bulbar-, respiratory-, or generalized-
onset disease, a fast progression rate, or C9orf72-
positive status (Table 2).

To explore factors influencing survival time
from diagnosis, we carried out a mixed-effects Cox
proportional hazards regression analysis.
Independent negative prognostic effects were seen
for increasing age at onset, lower baseline vital
capacity, faster disease progression, shorter diag-
nostic delay, bulbar- and generalized-onset disease,
and C9orf72-positive status (Tables 3, 4 and 5).

At a group-level, we did not observe a signifi-
cant prognostic effect for SOD1-positive status
(Table 3). We hypothesized this finding may, in
part, be due to our cohort reflecting the known
heterogeneity within Europe in SOD1 variants and
resulting phenotypes (25–29), with relatively
aggressive and benign variants potentially canceling
respective effects on survival. To investigate this,
we carried out exploratory Cox proportional haz-
ards analyses. In the cohort used for the above
group-level Cox proportional hazards analysis (i.e.
those diagnosed since 2010), SOD1 variant data
was available for 19 pwALS, with 11 individual
variants identified (e-Table 2in Supplementary
Material). Neither of the two variants observed in
at least three cases were found to have a significant
effect on overall survival (Table 4).

Broadening the SOD1 cohort to include those
diagnosed prior to 2010, SOD1 variant data was
available for 73 pwALS, with 28 individual variants
identified (e-Table 3). Applying the same sample size
threshold, D91A (HR 0.381; 95% CI: 0.190–0.762)
and G94C (HR 0.374; 95% CI: 0.178–0.785)

Table 1. Demographic and clinical characteristics of cohort,
with frequency of missing data.

Characteristic n (%) Missing (%)

Sex Male 12,455 (57.1) 163 (0.7)
Female 9202 (42.2)

Site of onset Spinal 13,583 (62.3) 1401 (6.4)
Bulbar 6061 (27.8)
Respiratory 441 (2.0)
Cognitive 23 (0.1)
Generalized 311 (1.4)

Genetics C9orf72 þve 866 (8.9)a 12,138 (55.6)
SOD1 þve 149 (2.9)a 16,610 (76.1)
TARDBP þve 71 (1.6)a 17,288 (79.2)
FUS þve 36 (0.8)a 17,460 (80.0)

aRepresents pwALS with the specified genetic change as a
proportion of those tested, not taking variant information into
account.

Table 2. Median time to clinical milestones by patient characteristics.

Symptom onset Diagnosis Survival

Characteristic n (%)
Median
(95% CI) n (%)

Median
(95% CI) n events

Median
(95% CI)

Sex Male 11,453 (52.5) 63.0 (62.7–63.2) 10,474 (48.0) 1.00 (1.00–1.00) 9565 8042 2.89 (2.84–2.94)
Female 8480 (38.9) 65.2 (65.0–65.6) 7722 (35.4) 1.00 (1.00–1.00) 7150 6187 2.72 (2.67–2.77)
Missing 1887 (8.6) 3624 (16.6)

Site of onset Spinal 13,079 (59.9) 62.4 (62.1–62.7) 11,969 (54.9) 1.02 (1.00–1.04) 10,705 8892 3.17 (3.11–3.23)
Bulbar 5742 (26.3) 66.7 (66.4–67.0) 5268 (24.1) 0.89 (0.86–0.91) 5070 4590 2.31 (2.26–2.35)
Respiratory 421 (1.9) 68.6 (67.5–70.0) 393 (1.8) 1.00 (0.97–1.05) 364 308 2.47 (2.12–2.66)
Cognitive 21 (0.1) 63.0 (61.0–73.8) 14 (0.1) 1.86 (1.36–4.00) 19 16 2.86 (2.25–5.98)
Generalized 285 (1.3) 65.5 (63.7–66.8) 269 (1.2) 1.00 (0.93–1.06) 215 195 2.32 (2.14–2.67)
Missing 2272 (10.4) 3907 (17.9)

Genetics No known
mutation

18,970 (86.9) 64.2 (64.0–64.4) 17,287 (79.2) 1.00 (1.00–1.00) 15,721 13,404 2.82 (2.77–2.85)

C9orf72 þve 835 (3.8) 59.4 (58.4–60.3) 778 (3.6) 0.85 (0.80–0.94) 798 708 2.64 (2.53–2.77)
SOD1 þve 145 (0.7) 54.4 (52.2–57.9) 133 (0.6) 0.91 (0.73–1.00) 136 81 6.28 (4.19–8.51)
TARDBP 62 (0.3) 59.1 (56.0–65.1) 62 (0.3) 1.00 (0.79–1.17) 57 39 5.91 (4.54–7.50)
FUS 34 (0.2) 51.2 (44.0–63.0) 33 (0.2) 0.95 (0.59–1.22) 32 27 2.62 (2.39–4.71)
Missing 1774 (8.1) 3527 (16.2)

Progression
rate (Delta-FS)

Slowa 2212 (10.1) 60.4 (59.9–61.2) 1997 (9.2) 1.74 (1.67–1.82) 1844 1064 6.58 (6.24–6.87)
Intermediatea 4421 (20.3) 64.3 (64.0–64.8) 4099 (18.8) 1.12 (1.09–1.14) 3904 3224 3.30 (3.23–3.37)
Fasta 2210 (10.1) 67.2 (66.7–67.9) 2054 (9.4) 0.75 (0.73–0.76) 2077 1825 1.94 (1.89–1.99)
Missing 12,977 (59.5) 13,670 (62.6)

aSlow progressors (Delta-FS <0.28), intermediate progressors (Delta-FS 0.28–—0.91), fast progressors (Delta-FS >0.91); Clinical
milestones defined as: symptom onset (birth to onset of symptoms), diagnosis (onset of symptoms to diagnosis), survival (onset of
symptoms to death).
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variants were observed to have a statistically signifi-
cant protective effect on overall survival (Table 5).

Time to clinical interventions

Gastrostomy. At a whole-cohort level, there were
insufficient events to calculate median time to gas-
trostomy (e-Figure 4(a) in Supplementary
Material). Subgroup analysis demonstrated that
time from diagnosis to gastrostomy insertion in
bulbar-onset disease was 2.34 years (95% CI:
2.06–2.58). Visual inspection of Kaplan-Meier
plots (e-Figure 5(a–d) in Supplementary Material)
suggested that pwALS underwent gastrostomy
insertion earlier if they were female, had bulbar-
onset disease, were C9orf72- or FUS-positive, or
were fast progressors.

To determine independent factors influencing
time to gastrostomy insertion, we carried out a

mixed-effects Cox proportional hazards analysis.
Lower baseline vital capacity, faster disease
progression, shorter diagnostic delay, bulbar-onset
disease, female sex, and C9orf72-positive status
were independent negative prognostic factors
(Table 3).

Noninvasive ventilation. At a whole-cohort level,
there were insufficient events to calculate median
time to NIV initiation (e-Figure 4(b) in
Supplementary Material). Subgroup analysis
showed median time to NIV initiation of 3.61
years (95% CI: 3.34–3.96) in those diagnosed
between 2010 and 2019, the largest subgroup
when stratifying our cohort by period of diagnosis
(n¼ 6034). Kaplan–Meier survival plots (e-Figure

Table 3. Mixed-effects Cox proportional hazards analysis of prognostic factors for clinical milestones (gastrostomy insertion, NIV
initiation, and survival) from diagnosis.

Gastrostomy NIV Survival

Factor HR (95% CI) p Value HR (95% CI) p Value HR (95% CI) p Value

Age at onset 1.000 (0.995–1.004) 0.941 1.000 (0.996–1.004) 0.893 1.025 (1.022–1.028) <0.001
Baseline VC (% predicted) 0.995 (0.992–0.997) <0.001 0.988 (0.985–0.991) <0.001 0.992 (0.990–0.994) <0.001
Progression rate (Delta-FS)a 3.159 (2.403–4.153) <0.001 3.276 (2.556–4.199) <0.001 3.273 (2.735–3.918) <0.001
Diagnostic delaya 0.864 (0.793–0.941) <0.001 0.979 (0.916–1.046) 0.534 0.845 (0.806–0.887) <0.001
Site of onset Spinal Reference Reference Reference

Bulbar 3.594 (3.244–3.981) <0.001 1.089 (0.989–1.200) 0.083 1.172 (1.105–1.245) <0.001
Respiratory 1.139 (0.805–1.613) 0.462 1.647 (1.258–2.157) <0.001 0.951 (0.811–1.115) 0.537
Cognitive 4.519 (0.000–Inf) 0.994 0.712 (0.172–2.943) 0.639 1.820 (0.826–4.011) 0.137
Generalized 1.402 (0.720–2.727) 0.320 0.685 (0.387–1.214) 0.195 1.519 (1.186–1.944) 0.001

Sex Male Reference Reference Reference
Female 1.128 (1.023–1.245) <0.001 0.862 (0.789–0.940) <0.001 1.049 (0.994–1.107) 0.080

Genetics C9orf72 þve 1.293 (1.099–1.521) 0.002 1.005 (0.847–1.193) 0.951 1.166 (1.052–1.292) 0.003
SOD1 þve 0.725 (0.469–1.123) 0.148 0.799 (0.509–1.255) 0.324 0.847 (0.614–1.167) 0.302
TARDBPþ ve 0.695 (0.366–1.321) 0.267 1.084 (0.655–1.795) 0.752 0.810 (0.645–1.221) 0.313
FUSþ ve 0.743 (0.366–2.828) 0.662 0.809 (0.280–2.339) 0.695 1.187 (0.645–2.185) 0.580

Note: Baseline VC¼ either a forced vital capacity or a slow vital capacity assessment within six months of diagnosis.
aNormalised by means of cubic root.

Table 4. Cox proportional hazards analysis of prognostic
factors for overall survival from time of onset, in those
diagnosed since 2010.

Survival

Factor HR (95% CI) p Value

Age at onset 1.029 (1.027–1.032) <0.001
Site of onset Spinal Reference

Bulbar 1.497 (1.409 0–1.590) <0.001
Respiratory 1.283 (1.101–1.496) 0.001
Cognitive 1.581 (0.753–3.321) 0.226
Generalized 1.778 (1.390–2.273) <0.001

Sex Male Reference
Female 1.011 (0.955–1.069) 0.712

SOD1 varianta D77Y 0.546 (0.136–2.184) 0.392
I114T 1.143 (0.428–3.050) 0.789

aCox proportional hazards analysis including SOD1 variants in
which at least three cases were present in the population
studied.

Table 5. Cox proportional hazards analysis of prognostic
factors for overall survival from time of onset, including those
diagnosed pre-2010.

Survival

Factor HR (95% CI) p Value

Age at onset 1.027 (1.025–1.028) <0.001
Site of onset Spinal Reference

Bulbar 1.524 (1.467–1.584) <0.001
Respiratory 1.344 (1.196–1.510) <0.001
Cognitive 1.144 (0.700–1.868) 0.591
Generalized 1.289 (1.116–1.490) <0.001

Sex Male Reference
Female 1.001 (0.966–1.037) 0.956

SOD1 varianta A90V 0.848 (0.212–3.393) 0.816
D77Y 0.516 (0.129–2.062) 0.349
D91A 0.381 (0.190–0.762) 0.006
G94C 0.374 (0.178–0.785) 0.009
I114T 1.139 (0.512–2.537) 0.750

aCox proportional hazards analysis including SOD1 variants in
which at least three cases were present in the population
studied.
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6(a–c) in Supplementary Material) showed NIV
was initiated at an earlier stage in those with
respiratory- or bulbar-onset, fast progressing dis-
ease, or FUS-/C9-positive status.

Mixed-effects Cox proportional hazards ana-
lysis was used to investigate independent prognos-
tic factors. We observed independent, negative
prognostic effects for reduced baseline vital cap-
acity, faster disease progression, respiratory-onset
disease, and female sex (Table 3).

Time-to-event analysis comparing clinical cohorts

To determine if there were significant differences
in time to clinical milestones between the cohorts
of the nine ALS clinical centers, we carried out
stratified Cox proportional hazards analysis,
accounting for differences between the different
clinical cohorts in terms of sex, age of onset, site
of onset, progression rate (delta-FS) at baseline,
vital capacity at baseline, and genetic status.

Diagnostic delay. We observed significant differ-
ences in time from symptom onset to diagnosis
between cohorts (Table 6). With cohort 1 as a ref-
erence, those in cohort 6 had a shorter diagnostic
delay (HR 0.700, 95% CI: 0.632–0.775), with
those in cohort 8 a longer delay (HR 1.391, 95%
CI: 1.269–1.526).

Gastrostomy. We observed significant differences
in time to gastrostomy insertion between clinical
cohorts (Table 6). pwALS from cohorts 8 (HR
1.905, 95% CI: 1.591–2.281) and 9 (HR 1.370,
95% CI: 1.150–2.632) underwent gastrostomy
insertion more readily, when using cohort 1 as a
comparator.

NIV. With time to NIV initiation, we again
observed differences between clinical cohorts
(Table 6). When compared to cohort 1, NIV was
started more readily in cohorts 6 (HR 2.092, 95%
CI: 1.719), 7 (HR 2.186, 95% CI: 1.860–2.570),
and 8 (HR 2.107, 95% CI: 1.786–2.485), and less
readily in cohort 9 (HR 0.744, 95% CI: 0.625–
0.886).

In interpreting the observed differences in time
to NIV between cohorts, we examined the percent-
age of each cohort initiated on NIV and the vital
capacity at which this was done. We observed sub-
stantial differences between clinical centers in the
proportion started on NIV (Table 7), however
there was no statistically significant difference in
the vital capacity at which NIV was initiated
between clinical centers (Figure 1, Table 7).

Survival. Having observed differences in time to
clinical interventions between the cohorts of ALS
clinical centers, coupled with the known survival
benefit of NIV use (30), we carried out prelimin-
ary analysis to determine if differences in overall
survival were seen. We did ultimately observe

differences in overall survival between cohorts
(Table 6), though this did not cleanly map to the
differences in time to NIV observed.

Discussion

This study presents time-to-event analysis for the
largest, multi-center European cohort to date, com-
piled via the PRECISION-ALS collaboration.
Access to this population-based cohort has provided
detailed insight into the natural history of ALS in
Europe, highlighting phenotypic and genetic factors
impacting upon time to key clinical milestones.

In our cohort, we observed a male-to-female
ratio of 1.35 and peak onset of symptoms in the
7th decade of life. This aligns with previously pub-
lished data describing the timing of symptoms (6)
and male predominance of the disease (31),
though it is worth noting that the extent of this
predominance has been shown to vary with the
age of the population under study (31).

Of those tested in our cohort, 8.9% were
C9orf72-positive, 2.9% SOD1-positive, 1.6%
TARDBP-positive, and 0.8% FUS-positive.
Epidemiological studies carried out in Asia typic-
ally show C9orf72 repeat expansions to be rela-
tively rare compared to Caucasian populations,
with SOD1 mutations more frequent (32). Since
the proportion of those with a family history of
ALS was not captured in our study, it is not pos-
sible to draw comparisons on the frequency of
these mutations in familial or sporadic populations
(1,33,34). What is clearer, however, is that genetic
testing information was available for only a minor-
ity of our multi-center European cohort. Large-
scale study of genetic testing in ALS has shown
the importance of broadening its availability,
ensuring that age of onset and the presence of
family history are not barriers to access, especially
in the age of targeted genetic therapies (33,35).

The median diagnostic delay of 12 months
observed in our cohort also aligns with previous
pooled data (36,37). Diagnostic delay in other popula-
tions, such as in the US, has both been reported to be
substantially shorter (38) and longer (39) than in our
European cohort. However, this may in part reflect
studies sampling differing US populations in the con-
text of the broad inequity in access to healthcare (40).
Spinal-onset ALS has been noted to experience longer
diagnostic delay than bulbar-onset disease, likely
owing to the increased likelihood of referral to a non-
neurologist and undergoing additional diagnostic test-
ing (39). Whilst we did observe this trend in our data,
the difference was substantially less pronounced than
reported previously (39).

We verified several reported prognostic factors
for overall survival, namely age at symptom onset,
bulbar-onset disease, shorter diagnostic delay, faster
disease progression (as measured by the delta-FS),

Mapping the natural history of amyotrophic lateral sclerosis 13



C9orf72-positive status, and lower baseline vital cap-
acity (6,41,42). Our cohort median survival time of
33.7 months aligns with the range previously pub-
lished, further highlighting the representation of our
multi-center European cohort (43).

At a group level, we did not identify an inde-
pendent prognostic effect for SOD1-positive status.
In pwALS diagnosed after 2010, we did not observe
any SOD1 variants with significant impact on prog-
nosis. When including a broader cohort, however,
D91A and G94C variants were observed to have a
significantly protective prognostic effect, as has been
described previously (44). This was likely not borne
through in our post-2010 cohort given a reduction
in sample size and resulting statistical power.

Significant differences between ALS clinical
center cohorts were observed in our data in time
to gastrostomy insertion, NIV initiation, and over-
all survival. To determine whether these differen-
ces were driven by phenotypic variance between
geographies, our analysis accounted for phenotypic
prognostic factors. Time-to-event differences
between cohorts continued to be observed, how-
ever further study is needed to investigate if yet
unidentified divergence between cohorts in factors
such as the ALS exposome or underlying genetic
variants may be responsible (45). It is also impor-
tant to consider that variance in clinical practice
may be involved. Potential factors may include dif-
fering thresholds for initiating clinical interven-
tions, differing waiting times for clinical
procedures and services, differing access to special-
ized care between healthcare systems, or differing
cultural and societal views and preferences toward
specific clinical interventions, for example. Future
work investigating the drivers behind these differ-
ences between cohorts will likely inform consensus
guidelines ensuring parity in ALS care across
Europe (46). Such work will also inform future
clinical trial protocols, where variation in the use
of clinical interventions known to have an effect on
survival, such as NIV, may affect trial results if not
used homogeneously within a trial population.
Defining an expected standard of care with criteria
for NIV initiation and, perhaps, nutritional targets,
would mitigate this potential bias.

Our study has several limitations, many of
which are inherent to secondary data analysis.
Firstly, despite extensive effort to harmonize the
multi-center cohort, there is inevitably variance in
data acquisition between ALS centers, including
for example the method of case identification, data
completeness, or definition of disease states/pheno-
types. In data cleaning, these differences necessi-
tate the identification of a common denominator
across cohorts to enable comparison, likely causing
a dilution in data granularity and utility.

Secondly, several known prognostic factors were
not systematically collected or available in these T
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extant datasets, which date back as far as the early
1990s. Examples of this are the lack of cognitive
assessment and height/weight/BMI data, despite
these factors being recognized as prognostic factors
in time to key clinical milestones, such as gastros-
tomy insertion and overall survival (6,47,48).

Thirdly, our multi-center, population-based
dataset had significant data missingness. To miti-
gate this, we used multiple imputation prior to our
Cox survival analysis. We also restricted the dataset
for this analysis to those diagnosed after 2010, given
the reduced degree of missingness and changes in
ALS management (30). As a result, our cohort was
both smaller in size (n¼ 8210 vs 21,820) and
imputed, however we argue a cohort diagnosed after
2010 is likely more representative of those seen and
treated in ALS care centers today. Future work will
benefit from the availability and completeness of
multi-modal, prospectively collected data that are
harmonized and coordinated in their collection
across geographies. The integrated data platform
disseminated across Europe by the PRECISION-
ALS consortium is an example of this, demonstrat-
ing the power that uniformly collected, granular
clinical data has in unraveling the unknowns in the
natural history of ALS (49).

It has previously been identified that there is sig-
nificant variation in the ALS phenotype between geo-
graphical areas and admixed populations (50–55).
Whilst this study has comprehensively examined the
European ALS population, future work bringing
together population-based data across geographic
regions will help in understanding the differences and
factors driving difference between populations, in turn
facilitating a deeper understanding of and prognostica-
tion within diverse clinic populations.

Acknowledgments

Biogen had the opportunity to review the
manuscript as part of the peer review process.
The authors retained full editorial control of the
manuscript throughout the drafting and reviewing
process. The authors would like to thank the
people with MND who provided their data for this
study by consenting to their inclusion.

Ethical approval

All procedures and methodologies were in
accordance with the ethical guidelines and
standards of the institutional and national ethics

Table 7. Proportion of each ALS clinical center cohort initiated on NIV and vital capacity threshold at which NIV was initiated.

Cohort from ALS clinical center (n)
NIV initiated

n (%)

Vital capacity threshold at NIV initiation, n (% of those initiated on NIV)

<50% 50–60% 60–70% >70% N/A

Cohort 1 (865) 259 (29.9) 28 (10.8) 24 (9.3) 24 (9.3) 32 (12.4) 151 (58.3) ANOVA
F¼1.093
p¼0.359

Cohort 5 (978) 272 (27.8) 41 (15.1) 28 (10.3) 26 (9.6) 56 (20.6) 121 (44.5)
Cohort 6 (724) 226 (31.2) 0 0 0 0 226 (100)
Cohort 7 (1678) 832 (49.6) 30 (3.6) 22 (2.6) 28 (3.4) 57 (6.9) 695 (83.5)
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Figure 1. Density plot demonstrating vital capacity (% predicted) at which NIV was initiated by ALS clinical center cohort.
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