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ABSTRACT

In this work, we propose a novel multi-period location-inventory
problem that assumes demand uncertainty, periodic review, back-
logging, and lead times. The problem stems from the need to strate-
gicallymanagedistribution centers (DCs) to enhance the resilienceof
the supply chain, while providing a high service level to customers.
A trade-off is sought between distribution resilience and stock-out
risks on the one hand, and financial resources on the other hand. A
progressive phase-in of the DCs is considered. The problem is cast
as a two-stage decision-making process under uncertainty. A mixed-
integer linear programming model is formulated. Two resilience
indicators are adopted to access the results of a series of computa-
tional tests. Based on the experiments, it was found that the financial
resources required to establishDCs throughout theplanninghorizon
directly affect the long-term resilience of the supply chain. Never-
theless, the model proposed in this study can ensure that the sup-
ply chain resilience remains at a satisfactory level within the given
financial resources.
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1. Introduction

With the fast development of mobile internet and e-commerce, a large number of entrants
has emerged in the market. The intense competition has increasingly pushed enterprises
to focus on strategic management aiming at enhancing supply chain resilience. This trend
has led the entrants, characterized by their pursuit of excellence in niche markets and
customer-centric approaches, to increasingly opt for establishing their own distribution
centers (DCs), thereby building their own distribution networks (Bak et al. 2020; Yavas
and Ozkan-Ozen 2020). Specifically, this strategic decision is driven by the desire of the
entrants to maintain high standards of distribution resilience, exercise direct control over
distribution processes, and align logistics operations more precisely with customer expec-
tations. A growing number of entrants are adopting this strategy. Examples include SHEIN,
Everyday Chain, Banu Hotpot, and Baman Rice Noodles, all of which have seen steady
growth in recent years (Y. Chen 2023).
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The common characteristic of the entrants mentioned above is that they are small and
medium-sized enterprises in the early stages of entry. This study specifically focuses on this
type of enterprise, which has several distinguishing characteristics compared to the estab-
lished large firms in themarket. First, they typically do not need to go through cumbersome
and time-consuming processes when making decisions. This results in shorter decision-
making cycles and a stronger ability to respond to external changes. Second, inventory
decisions are crucial for them and can easily become a critical weakness if not properly
handled. Due to relatively insufficient funds, entrants cannot stockpile large quantities of
inventory. Finally, in a highly competitive market, they often cannot occupy a dominant
position.

Inevitably, the first obstacle these entrants encounter in the process of development and
growth is limited financial resources. Managers could rely on a comprehensive plan to fully
address various potential future challenges. However, this would require a substantial one-
time investment calling for large financial resources. Often, this represents a heavy burden.
By modifying the perspective, an entrant can change its approach to continuously adjust-
ing its decisions in response to external changes and gradually invest a certain amount of
financial resources to support it. Often, due to limited financial resource management and
utilization, the latter ismore realistic and presents a highly feasible strategic path. It requires
entrants to adopt a multi-stage approach for developing and expanding their storage and
distribution networks. This calls for strategic planning and allocating financial resources
over multiple time periods (Prajogo, Mena, and Nair 2017). Such approach is crucial for
the entrants, allowing them to gradually build service capabilities in line with evolving
external demand and market dynamics (Brandenburg 2018). Furthermore, apart from the
limited financial resources, entrants face other long-standing service-related challenges,
which include demand uncertainty, lead times, and backlogging (DuHadway et al. 2020;
Kraude et al. 2018; Pavlov et al. 2017). The above mentioned uncertainty, complicates
the management of lead times and increases the risk of stock-outs if not properly han-
dled (Aldrighetti et al. 2021). Accordingly, entrants should employ strategic and adaptive
approaches when planning and managing their storage and distribution networks, seek-
ing a trade-off between high-quality service and financial commitments. To the best of
our knowledge, no previous model has addressed the multi-period location problem for
such companies while simultaneously considering demand uncertainty, periodic review,
backlogging, and lead times.

More specifically, entrants may need to find an equilibrium calling for gradually build-
ing their own DCs while operating under limited financial resources. This involves careful
planning ensuring an efficient and effective DC network that can support a growing busi-
ness without compromising service quality and financial stability. This trade-off is the
primary focus of this paper. Particularly, we seek to analyze how entrants can strategically
determine the optimal locations and timings for establishingDCswithin the existing finan-
cial resources. The study also rigorously looks into the resilience of distribution services,
including the determination of logistics links and the quantification of goods flow from
the upper level of the supply chain (factories) to DCs, and then to the lower level elements
in the chain (retailers). A pivotal aspect of this analysis involves a detailed examination of
lead time from manufacturing facilities to DCs. Concurrently, the research delves into the
implications of uncertainty demand at retail stores, necessitating a nuanced approach to
managing stock-outs in a multi-period planning context.
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A two-stage stochastic optimization model is proposed to account for the underlying
demand uncertainty. In the first stage, a strategic decision is made regarding the loca-
tion and timing of establishing DCs over multiple time periods. Additionally, within each
period, the logistics connections betweenmanufacturing factories and the establishedDCs
are determined, as well as the connections between the established DCs and retail stores.

In the second stage, i.e. after uncertain demand is disclosed, we determine the amounts
to be shipped from manufacturing factories to DCs and from the DCs to retailers. More-
over, the model is extended to account for lead times of the batches the DCs order to the
manufacturing facilities. Finally, by integrating the characteristics of the demand distribu-
tion from retail stores, we consider a finite set of scenarios that allows finding a compact
mixed-integer linear programming formulation for the deterministic equivalent problem.
The resulting model can be handled by a general-purpose optimization solver. This is of
utmost relevance for practitioners who often do not master sophisticated optimization
skills allowing them to devise and implement specially tailored algorithms for complex
problems.

It is worth noting that the goal of the investigated problem is to minimize the costs
associated with using and operating distribution centers for entrants in themarket, includ-
ing maximizing the revenue from goods distribution. In other words, this study provides
a practical distribution center operation management method for entrants, aiming to
minimize their cost expenditures and enhance the efficiency of capital utilization.

An experimental study is conducted using randomly generated data. We analyze the
scalability of the proposed model. Subsequently, we introduce two resilience evaluation
indicators specifically designed tomeasure the ratio of established DCs and the proportion
of goods delivered on time to retail stores. Finally, we report on the results of multi-
ple experiments to test the impact of financial resources available on the supply chain
resilience. In particular, we provide several useful managerial insights for entrants when
managing their distribution centers.

The main contributions of this study are summarized as follows:

(1) Taking into consideration the real-life occurrence of stock-outs, we address
a stochastic multi-period location-allocation-inventory problem under periodic
review, by developing a two-stage stochastic programming model under demand
uncertainty.

(2) We propose a targeted model extension to incorporate lead times and transform
the extended model into a mixed-integer linear programming model, enabling its
solvability by general-purpose solvers.

(3) We introduce two indicators to measure the ratio of established DCs and the pro-
portion of goods timely delivered to the retail stores. Furthermore, we analyze the
impact of the financial resources available as well as lead time in the supply chain
resilience.

The remainder of this paper is organized as follows: Section 2 presents an overview of
the literature related to the problem under investigation. Section 3 focuses on the detailed
problem description and mathematical modeling aspects. In Section 4, the targeted model
extension approach to incorporate lead times is proposed as well as the solution frame-
work. Section 5 reports the results of the numerical experiments performed to assess the
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relevance of the methodological contributions. The paper concludes with an overview of
the work done and some hints for further research.

2. Literature review

This work stems from the need to decide where and when to establish a set of distribu-
tion centers to better support the operations of a market entrant that wants to distribute
its goods, while ensuring a proper management of its financial resources. Thus, the type of
research to be conducted primarily fallswithin the field of supply chainmanagement. Addi-
tionally, since the decision-making process relies on a finite planning horizon divided into
several time periods, it also encompasses the area of multi-period facility location, which
is an important and well-established topic within location science (Nickel and Saldanha-
da Gama 2019). In this section, we provide an overview of the literature related to those
themes.

2.1. Facility location in supply chainmanagement

Facility location plays a major role in strategic supply chain planning (Melo, Nickel, and
Saldanha-da-Gama 2009). It is related to selecting locations for facilities such as factories,
warehouses, andDCs, to support different logistics operations. Typically, one seeks tomin-
imize costs while maximizing efficiency or service levels (Dunke et al. 2018; Melo, Nickel,
and Saldanha-da-Gama 2009; Saldanha-da-Gama 2022).

Given the nature of facility location problems, they plays a significant role in many
areas, such as (commercial) distribution logistics and transportation. This exerts a pro-
found influence on fields like last-mile delivery, freight transportation, and cold supply
chain design, tomention a few. Below, we review the research in these and related domains.

In the field of commercial logistics, Irawan et al. (2023) investigate a logistics problem
in the context of offshore wind turbine maintenance. The authors introduce a two-stage
stochastic programming model to optimize the service operation vessel locations and safe
transfer boat routes,minimizing totalmaintenance costs. Uncertainty regardsweather con-
ditions and travel time. Chen et al. (2023) focuses on optimizing the location of DCs by
introducing a joint demand distribution function based on time and space. A bi-objective
optimizationmodel is derived seeking tominimize total costs andmaximize customer time
satisfaction. Chang, Chiang, and Chang (2024) present a two-stage stochastic program-
ming model for a location-routing problem with the goal of minimizing the total expected
cost. Specifically, in the first stage, the locations of distribution centers and the fleet size are
determined. In the second stage, routes to fulfill demands are determined adapting to how
uncertainty reveals. Nawazish, Padhi, and Cheng (2022) investigate a multicriteria facil-
ity location model based on efficiency, effectiveness, and equity. Jabbarzadeh, Fahimnia,
and Rastegar (2017) focus on designing and implementing sustainable, efficient electricity
supply chains. They develop a multistage robust optimization model aiming to maximize
profit, minimize greenhouse gas emissions, and enhance network resilience.

In the field of freight transportation, Musolino et al. (2019) present a methodology with
two integrated levels to evaluate candidateDC locations in cities to improve the sustainabil-
ity of urban freight transport: an outer level that defines feasible DC locations and evaluates
locations based on sustainability indicators; and an inner level that, for each DC location,
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simulates carrier routing behavior in delivering goods to retailers under variable restock-
ing demand scenarios using a vehicle routing model. Guo and Matsuda (2023) investigate
the selection of DCs with two main objectives: defining the significance of criteria influ-
encing DC selection using the analytic hierarchy process and ranking pre-existing private
DCs while assessing their location tendencies. Wan, Chen, and Dong (2021) present a
bi-objective DC location model capturing uncertainty using fuzzy numbers to balance
urgency and cost by optimizing the placement of DCs for collecting and dispatching relief
materials. Pham, Nguyen, and Bui (2022) propose a mixed-integer linear programming
model for a multi-trip and multi-depot (multiple DCs) vehicle routing problem for dairy
product delivery. The authors develop an adaptive large neighborhood search algorithm
seeking to minimize the unserved demand, the number of vehicles, and the total distance
traveled.

In the context of cold chain transportation, Zhang et al. (2021) introduce a bi-level
programming model to optimize the location and scale of competitive cold chain DCs,
with the upper level minimizing total system costs and the lower level representing cus-
tomer choice behavior. Focusing on both route optimization and DC location selection,
Wang et al. (2024) develop a cold chain logistics DC location model to minimize carbon
emissions and costs, incorporating factors in terms of cargo types, transportation, cargo
damage, refrigeration costs, and penalties. Taouktsis and Zikopoulos (2024) present an
approach that seeks to better support decision-making by developing a tool that aids in the
rapid selection of optimal DC locations, addressing a facility location-routing problem to
identify suitable nodes in volatile and complex scenarios.

The application of facility location in supply chain management is currently vast. It
spans different contexts as those above described. Nevertheless, there remains a noticeable
gap in research specifically targeting supply chain management for new market entrants,
especially concerning the location selection and establishment timing of DCs looking
ahead to inventory management.

2.2. Multi-period facility location under uncertainty

Multi-period facility location is a complex topic in operations research and supply chain
management. It deals with selecting locations for installing facilities over a planning hori-
zon divided into multiple time periods. This setting is particularly relevant in industries
where demand, costs, and other factors change over time, especially when addressing
uncertain facility location problems. These changes necessitate a reevaluation of facility
locations and possibly other related factors.

As is commonly recognized, research on facility location encompasses a variety of prob-
lem types, including fixed-charge facility location, hub location, covering location, etc.
The research on these problems is gradually expanding to consider multi-period settings
(Nickel and Saldanha-da Gama 2019).

More recently, Bakker and Nickel (2024) analyze multi-period capacitated facility loca-
tion problems, weighing the flexibility of adapting decisions over time against the com-
plexity of the resulting models and need for satisfying the capacity constraints. Sauvey,
Melo, and Correia (2020) consider a multi-period facility location problem by optimally
selecting facility locations and their capacities and allocating customer demand over time.
The authors distinguish between those customers who require on-time delivery and those
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who accept delayed deliveries up to a certain threshold. The goal is to minimize the total
fixed and variable costs. Zhang et al. (2023) propose a multi-period optimization model
for planning the location of public electric vehicle charging stations and their capacities in
urban centers. Predicted spatiotemporal distributions of charging demands are adopted.
The goal is to minimize total costs across all periods while ensuring that all the predicted
demand is satisfied. Štádlerová, Schütz, and Tomasgard (2023) address a problem that con-
sists of identifying optimal locations for hydrogen production facilities and their expansion
over time in the context of maritime transportation. The goal is to minimize total cost,
which include both long-term investment and short-term variable production costs. In
the context of hub covering location problems, Khaleghi and Eydi (2023) investigate a bi-
objective nonlinear model for designing a multi-period, continuous-time hub network,
aiming to minimize costs and maximize responsiveness by reducing travel times, while
determining optimal timing for hub locations, allocations, capacity expansions, and vehicle
routing. Seeking to optimize the distribution of humanitarian aid to refugee camps, Mon-
emi et al. (2021) develop a mixed-integer linear programming model for the multi-period
hub location problem with serial demands in war-affected areas. Focusing on assigning
doctors to health centers within a district over a planning horizon with discrete periods,
Vatsa and Jayaswal (2021) study a robust capacitated multi-period maximal covering loca-
tion problem, while considering constraints related to demand coverage, facility capacity,
and server availability across various scenarios.

Analyzing the literature on multi-period facility location one concludes that not only
does it span various types of facilities and contexts but also it emphasizes integration with
operations and supply chain management. Some aspects of relevance include the existence
of multiple layers of facilities and routing decisions.

Mohamed et al. (2023) tackle a two-echelon stochastic multi-period capacitated
location-routing problem in distribution network design, aiming to determine the optimal
number and location of DCs, along with capacity allocation between the two distribution
echelons to meet future demand. Wang et al. (2023) focus on a two-echelon multi-depot
multi-period location-routing problem with pickup and delivery. The authors formulate
the problem using a bi-objective mathematical model to minimize total operational costs
and the number of vehicles required. An algorithm is proposed that is based on the combi-
nation of particle swarmoptimizationwith k-means clustering.Gafti et al. (2023) introduce
a mixed-integer linear programming model for a multi-period location-routing problem.
The problem seeks to make an optimal usage of a municipal solid waste system to feed a
bioenergy supply chain. The total cost is to be minimized. It includes waste collection,
transportation, biofuel allocation from conversion centers to consumption points, and
the establishment of new consumption points as to be minimized. Aloullal, Saldanha-da
Gama, and Todosijević (2023) present a mixed-integer linear programming model for a
multi-period hub location-routing problem, assuming that each hub has one uncapaci-
tated vehicle operating a single route for simultaneous pickup anddelivery. An approximate
algorithm based on a so-called fix-and-relax scheme is devised.

Luo, Wan, and Wang (2022) introduce a multi-period location–allocation model for
dynamically managing the deployment of emergency hospitals, allocation of medical
supplies, and patient management during epidemics, considering the dynamic arrival
of supplies, patient transfer fairness, and state transitions across different periods. Yang
et al. (2023) introduce a distributionally robust optimization model for a multi-period
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Table 1. Table of literature review.

Publication Uncertainty Lead Time Multi-period Objective Method

Bakker and Nickel (2024) × × � Maximize profits Exact solution
Sauvey, Melo, and
Correia (2020)

× × � Minimize cost Heuristic

J. Zhang et al. (2023) � × � Minimize cost Heuristic
Štádlerová, Schütz, and
Tomasgard (2023)

× × � Minimize cost Exact solution

Khaleghi and Eydi (2023) × × � Minimize cost &
travel time

Heuristic

Monemi et al. (2021) × × � Minimize cost Exact solution
Vatsa and Jayaswal (2021) � × � Maximize total

demand
Exact solution

Mohamed et al. (2023) � × � Minimize cost Exact solution
Y. Wang et al. (2023) × × � Minimize cost Heuristic
Gafti et al. (2023) × × � Minimize cost Exact solution
Aloullal, Saldanha-da Gama,
and Todosijević (2023)

× × � Minimize cost Heuristic

Luo, Wan, and Wang (2022) × × � Minimize cost Exact solution
Yang et al. (2023) � × � Minimize cost Exact solution
This paper � � � Minimize cost Exact solution

location-allocation problem, seeking to allocate multiple resources and capacity levels
under uncertain emergency demand and considering resource fulfillment time. A mixed-
integer linear program is proposed to minimize operating costs, efficiency, and equity.

From the above literature review, we conclude that multi-period facility location prob-
lem has received widespread attention from scholars and also that it has been intertwined
with various other decisions of relevance in logistics and supply chain management. How-
ever, research specifically focused onmulti-period problems gathering location, allocation,
and lead time, specifically tailored to plan for the supply chains of new market entrants
when a careful planning of DCs is at stake, has not yet been studied (see Table 1). In the
following sections, we conduct a detailed study focusing on this gap.

3. Problem description andmodel formulation

3.1. Problem description

We seek to design a multi-echelon distribution system (see Figure 1). The related facilities
include factories (at the upper level) and DCs (intermediate level). A set of retailers (lower
level) is to be supplied. Location decisions are to be made for the DCs. A set of poten-
tial locations is given. A planning horizon is assumed, which is divided into a finite set of
periods. To simplify, we assume that no DC is operating at the beginning of the planning
horizon. However, that this assumption can be easily relaxed. The factories are assumed to
have an unlimited production capacity (or at least, large enough to not cause any limitation
in the context of our system) and a single commodity is assumed.

Over the planning horizon, the DC network can be expanded, although a maximum
number of new DCs can be established in each period (e.g. due to budget or technical con-
straints). Given that for entrants with limited funds, obtaining the right to use distribution
centers through leasing is a more feasible light asset operation model, we do not consider
the construction time of distribution centers. Additionally, the possibility of facility closure
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Figure 1. The diagram illustrating the transportation of commodities from themanufacturing factories
to retail stores within a certain time period.

is not considered. In other words, once a facility at a particular location is selected to be
opened in some period, it will remain open until the end of the planning horizon.

In each period of the planning horizon, the commodity flows from the factories to the
DCs and from these to the retailers. Single sourcing is assumed, i.e. a DC is supplied from
a single factory, and a retailer is supplied from a single DC. Note, however, that the assign-
ment can change over time. We assume that the transportation capacity from the factories
to the DCs is unlimited, and also that the DCs can maintain an unlimited inventory from
one time period to the following one.

The above assumptions are of practical relevance in many settings and thus can be
found inmuch related literature (seeNickel and Saldanha-daGama 2019 and the references
therein). In these references, the authors provide a detailed related discussion, and inter-
ested readers can delve deeper to find that the above assumptions are commonly shared by
researchers.

However, to better reflect potential real-world operations, we assume that backlogging
and lead time are allowed. This means that during stock-outs, retailers may experience
temporary shortages, but the missing quantities will be fulfilled at a later period. Addition-
ally, orders require a certain lead time. To make the model easier to understand, we first
address the case without lead time, and then, in Subsection 3.3, we introduce it.

The financial dynamics of such a system are driven by a variety of costs and revenues.
They include the cost of installing (e.g. renting) DCs, as well as the associated costs of
allocating retail stores to these DCs, which encompass transportation expenses. Moreover,
an order issued by a DC to be supplied by its allocated factory incurs fixed costs, as well
as variable costs (dependent on the batch size). We also consider holding costs at the DCs.
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In terms of revenues, each unit being transported from the DC to a retailed generates an
income, whichmay vary depending onwhether the delivery is timely or comeswith a delay.

It is noteworthy that a significant unknown quantity in our problem is the demand level
per period at the retailers. Given the nature of such short-term uncertainty we assume it
to be fairly well represented by a random variable with a given cumulative distribution
function (Correia and Saldanha-da Gama 2019). We assume demands across retailers to
be independent.

The primary objective of the problem is overall cost minimization while ensuring
demand satisfaction. The decisions in this context are time-dependent and concern three
aspects: location, allocation, and inventory. They include (i) when andwhere to install DCs,
(ii) how to allocate the operational DCs to the factories, (iii) how to assign retail stores to
the operational DCs, (iv) when to replenish the DCs, (v) the supply quantities that DCs
should receive, (vi) the inventory levels that DCs should retain for the next period, (vii)
the inventory quantities that retail stores should receive on time, and (viii) the backlogged
quantities.

3.2. Model formulation

The location-allocation-inventory problemunder demand uncertainty outlined in the pre-
vious section can be formulated mathematically as a two-stage stochastic optimization
problem. In the first stage, the focus is put on location and allocation decisions – where
and when to install DCs, and how to allocate them to the factories and the retailed to them.
In the second stage, adaptive inventory management decisions are made –managing stock
levels, order quantities, and distribution strategies to retailers. As the name indicates, these
decisions adapt to how demand is revealed. It is worth noting that we place allocation deci-
sions in the first stage because, given the uncertainty considered in this study, it cannot be
guaranteed that the service level will be met 100% in each period. Therefore, the allocation
decisions represent a more strategic or tactical decision made beforehand to ensure that
some facilities are established to meet potential demand.

To formulate the problem we introduce the relevant notation to be used hereafter.

Sets:

K, set of factories.
I, set of candidate distribution centers (DCs).
J, set of retail stores.
T, set of time periods.
Tt , subset of time periods that includes all periods from period 1 to t, i.e., Tt =

{1, 2, . . . , t}.

Parameters:

Fit , fixed cost for installing aDC at i ∈ I in period t ∈ T, plus any other related costs,
e.g. operation) from period t until the end of the planning horizon.

C1
ikt , cost for having DC i ∈ I allocated to factory k ∈ K in period t ∈ T.

C2
ijt , cost for having DC i ∈ I allocated to retailer j ∈ J in period t ∈ T.

nt , maximum number of DCs that can be installed in period t ∈ T.
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gikt , fixed cost incurred by DC i ∈ I for placing an order at factory k ∈ K at (the
beginning of) period t ∈ T.

aikt , unit cost incurred by DC i ∈ I when placing an order at factory k ∈ K at (the
beginning of) period t ∈ T.

hit , unit holding cost at DC i ∈ I for the amount left in stock at (the end of) period
t ∈ T.

pijts, unit revenue for the items sent to retailer j ∈ J from DC i ∈ I in period t ∈ T to
satisfy the demand from period s ∈ Tt .

First-Stage Decision Variables:

yit =

{

1, if DC i ∈ I is operating in period t ∈ T,

0, otherwise.

wikt =

{

1, if DC i ∈ I is supplied from factory k ∈ K in period t ∈ T,

0, otherwise.

xijt =

{

1, if DC i ∈ I supplies retail store j ∈ J in period t ∈ T,

0, otherwise.

The problem we are investigating can be formulated as follows:

minimize
∑

t∈T

∑

i∈I

Fit(yit − yi,t−1) +
∑

t∈T

∑

i∈I

∑

k∈K

C1
iktwikt

+
∑

t∈T

∑

i∈I

∑

j∈J

C2
ijtxijt +Q(w, x, y), (1)

subject to
∑

i∈I

(yit − yi,t−1) ≤ nt , ∀t ∈ T, (2)

yit ≥ yi,t−1, ∀i ∈ I, t ∈ T, (3)
∑

i∈I

xijt = 1, ∀j ∈ J, t ∈ T, (4)

xijt ≤ yit , ∀i ∈ I, j ∈ J, t ∈ T, (5)
∑

k∈K

wikt = yit , ∀i ∈ I, t ∈ T, (6)

xijt ∈ {0, 1}, ∀i ∈ I, j ∈ J, t ∈ T, (7)

wikt ∈ {0, 1}, ∀i ∈ I, k ∈ K, t ∈ T, (8)

yit ∈ {0, 1}, ∀i ∈ I, t ∈ T. (9)

Since no DC is initially operational, we set yi0 = 0,∀i ∈ I. Nevertheless, these values can
change according to other initial settings, namely if we are planning for a system that is
currently operational, i.e., a rolling horizon planning can be easily considered.

In the above model, inequalities (2) ensure that the maximum number of DCs that can
be installed at each period is not surpassed, while inequalities (3) guarantee that a DC
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will be working all the subsequent periods from the moment it is installed. Equalities (4)
and inequalities (5) ensure that in each period each retailer is supplied from a single and
operational DC. Equalities (6) ensure the single allocation of operational DCs to factories
in each period. Constraints (7)–(9) define the domain of the decision variables.

The first term of the objective function (1) represents the total cost of opening and oper-
atingDCs. The second term is the total cost of allocating theDCs to the factories. The third
term is the total allocation cost of retailers to DCs. The fourth term represents the financial
consequence in the future for making the decision conveyed by the first-stage variables. If
we assume a neutral attitude of the decision-maker towards risk, that consequence can be
represented by the expected total inventory costs given a first-stage decision.

Let ξ = [ξ jt](j∈J,t∈T) be the random process describing the demand throughout the
planning horizon. For each j ∈ J, t ∈ T, ξ jt is a randomvariable representing the demand of
retailer j in period t. Therefore we defineQ(w, x, y) = Eξ [Q(w, x, y; ξ)], withQ(w, x, y; ξ)

standing for the second-stage objective function value under scenario ξ .
As we mentioned above, the second-stage decisions are adaptive i.e. they adjust to the

actual demand observed.
Second-stage decision variables:

rikt(ξ) =

{

1, if D + i ∈ I places an order at factory k ∈ K at the beginning of period

t ∈ T, 0, otherwise.
qikt(ξ), the quantity that DC i ∈ I receives from factory k ∈ K at the beginning of period

t ∈ T.
uit(ξ), the quantity that remains in DC i ∈ I at the end of period t ∈ T.
vijts(ξ), the quantity that DC i ∈ I sends to retail store j ∈ J in period t ∈ T to satisfy their

demand at period s ∈ Tt .

For each observation ξ̂ of ξ we can now specify the second-stage optimization problem.

Q(w, x, y; ξ̂) = min
∑

t∈T

∑

k∈K

∑

i∈I

(

gikt rikt(ξ̂) + aikt qikt(ξ̂)
)

+
∑

t∈T

∑

i∈I

hituit(ξ̂)

−
∑

t∈T

∑

s∈Tt

∑

j∈J

∑

i∈I

pijtsvijts(ξ̂), (10)

s.t.
∑

k∈K

qikt(ξ̂) + ui,t−1(ξ̂) = uit(ξ̂) +
∑

j∈J

∑

s∈Tt

vijts(ξ̂),

∀i ∈ I, t ∈ T, (11)

qikt(ξ̂) ≤ M rikt(ξ̂), ∀i ∈ I, k ∈ K, t ∈ T, (12)

rikt(ξ̂) ≤ wikt , ∀i ∈ I, k ∈ K t ∈ T, (13)

uit(ξ̂) ≤ M yit , ∀i ∈ I, t ∈ T, (14)

vijtt(ξ̂) +
∑

s∈T\Tt

vijst(ξ̂) ≤ M xijt ,

∀i ∈ I, j ∈ J, t ∈ T, (15)
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∑

i∈I

⎛

⎝vijtt(ξ̂) +
∑

s∈T\Tt

vijst(ξ̂)

⎞

⎠ = ξ̂jt ,

∀j ∈ J, t ∈ T, (16)

rikt(ξ̂) ∈ {0, 1}, ∀i ∈ I, k ∈ K, t ∈ T, (17)

qikt(ξ̂) ≥ 0, ∀i ∈ I, k ∈ K, t ∈ T, (18)

uit(ξ̂) ≥ 0, ∀i ∈ I, t ∈ T, (19)

vijts(ξ̂) ≥ 0, ∀i ∈ I, j ∈ J, t ∈ T, s ∈ Tt . (20)

Since no DC is initially operating, we set ui0(ξ̂) = 0, ∀i ∈ I. Nevertheless, as discussed for
the first-stage problem, a different status quo can be easily accommodated.

In the second-stage model, the first term of the objective function (10) represents the
total cost of batch orders, encompassing both fixed and variable costs. The total holding
cost paid at the DCs is represented by the second term in the objective function. The last
term reflects the total revenue generated from supplying the retailers.

Equalities (11) are the inventory-balance constraints. Inequalities (12) guarantee that,
for each period, a DC can be replenished from amanufacturing factory only if an order was
placed in that same period.M is a large enough number. Inequalities (13) ensure that a DC
can only place an order to a factory if it is allocated to it in the same period. Inequalities (14)
state that, for each period, aDC can only hold inventory if it is operational. Inequalities (15)
guarantee that a DC can only supply a retailer in some period if the latter is allocated to the
former in that period. Equalities (16) ensure that all demand is supplied over the planning
horizon. Constraints (17)–(20) define the domain of the decision variables.

3.3. Handling lead times

The two-stage stochastic programming model just proposed considers stock-outs and
the related backlogging but does not consider lead time from manufacturing factories to
DCs.When lead time becomes non-negligible, adjustments are needed in the second-stage
model. Particularly, modifications are required in some decision variables, thus resulting
in a targeted model extension approach as follows.

Let ρt be the number of base units in which a period is divided (e.g. days when a period
is a week; weeks when a period is a month, etc). Denote by likt the lead time (in base time
units) associated with factory k ∈ K when getting an order from DC i ∈ I in (the begin-
ning of) period t ∈ T. Accordingly,�ikt = ⌊ likt

ρt
⌋ is the number of periods it takes an order

placed at the beginning of period t to arrive to DC i ∈ I frommanufacturing factory k ∈ K

(see Figure 2). Thus, Tik = {t + �ikt ∈ T : t ∈ T} is the period at which DC i ∈ I receives
the order.

Although there is no need to consider additional decision variables, those associated
with the factories need modification. In the case of variables rikt(ξ), they retain the same
meaning, but now t ∈ Tik instead of t ∈ T. In addition, the variables qikt(ξ) are nowdefined
as follows:
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Figure 2. Comparison between the moment an order is placed (beginning of period t) and the time of
replenishment without lead times (a), and with lead times (b).

qikt(ξ), the quantity DC i ∈ I receives from manufacturing factory k ∈ K during period
t ∈ Tik from an order placed in the beginning of period t − �ikt under demand
scenario ξ .

To simplify notation, we now consider qikt(ξ) = 0, ∀i ∈ I, k ∈ K, t ∈ T\Tik. This way,
qikt(ξ) is defined for all the periods of the planning horizon.

Regarding the first-stage problem, no change is needed. Regarding the second-stage one,
given that neither the objective function nor the constraints suffer major alterations, their
meaning remains the same. Nevertheless, the formulation needs changing as follows (ξ̂
keeps denoting an observation of ξ ):

Q(w, x, y; ξ̂) = min
∑

t∈Tik

∑

k∈K

∑

i∈I

(

gik,t−�ikt
rik,t−�ikt

(ξ̂) + aik,t−�ikt
qikt(ξ̂)

)

+
∑

t∈T

∑

i∈I

hituit(ξ̂) −
∑

t∈T

∑

s∈Tt

∑

j∈J

∑

i∈I

pijtsvijts(ξ̂), (21)

s.t.
∑

k∈K

qikt(ξ̂) + ui,t−1(ξ̂) = uit(ξ̂) +
∑

j∈J

∑

s∈Tt

vijts(ξ̂),

∀i ∈ I, t ∈ T, (22)

qikt(ξ̂) ≤ M rik,t−�ikt
(ξ̂), ∀i ∈ I, k ∈ K, t ∈ Tik (23)

rik,t−�ikt
(ξ̂) ≤ wik,t−�ikt

, ∀i ∈ I, k ∈ K, t ∈ tik (24)

uit(ξ̂) ≤ M yit , ∀i ∈ I, t ∈ T (25)

vijtt(ξ̂) +
∑

s∈T\Tt

vijst(ξ̂) ≤ M xijt ,

∀i ∈ I, j ∈ J, t ∈ T (26)
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∑

i∈I

⎛

⎝vijtt(ξ̂) +
∑

s∈T\Tt

vijst(ξ̂)

⎞

⎠ = ξ̂jt ,

∀j ∈ J, t ∈ T (27)

rikt(ξ̂) ∈ {0, 1}, ∀i ∈ I, k ∈ K, t − �ikt ∈ Tik, (28)

qikt(ξ̂) ≥ 0, ∀i ∈ I, k ∈ K, t ∈ Tik (29)

uit(ξ̂) ≥ 0, ∀i ∈ I, t ∈ T (30)

vijts(ξ̂) ≥ 0, ∀i ∈ I, j ∈ J, t ∈ T, s ∈ Tt . (31)

4. Compact reformulations

Abstracting a problem into a model is one thing, but reality is another. In practice, it is
unrealistic to think that we accurately know the future demands of retail stores in actual
operational processes. However, in the era of big data and artificial intelligence, it is rea-
sonable to assume that we can define a set of potential demand scenarios and estimate
their likelihood of occurrence using powerful forecastingmethods. This forms the primary
foundation for the approach we use to solve the problem under investigation. Therefore,
we did not adopt robust optimization methods to handle the uncertainty in this study. In
other words, we consider a representative sample of the underlying stochastic process.

In the two-stage stochastic mixed-integer linear models introduced previously, ξ is a
|J| × |T| random matrix. Recall that each entry ξ jt is a random variable representing the
demand of retailer j ∈ J in period t ∈ T. Let� be the finite set of demand scenarios elicited
as representing the support of the random matrix. For each scenario ω ∈ �, there is a
matrix ξω, where each entry ξω

jt is the demand of retailer j ∈ J at period t ∈ T under that
scenario. Let parameter πω denote the probability that demand scenario ω ∈ � occurs,
where πω > 0, ∀ω ∈ �, and

∑

ω∈� πω = 1.
Due to these considerations, the two-stage stochastic models above introduced can

be reformulated as compact mixed-integer linear programming models – the so-called
extensive forms of the corresponding deterministic equivalents. Notice that only the
second-stage decision variables and the constraints involving the randommatrix ξ require
changing.

We start by ignoring lead times. Consider the following redefinition of the second-stage
variables:

rωikt =

⎧

⎪

⎨

⎪

⎩

1, if DC i ∈ I places an order at factory k ∈ K in the beginning of period

t ∈ T under demand scenario ω ∈ �,

0, otherwise
qω
ikt , quantity DC i ∈ I receives from manufacturing factory k ∈ K in the beginning

of period t ∈ T under demand scenario ω ∈ �.
uω
it , quantity that remains in DC i ∈ I at the end of period t ∈ T under demand

scenario ω ∈ �.
vω
ijts, quantity DC i ∈ I sends to retailer j ∈ J in period t ∈ T to satisfy their demand

from period s ∈ Tt under demand scenario ω ∈ �.
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Recall that in this problemnoDC is operating initially. Thus,we directly set yi0 = 0,∀i ∈

I, and uω
i0(ξ) = 0,∀i ∈ I,ω ∈ �.

We can reformulate the objective function (1) as follows:

ϕ(w, x, y) =
∑

t∈T

∑

i∈I

Fit(yit − yi,t−1) +
∑

t∈T

∑

i∈I

∑

k∈K

C1
iktwikt

+
∑

t∈T

∑

i∈I

∑

j∈J

C2
ijtxijt +

∑

ω∈�

πω

(

∑

t∈T

∑

i∈I

∑

k∈K

(giktr
ω
ikt + aiktq

ω
ikt)

+
∑

t∈T

∑

i∈I

hitu
ω
it −

∑

t∈T

∑

s∈Tt

∑

i∈I

∑

j∈J

pijtsv
ω
ijts

)

. (32)

The full problem can now be reformulated as follows:

minimize ϕ(w, x, y), (B2)

subject to
∑

i∈I

(yit − yi,t−1) ≤ nt , ∀t ∈ T, (2)

yit ≥ yi,t−1, ∀i ∈ I, t ∈ T, (3)
∑

i∈I

xijt = 1, ∀j ∈ J, t ∈ T, (4)

xijt ≤ yit , ∀i ∈ I, j ∈ J, t ∈ T, (5)
∑

k∈K

wikt = yit , ∀i ∈ I, t ∈ T, (6)

∑

k∈K

qω
ikt + uω

i,t−1 = uω
it +

∑

j∈J

∑

s∈Tt

vω
ijts, ∀i ∈ I, t ∈ T, ω ∈ �, (39)

qω
ikt ≤ M rωikt , ∀i ∈ I, k ∈ K, t ∈ T, ω ∈ �, (40)

rωikt ≤ wikt , ∀i ∈ I, k ∈ K, t ∈ T, ω ∈ � (41)

uω
it ,≤ M yit , ∀i ∈ I, t ∈ T, ω ∈ �, (42)

vω
ijtt +

∑

s∈T\Tt

vω
ijst ≤ M xijt , ∀i ∈ I, j ∈ J, t ∈ T, ω ∈ �, (43)

∑

i∈I

⎛

⎝vω
ijtt +

∑

s∈T\Tt

vω
ijst

⎞

⎠ = ξω
jt , ∀j ∈ J, t ∈ T, ω ∈ �, (44)

rωikt ∈ {0, 1}, ∀i ∈ I, k ∈ K, t ∈ T, ω ∈ �, (45)

qω
ikt ≥ 0, ∀i ∈ I, k ∈ K, t ∈ T, ω ∈ �, (46)

uω
it ≥ 0, ∀i ∈ I, t ∈ T, ω ∈ �, (47)

vω
ijts ≥ 0, ∀i ∈ I, j ∈ J, t ∈ T, s ∈ Tt , ω ∈ �, (48)

wikt ∈ {0, 1}, ∀i ∈ I, k ∈ K, t ∈ T, (7)

xijt ∈ {0, 1}, ∀i ∈ I, j ∈ J, t ∈ T, (8)
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yit ∈ {0, 1}, ∀i ∈ I, t ∈ T. (9)

Several constraints in the above extensive formulation remain unchanged, with the mean-
ing described in Section 3.

In practice it may be necessary to impose a limit, say N, on the number of DCs that
can be setup. This case can be easily embedded in the previous modeling frameworks by
considering the following additional constraints:

∑

i∈I

yi|T| ≤ N. (52)

This constraint, if needed, should be added as it is to the first-stage models discussed in
Section 3.2 and to the mixed-integer linear programming model proposed in this section.

5. Computational results

In this section, we report on a series of computational experiments performed to assess
the modeling framework introduced in this paper. We begin by assessing the relevance
and feasibility of the proposed model. Subsequently, we conduct a sensitivity analysis on
the key parameters, focusing on examining how varying levels of financial resources and
lead time affect the supply chain resilience of entrants. In the computational process, a
set of instances is first generated. Detailed data generation procedures are provided in the
Appendix. For the instances derived from real-world data, the location data is exactly the
same as in the actual scenario, and the demand data follows the generation rules specified
in the Appendix.

All the experiments were performed in a computer equipped with a 12th Gen Intel(R)
Core(TM) i5-12500 3.00GHz Processor, 8.00 GB RAM, and running Windows 10 Enter-
prise version 22H2. The optimization models were solved using the MILP algorithms
available on the IBM ILOG CPLEX Optimization Studio, version 22.1.0. Unless stated
otherwise, the default parameter configuration of the solver is adopted.

5.1. Scalability assessment

The need for designing resilient supply chains has been widely recognized and worked
out over the past decades. This has led to the development of so-called resilience evalua-
tion indicators. Following Asheim et al. (2020) and Carvalho et al. (2022) we consider the
following:

(1) Percentage of the retailers’ demand delivered on time (DDOT (%)) under each
demand scenario.

(2) Percentage ratio between the number of open DCs and the number of candidate
locations available (DCs ratio (%)).

We point out that 100 instances were generated with up to 10 factories, 50 retailers,
and 250 demand scenarios. The first results are presented in Table 2. In this table, the first
column specifies the tested instance (See the Appendix for the related details). The second
column presents the computing time in seconds. The third and fourth columns present
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the above indicators: DCs ratio (%) and DDOT (%). For each base instance, we considered
both Uniform and Gaussian (Normal) demand distributions, and for each distribution, we
tested three different random scenarios. These details are included in the Appendix. We
note that all the instances solved to proven optimality returned negative optimal objective
function values, which indicates a profit.

The information presented in Table 2 reveals that the instances can be quickly solved
by the commercial solver as long as there is available memory. Specifically, the instance
that took the longest time (instance 12U, with 2,033,400 decision variables and 2 425,812
constraints) was solved in less than ten minutes. On the other hand, considering instances
11U and 11N, we observe that only one was solvable and yet they comprise the same num-
ber of decision variables (1,545,500) and constraints (1,864,812). The only difference in the
parameters of these two instances lies in the values for the retailers’ demands.

In the scatter plots presented in Figures 3 and 4, we can observe that the majority of the
instances that were solved took less than a minute and a half, comprising less than 500,000
decision variables and less than 1,000,000 constraints. It is not surprising that large-scale
instances tend to take longer to be solved, but this is not a rule. For example, instance
6N required 328 seconds to be solved, but instance 6U, which has the same number of
decision variables and constraints, was solved in less than 37 seconds. This difference may
be due to the specificity of the values of the parameters, although such a phenomenon is
not frequently observed.

The values for DDOT (%) for each demand scenario from Table 2 are high. This is in
some sense positive because it means that in most cases, demand is supplied on time – a
feature of practical relevance. Overall, the lowest percentage observed was 83.25% for the
fourth demand scenario in instance 24N and the highest was 99.47% for the first demand
scenario in instance 7N.

Regarding the values for the DCs ratio (%), from Table 2, we can see that for the major-
ity of the instances, the results dictate that at least half of the potential locations for DCs
should be opened. 50 out of the 91 solved instances showed a DC ratio (%) of at least 75%.
Moreover, for 30 instances that value is 100%. These results may be highly affected by the
values for the fixed cost of locating a DC particularly when compared to the total revenues.
This makes us wonder about the impact of financial resources bolstered by Fintech on the
resilience of the supply chain.

5.2. Sensitivity analysis under different parameters

In this subsection, we conducted sensitivity analyses on both financial resources and lead
time, as these two factors represent key challenges faced by small entrant firms and are also
central innovations of this study. After completing the experiments, we provide detailed
analysis of the results.

5.2.1. The impact of the financial resources

First, we report on additional results obtained by re-doing the tests above described to
understand the impact of the financial resources for installing DCs on the supply chain
resilience. We simply multiply the original values of Fit by 100. The results from the new
experiments are presented in Table 3 and analyzed afterwards.
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Table 2. Computing time and resilience evaluation indicators.

Instance Computing time (sec.) DCs ratio (%) DDOT (%)

1U 0.312 70 94.78, 95.57
1N 0.282 70 95.93, 94.70
2U 0.766 60 93.32, 95.18, 95.71, 94.59, 95.47
2N 0.640 60 92.81, 95.97, 95.00, 94.58, 95.26
3U 0.688 60 89.24, 88.74
3N 0.797 60 95.76, 94.61
4U 1.781 100 94.06, 93.76, 93.98
4N 1.813 100 93.97, 93.57, 94.19
5U 13.594 100 90.03, 89.56, 90.73
5N 10.656 100 89.74, 89.55, 90.55
6U 36.328 100 94.81, 94.37, 94.32
6N 328.000 100 94.62, 92.97, 94.87
7U 2.828 40 98.47, 97.49, 98.62
7N 1.687 44 99.47, 98.78, 99.40
8U 5.594 76 91.47, 91.93, 91.50, 91.05, 91.84
8N 5.204 72 91.79, 91.66, 92.26, 92.61, 91.74
9U 35.125 96 94.08, 94.01
9N 36.906 96 94.03, 93.55
10U 15.094 44 93.72, 94.16, 94.27
10N 10.813 44 95.33, 95.46, 95.38
11U – ∗ –
11N 295.047 100 94.93, 94.81, 95.05
12U 571.828 50 94.54, 94.31, 94.14, 93.93, 94.64
12N 508.937 50 94.95, 94.74, 94.77, 94.56, 94.83
13U 41.515 60 88.82, 89.54, 88.07, 88.49, 88.90
13N 41.719 60 88.54, 88.47, 87.22, 88.58, 88.87
14U 0.406 50 83.52, 84.74
14N 0.437 50 83.64, 84.62
15U 3.812 100 92.01, 92.42
15N 3.578 100 92.82, 92.41
16U 10.672 100 93.07, 92.82, 92.64, 92.51, 91.88
16N 10.562 100 93.17, 92.24, 92.34, 92.43, 92.03
17U 4.516 90 96.31, 96.26
17N 2.906 90 96.75, 96.61
18U 3.672 90 96.15, 95.92, 96.36
18N 7.406 90 96.08, 96.01, 96.87
19U 6.360 90 93.69, 94.02, 93.74, 93.71, 93.66
19N 7.672 80 91.33, 91.84, 91.60, 91.97, 91.58
20U 18.516 100 90.14, 90.46, 90.83
20N 21.078 100 90.11, 90.46, 90.78
21U 6.860 100 94.15, 94.69, 94.17
21N 7.312 100 94.73, 93.69, 93.98
22U 1.203 52 96.47, 96.84
22N 1.547 52 96.44, 96.85
23U 2.437 100 95.86, 95.14
23N 2.047 100 95.23, 94.85
24U 23.328 92 84.99, 84.15, 83.73, 83.39, 84.51
24N 25.516 92 85.28, 84.74, 84.21, 83.25, 83.70
25U 7.719 40 94.75, 95.03
25N 7.032 40 94.61, 94.96
26U 10.844 40 94.73, 94.57, 94.30
26N 11.000 40 94.79, 94.56, 94.47
27U 64.375 100 94.32, 94.58, 94.46, 95.10, 94.37
27N 54.484 100 87.76, 87.35, 87.48, 87.75, 87.28
28U 1.032 34 97.84, 96.95
28N 0.813 34 97.32, 97.05
29U 3.719 34 97.76, 96.56, 96.86, 97.91, 97.78
29N 3.844 34 97.29, 96.56, 96.83, 97.18, 97.13
30U 12.891 52 94.84, 94.01, 94.08
30N 13.844 52 95.70, 95.32, 95.12

(continued).
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Table 2. Continued.

Instance Computing time (sec.) DCs ratio (%) DDOT (%)

31U – ∗ –
31N – ∗ –
32U – ∗ –
32N – ∗ –
33U 0.515 30 97.53, 99.05
33N 0.453 30 98.00, 98.73
34U 2.781 90 97.43, 96.60, 96.29, 96.33, 96.15
34N 2.765 90 97.12, 96.24, 96.53, 96.24, 95.96
35U 9.360 100 93.38, 92.84, 92.36, 92.21, 91.58
35N 9.500 100 92.74, 92.34, 92.62, 92.11, 91.84
36U 2.016 100 95.86, 95.51, 96.13, 96.48, 95.71
36N 3.187 90 97.44, 97.69, 97.86, 97.80, 97.94
37U 5.890 100 95.15, 94.99, 95.11, 95.15, 94.91
37N 6.093 100 95.00, 95.39, 95.27, 95.70, 95.19
38U 4.812 84 98.15, 98.60, 98.69, 98.28, 98.24
38N 3.797 84 97.86, 97.93, 97.68, 98.14, 98.18
39U 17.797 100 97.30, 97.76, 97.85
39N 20.734 100 97.81, 97.81, 97.85
40U 2.969 92 96.65, 97.21
40N 3.079 92 97.07, 96.79
41U 19.187 100 95.94, 95.37
41N 15.281 100 95.89, 95.98
42U 26.125 88 95.90, 96.16, 95.81, 96.37, 95.75
42N 19.438 92 95.31, 95.51, 95.37, 95.88, 96.11
43U 1.485 42 97.12, 96.70
43N 1.312 42 96.64, 94.91
44U 2.000 40 95.70, 97.39, 95.60
44N 2.094 44 96.25, 97.86, 96.18
45U 7.797 58 97.66, 98.39, 97.19, 97.77, 96.93
45N 5.703 56 98.01, 97.04, 97.72, 97.06, 96.95
46U 4.609 46 97.36, 97.26
46N 4.516 44 86.56, 85.26
47U 17.922 70 96.98, 97.56
47N 16.125 68 95.55, 96.08
48U 246.422 100 84.24, 85.17, 85.40, 85.09, 85.18
48N 227.797 100 84.16, 84.76, 84.97, 84.83, 84.68
49U – ∗ –
49N – ∗ –
50U – ∗ –
50N – ∗ –

∗ Out-of-memory.

When comparing Tables 2 and 3, the differences are noticeable. First, it was possible to
solve instances 11U, 31U, and 31N (before, the machine ran out of memory when tackling
these instances). Second, instances seem to take longer to be solved and to have lower
values for both DCs ratio (%) and DDOT (%) for each demand scenario. Out of the 91
instances that were solved in both situations, in the second run of tests, 73 required a higher
computing time. In 77 instances, the difference between the computing times is under one
minute, while in only six instances, the difference is greater than five minutes.

Observing Figures 5 and 6we realize that a largemajority of instances were solved in less
than five minutes and had at most 500,000 decision variables and 1,000,000 constraints.

In Figure 7, we observe that in both experimental settings (original setup costs and those
multiplied by 100), most of the instances were solved in less than a minute, but only in
the second set of tests, can we find instances taking longer than ten minutes to be solved.
Instances 48N, 31U, and 31Nwere the ones that took the longest to solve, requiring between
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Figure 3. Computing time required to solve an instance versus the number of decision variables.

Figure 4. Computing time required to solve an instance versus the number of constraints.

34 and 42 minutes, while instances 1U and 1N were the ones that took the least time to be
solved (less than 0.2 seconds).

Regarding the DCs ratio (%) registered for the new experiments, as hypothesized previ-
ously, they are lower than those registered in Table 2. In the first group of tests, themajority
of instances (52.75%) had DC ratios (%) in the interval (80, 100], while (0, 20] is the inter-
val where we observe the majority of instances from the new group of tests (67.02%). This
is a significant difference, indicating that financial resources primarily affect the number of
distribution centers constructed in the supply chain. Figure 8 details the variations between
these groups.

Given that the DCs ratio (%) registered for the new tests is lower than the original tests,
it is expected to see some decrease in the values for DDOT (%) for each demand scenario.
Even though this is what occurs, they remain generally high. Only 14 out of the 94 solved
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Table 3. Computing time and resilience evaluation indicators – increased fixed costs.

Instance Computing time (sec.) DCs ratio (%) DDOT (%)

1U 0.172 10 87.14, 85.54
1N 0.172 10 87.97, 87.22
2U 0.360 10 85.25, 86.86, 87.76, 86.68, 85.45
2N 0.407 10 86.46, 86.67, 86.17, 85.13, 86.35
3U 0.594 20 87.45, 86.89
3N 0.609 20 87.00, 86.21
4U 5.375 100 47.95, 49.29, 50.92
4N 6.906 20 88.07, 87.02, 87.64
5U 14.110 40 87.34, 85.79, 85.98
5N 11.297 40 86.77, 86.53, 86.20
6U 42.125 100 44.72, 44.08, 44.28
6N 35.813 100 44.70, 44.10, 44.77
7U 1.921 4 88.16, 90.36, 89.58
7N 1.579 4 88.97, 88.29, 87.62
8U 9.906 8 79.29, 77.71, 78.02, 78.42, 78.23
8N 10.359 8 80.00, 78.56, 79.06, 79.22, 79.24
9U 42.531 24 86.16, 86.74
9N 41.704 24 86.75, 87.59
10U 15.328 44 91.95, 92.13, 90.83
10N 13.875 44 91.18, 92.55, 91.50
11U 489.094 100 74.67, 74.83, 75.00
11N 633.687 100 74.58, 74.57, 75.23
12U 1824.406 20 92.69, 93.04, 93.01, 92.55, 92.79
12N 1487.828 20 92.36, 92.26, 92.30, 92.04, 92.42
13U 118.422 10 91.41, 91.36, 90.63, 92.02, 90.83
13N 171.484 10 91.39, 91.64, 90.82, 91.29, 91.21
14U 0.328 10 70.49, 71.39
14N 0.329 10 69.02, 70.68
15U 2.875 20 81.66, 81.63
15N 3.062 20 81.57, 81.77
16U 16.015 20 82.40, 84.07, 81.70, 81.85, 81.84
16N 14.579 20 81.74, 82.63, 81.00, 81.86, 80.80
17U 3.813 30 89.36, 89.00
17N 3.656 30 87.80, 89.22
18U 4.968 30 74.12, 73.11, 72.65
18N 5.719 30 89.19, 89.80, 89.23
19U 7.875 30 52.02, 53.33, 51.65, 51.33, 52.97
19N 12.766 30 88.37, 89.28, 89.32, 89.15, 88.57
20U 21.625 50 68.83, 68.17, 69.01
20N 26.484 50 84.98, 85.61, 85.29
21U 25.297 16 89.24, 89.61, 88.26
21N 25.750 16 88.34, 88.90, 87.75
22U 2.312 8 94.28, 93.10
22N 1.906 8 95.19, 94.66
23U 6.141 16 84.70, 83.49
23N 8.422 16 86.65, 87.72
24U 38.844 12 88.62, 87.45, 88.33, 88.65, 87.91
24N 49.719 12 88.26, 87.34, 88.43, 88.77, 88.35
25U 7.860 20 92.11, 91.08
25N 8.688 20 91.33, 91.25
26U 13.109 20 91.45, 91.64, 91.44
26N 11.000 40 94.79, 94.56, 94.47
27U 64.375 100 94.32, 94.58, 94.46, 95.10, 94.37
27N 54.484 100 87.76, 87.35, 87.48, 87.75, 87.28
28U 1.032 34 97.84, 96.95
28N 0.813 34 97.32, 97.05
29U 3.719 34 97.76, 96.56, 96.86, 97.91, 97.78
29N 3.844 34 97.29, 96.56, 96.83, 97.18, 97.13
30U 12.891 52 94.84, 94.01, 94.08
30N 13.844 52 95.70, 95.32, 95.12

(continued).
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Table 3. Continued.

Instance Computing time (sec.) DCs ratio (%) DDOT (%)

31U – ∗ –
31N – ∗ –
32U – ∗ –
32N – ∗ –
33U 0.515 30 97.53, 99.05
33N 0.453 30 98.00, 98.73
34U 2.781 90 97.43, 96.60, 96.29, 96.33, 96.15
34N 2.765 90 97.12, 96.24, 96.53, 96.24, 95.96
35U 9.360 100 93.38, 92.84, 92.36, 92.21, 91.58
35N 9.500 100 92.74, 92.34, 92.62, 92.11, 91.84
36U 2.016 100 95.86, 95.51, 96.13, 96.48, 95.71
36N 3.187 90 97.44, 97.69, 97.86, 97.80, 97.94
37U 5.890 100 95.15, 94.99, 95.11, 95.15, 94.91
37N 6.093 100 95.00, 95.39, 95.27, 95.70, 95.19
38U 4.812 84 98.15, 98.60, 98.69, 98.28, 98.24
38N 3.797 84 97.86, 97.93, 97.68, 98.14, 98.18
39U 17.797 100 97.30, 97.76, 97.85
39N 20.734 100 97.81, 97.81, 97.85
40U 2.969 92 96.65, 97.21
40N 3.079 92 97.07, 96.79
41U 19.187 100 95.94, 95.37
41N 15.281 100 95.89, 95.98
42U 26.125 88 95.90, 96.16, 95.81, 96.37, 95.75
42N 19.438 92 95.31, 95.51, 95.37, 95.88, 96.11
43U 1.485 42 97.12, 96.70
43N 1.312 42 96.64, 94.91
44U 2.000 40 95.70, 97.39, 95.60
44N 2.094 44 96.25, 97.86, 96.18
45U 7.797 58 97.66, 98.39, 97.19, 97.77, 96.93
45N 5.703 56 98.01, 97.04, 97.72, 97.06, 96.95
46U 4.609 46 97.36, 97.26
46N 4.516 44 86.56, 85.26
47U 17.922 70 96.98, 97.56
47N 16.125 68 95.55, 96.08
48U 246.422 100 84.24, 85.17, 85.40, 85.09, 85.18
48N 227.797 100 84.16, 84.76, 84.97, 84.83, 84.68
49U – ∗ –
49N – ∗ –
50U – ∗ –
50N – ∗ –

∗ Out-of-memory.

instances have scenarios withDDOT (%) lower than 75%, and three of themhave scenarios
with DDOT (%) lower than 50%. The lowest percentage registered is 44.08% from the
second scenario in instance 6U and 98.66% from the third scenario in instance 29U is the
highest one. In Table 2, 85.7% of the instances have the worst scenario with a DDOT (%)
higher than 90%. In the results from the new tests (Table 3), that percentage decreases
to 41.5%. This also demonstrates that changes in financial resources significantly impact
the resilience of the supply chain, resulting in the inability to meet the demands of most
customers in a timely manner. Nonetheless, in 81.9% of the instances, from the new tests,
the worst scenario had a DDOT (%) higher than 80%, indicating that our proposed model
can ensure the resilience of the supply chain is maintained at a satisfactorily level even in
the most adverse conditions.

In themajority of the instances, the DDOT (%) from Table 3 decreased for all scenarios,
when compared to those from Table 2. However, instances 13U, 13N, 24U, 24N, 46N, and
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Figure 5. Computing time required to solve an instance versus the number of decision variables.

Figure 6. Computing time required to solve an instance versus the number of constraints.

48N showed an increase for all scenarios, while only some scenarios from instances 28N,
29U, and 29N showed an increase (and the remaining scenarios a decrease). In Figure 9, it
is possible to observe the differences between the DDOT (%) from all scenarios given the
magnitude of the setup costs. Themajority of demand scenarios from the first group of tests
had a DDOT (%) of at least 90%, while the majority from the second group resulted in val-
ues between 85% and 95%. This experimental phenomenon corroborates the conclusions
we drew earlier.

In short, themixed-integer linear programmingmodel proposed in Section 4workswell
as it was expected. It was also seen that the values for Fit affect decisively the percentage
of DCs ratio (%), and the percentages from each demand scenario’s DDOT (%) as well.
Results frommultiple experiments indicate that the financial resources of establishingDCs,
such as land usage fees, directly impact the rate at which enterprises set up DCs and also
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Figure 7. Computing time required to solve the instances according to themagnitudeof the setup costs.

Figure 8. DCs ratios (%) according to the magnitude of the setup costs.

significantly affect the on-time delivery rates for goods by entrants, which in turn means a
substantial impact on the supply chain resilience. The experimental results align well with
common logic, as investing too much capital in the fixed costs of facilities will inevitably
lead to a reduction in other operational investments for the enterprise, thereby positively
affecting its operational resilience and service level.

5.2.2. The impact of the lead time

An important contribution of our work is the inclusion of the lead time in the supply
chain network design problem we are investigating. This naturally raises curiosity about
the impact of lead time on the decisions and corresponding operational outcomes.
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Figure 9. Bar graph of the DDOT (%) by the instances’ typology.

To investigate this aspect, in this section, we report on a series of experiments based on
the real-world challenges faced by a restaurant chain in Beijing. In particular we focus on
the impact of changes in lead time. The studied enterprise has 10 retail stores, 8 poten-
tial warehouses, and 4 production factories, with the locations of these facilities shown
in Figure 10. The uncertain demand generated by retail stores has three scenarios, cor-
responding to the average demand during peak, off-peak, and low-peak periods. In the
experiments whose results we report next, we worked with different numbers of periods
in the planning horizon, namely 10, 15, 20, and 25. Based on this, we worked with values
for the lead time ranging from 0 to 5 and calculate the impact of changes in that parame-
ter on the enterprise’s decisions and corresponding resilience indicators for different total
decision-making periods. The relevance of considering different lengths for the planning
horizon and different lead times is also related to the fact that different commodities are at
stake in the case we are considering, each calling for a different setting.

It is worth noting that due to the sensitivity of sales demand data for the enterprise, we
cannot use the actual data from the aforementioned restaurant company in a widely acces-
sible research paper. Thus, we decided to proceed in this paper by using the data generation
method introduced at the beginning of this section to generate the other data parame-
ters for this experiment. Based on this dataset, we can further conduct experiments and
sensitivity analysis by using the methods proposed in the above two sections.

Figure 11 depicts the results. The horizontal axis represents the lead time, and the ver-
tical axis represents the corresponding DDOT (%) values. In addition, the green line with
stars represents the changes in the enterprise’s DDOT (%) value as lead time changes when
the total number of decision periods is 10. The black linewith circles represents the changes
in the enterprise’s DDOT (%) value as lead time changes when the total number of deci-
sion periods is 15. The red line with diamonds and the blue line with squares represent the
scenarios when the total number of decision periods is 20 and 25, respectively. From the
trends of the four lines, we can draw the following conclusions:
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Figure 10. The setting underlying a Beijing catering enterprise.

• The impact of lead time on the studied enterprise is significant with a longer lead time
resulting in a lower DDOT (%) irrespective of the length of the planning horizon.

• An increased length in the planning horizon results in an improved DDOT (%) within
a certain range. This effect is more pronounced when the lead times are higher. This can
be explained by a higher flexibility in the decision-making process provided by a longer
planning horizon.

• Finally, there seems to be a plateau for the length of the planning horizon above which
it is no longer possible to improve the DDOT (%). In fact, by moving from 20 to 25
periods we do not observe a further increase in the DDOT (%).

6. Conclusions

In this paper, a two-stage stochastic multi-period location-allocation-inventory problem
was investigated that can simultaneously tackle stock-outs and lead times. Periodic review
was assumed. In the first stage, location and allocation decisions are made. After uncer-
tainty is revealed, adaptive decisions are considered including those related to inventory
management. The modeling framework proposed allows an entrant in the market to
strategically plan DC locations and manage logistics operations over time under demand
uncertainty. An extended model was also proposed to accommodate lead times. Besides,
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Figure 11. The changes in DDOT(%) under different lead times.

a compact mixed-integer linear programming model was proposed assuming uncertainty
reasonably well captured by a finite set of scenarios.

A series of computational tests were conducted, including sensitivity analyses on finan-
cial resources and lead time, using both a set of randomly generated instances and instances
based on the actual operating environment of an enterprise. Based on the analysis of the
experimental results, several management insights for entrants were proposed.

First, entrant firms highlighted in this study should give priority to the strategic alloca-
tion of financial resources, particularly when selecting and establishing distribution centers
(DCs). Since financial resources have a considerable influence on the decision-making pro-
cess related to the location and establishment of DCs, prudent management during this
early stage can improve the firm’s ability to scale its supply capacity more effectively.

Second, lead time plays a vital role in meeting customer demand on time. Firms should
make every effort to reduce lead timeswhere possible, as extended lead times can detrimen-
tally affect both customer satisfaction and the firm’s operational efficiency. In cases where
further reductions in lead time are not viable, the model presented in this study suggests
that extending the planning horizon can help boost operational resilience. By planning
further ahead, firms can better handle supply and demand uncertainty, thereby improving
their overall performance.

However, while extending the planning horizon can contribute to improved perfor-
mance and resilience, firms should be aware of the law of diminishing returns. Contin-
uously increasing the planning horizon will not indefinitely enhance key performance
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indicators, and eventually, the costs associated with longer planning cycles may outweigh
the benefits. Therefore, firms should carefully assess the balance between extending the
planning horizon and other strategic priorities to prevent overburdening their operations
and resources. If lead time continues to pose a significant challenge, firms may need to re-
evaluate their strategies for lead time reduction. As the firm evolves and market dynamics
change, new opportunities for reducing lead time may arise, such as adopting advanced
technologies, improving supplier collaborations, or optimizing logistics operations.

The work done opens research avenues that are worth exploring. For example, in each
demand scenario, understanding the average time elapsed from the moment a retailer
issues an order until it is fulfilled would be valuable for those orders leading to back-
log. Another interesting aspect is to analyze the impact of changes in stochastic demand
distribution on the resilience indicators.

Additionally, expanding the focus from a single product supply to multiple products
could provide further depth to the study. Designing heuristic solution methods for large-
scale problems encountered in the real-world is also of great significance. Although two
resilience indicators are proposed in this study, expanding the evaluation to include addi-
tional metrics such as supply chain flexibility, response speed, and cost-effectiveness would
provide a more comprehensive assessment of supply chain resilience.

Finally, the approach proposed in this study can be extended to other areas of operations
management, such as hazardousmaterial transportation (Fan et al. 2019; Geng et al. 2024),
emergency rescue management (Hong et al. 2023; Zhang et al. 2022), electric charging
stations (Wu and Jia 2022; Zhang, Li, and Saldanha-da Gama 2024). By incorporating the
unique characteristics of these issues, it is possible to analyze other features of interest to
managers.
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Appendix. Data generation

Recall themixed-integer linear programming problempresented in Section 4. Ten sets of parameters
are used out of which eight were already part of the two-stage stochastic linear programming model
presented in Section 3. These original parameters are nt , Fit , hit ,C1

ikt , gikt , aikt ,C
2
ijt and pijts, t ∈ T, i ∈

I, k ∈ K, j ∈ J, s ∈ Tt . The other two are πω and ξω
jt , where ω ∈ �, j ∈ J and t ∈ T.

In all instances, a uniform distribution across the scenario set is assumed:

πω =
1

|�|
, ∀ ω ∈ �.

For the remainder parameters, the data generation is based on pseudo-random numbers from a
discrete Uniform distribution in {a, . . . , b}, a< b. For each parameter, the values adopted for a and
b are presented in Table A1 – initalMin and initalMax, respectively. By considering discrete Uniform
distributions, it is ensured that the obtained values are integers.

The generation of the values nt , t ∈ T, is accomplished according to AlgorithmA1. For each time
period, a pseudo-random number is generated (according to the values stated in Table A1). For the
first period, if the generated number is zero, then one DC can be opened at that period.

The data generation procedure for parameters Fit , hit , C1
ikt , gikt , aikt , and C2

ijt is given by
AlgorithmA2.Although similar, it is not equal to the previous procedure. First, notice that all param-
eters are indexed in t ∈ T. To simplify the explanation, let the remaining indices be known as the
“situational indexes”. For instance, the “situational indexes” of C1

ikt are i ∈ I and k ∈ K. Just like in
the process of generating the values of nt , for this group of parameters, their values will be pseudo-
random numbers from a discrete Uniform distribution. However, it will not be the discrete Uniform
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Table A1. Table for generating parameters.

Parameter initalMin initalMax

nt 0 |I|
2

Fit 10, 000 50, 000
C1
ikt

100 500
C2ijt 100 500
gikt 50 200
aikt 1 25
hit 1 30
pijts 10 60
ξω
jt 100 1000

distribution in {initalMin, . . . , initialMax}. Instead, to create extra diversity, for each group of sit-
uational indexes, the values of initalMin and initialMax will be replaced by newMin and newMax,
which are obtained according to Algorithm A3. This algorithm is designed so that it is impossible
that these new values are negative or that newMax is inferior to newMin. Its main goal is to introduce
more variability into the data to be generated.

Algorithm A1: Data generator for nt .

Input: initalMin, initialMax

Output: nt
1 for each t ∈ T do

2 nt ← Uniform{initalMin, initialMax}

3 if t = 1 and value = 0 then
4 nt ← 1

Algorithm A2: Data generator for Fit , hit ,C1
ikt , gikt , aikt and C2

ijt .

Input: initalMin, initialMax

Output: Fit , hit ,C1
ikt , gikt , aikt and C2

ijt

1 for each situational index do

2 (newMin, newMax) ← NewLimits(initalMin, initialMax)

3 for each t ∈ T do

4 value ← Uniform{newMin, newMax}

Regarding the parameter pijts, the reasoning underlying Algorithm A2 is used, but with a twist.
Recall that pijts refers to the unit revenue obtaining from supplying retailer j ∈ J from DC i ∈ I in
period t ∈ T to satisfy the retailer’s demand of period s ∈ Tt = {1, . . . , t}). When t = s, the product
is sold at the period it is requested.When t 
= s, the product is being sold with a delay of t−s periods.
For this reason, the values generated for this parameter obey the following rule: for each period
that the delivery is delayed, the retail store may be given a non-specified discount. Algorithm A4
formalizes the procedure.

When it comes to the generation of retailers’ demands two possibilities were considered: In the
first, it is assumed that the demand follows a Uniform distribution, and therefore Algorithm A2 is
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Algorithm A3: New limits generator.

Input: oldMin, oldMax

Output: initalMin, initialMax

1 Function NewLimits(oldMin, oldMax):

2 u0, u1, u2 ← Uniform{0, 100}

3 v1, v2 ← Uniform{⌊ oldMin×u0
100 ⌋, ⌈ oldMax×u0

100 ⌉}

4 w ← 1
5 if u1 < 50 and v1 < oldMin then

6 w ← −1

7 newMin ← oldMin + w × v1
8 w ← 1
9 if u2 < 50 and v2 < oldMax − newMin then

10 w ← −1

11 newMax ← oldMax + w × v2
12 return newMin, newMax

adopted. Note that in this case, ω ∈ � is part of the “situational indexes”. In the second possibility,
a Gaussian distribution is assumed. The expected value chosen is the average of the values obtained
after applying Algorithm A3; the standard deviation is the absolute value of the subtraction of the
chosen expected value with the average of initialMin and initialMax. When generating the values,
only those between the limits defined are accepted.

Algorithm A4: Data generator for pijts.

Input: initalMin, initialMax

Output: pijts
1 for each i ∈ I and j ∈ J do

2 (newMin, newMax) ← NewLimits(initalMin, initialMax)

3 for each t ∈ T and s ∈ Tt do

4 if t = s then

5 pijts ← Uniform{newMin, newMax}

6 else

7 pijts ← Uniform{newMin, pij,t−1,s}

The algorithms presented in this section were implemented in C++ programming language using
Eclipse IDE. As inputs, the user only needs to indicate the dimensions of the sets K, I, J, T, and
�. Two different instances are generated, that differ on the costumers’ demand data. In one case
it is generated using the Uniform distribution and in the other using the Normal distribution, as
described previously. Two files are generated. A txt file is created that allows a user to easily read
the data. It contains both retail stores’ demand cases. A dat file is also created that is prepared to be
directly loaded by CPLEX.

The dimensions of setsK, I, J,T and� of the instances generated are listed in Table A2. The letters
“U” and “N” next to the instances’ number refer to the retail stores’ demand generation process:
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Algorithm A5: Data generator for ξω
jt with normal demand.

Input: initalMin, initialMax

Output: ξω
jt

1 for each i ∈ I and j ∈ J do

2 (newMin, newMax) ← NewLimits(initialMin, initialMax)

3 initialMean ← initalMax+initalMin
2

4 newMean ← newMax+newMin
2

5 diff ← |initialMean − newMean|

6 for each t ∈ T do

7 Repeat

8 ξω
jt ← Gaussian{newMin, newMax}

9 Until newMin ≤ ξω
jt ≤ newMax

Uniform and Gaussian (Normal) distributions, respectively. In this table, the number of decision
variables and constraints are also indicated. It is expected that the set whose dimension has the
largest impact on the number of decision variables and constraints is T (it is present in all of them).
On the other hand, K is expected to have the least impact, since it is only present in three groups of
decision variables and in about a quarter of the constraints’ groups.

Table A3 shows, for each set, the number of instances being considered per set dimension for a
type of retailers demand generation method.

To observe the relationship between the number of decision variables and the number of con-
straints, these values are depicted in a scatter plot presented in Figure A1. It appears that the latter
increases linearly concerning the former, which is in line with our understanding.
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Table A2. Instances’ dimensions and characteristics.

Instance |K| |I| |J| |T| |�| # Variables # Constraints

1U, 1N 3 10 50 3 2 8040 13, 533
2U, 2N 3 10 50 3 5 17, 670 28, 833
3U, 3N 3 10 100 3 2 15, 540 25, 983
4U, 4N 3 10 100 6 3 70, 500 98, 466
5U, 5N 3 10 100 12 3 249, 000 304, 932
6U, 6N 3 10 250 6 3 174, 000 241, 566
7U, 7N 3 25 50 3 3 28, 125 45, 678
8U, 8N 3 25 50 6 5 144, 600 197, 706
9U, 9N 3 25 100 12 2 425, 400 524, 412
10U, 10N 3 25 250 3 3 133, 125 213, 078
11U, 11N 3 25 250 12 3 1, 545, 500 1, 864, 812
12U, 12N 3 50 100 12 5 2, 033, 400 2, 425, 812
13U, 13N 3 50 250 3 5 418, 350 654, 153
14U, 14N 5 10 50 3 2 8, 340 14, 073
15U, 15N 5 10 50 12 2 87, 360 110, 292
16U, 16N 5 10 50 12 5 208, 320 255, 372
17U, 17N 5 10 250 3 2 38, 340 63, 873
18U, 18N 5 10 250 3 3 53, 670 87, 813
19U, 19N 5 10 250 3 5 84, 330 135, 693
20U, 20N 5 10 250 6 3 174, 840 243, 126
21U, 21N 5 25 50 12 3 319, 200 393, 012
22U, 22N 5 25 100 3 2 39, 600 64, 953
23U, 23N 5 25 100 6 2 124, 200 174, 906
24U, 24N 5 25 100 6 5 286, 650 389, 556
25U, 25N 5 25 100 12 2 428, 400 529, 812
26U, 26N 5 25 100 12 3 626, 700 762, 912
27U, 27N 5 25 250 6 5 702, 900 946, 206
28U, 28N 5 50 50 3 2 41, 700 68, 553
29U, 29N 5 50 50 3 5 91, 650 146, 853
30U, 30N 5 50 50 6 3 184, 200 256, 806
31U, 31N 5 50 250 6 5 1, 405, 800 1, 883, 406
32U, 32N 5 50 250 12 5 5, 061, 600 6, 016, 812
33U, 33N 10 10 50 3 2 9, 090 15, 423
34U, 34N 10 10 50 6 5 62, 460 88, 986
35U, 35N 10 10 50 12 5 214, 920 267, 972
36U, 36N 10 10 100 3 5 36, 480 59, 643
37U, 37N 10 10 100 6 5 117, 960 164, 286
38U, 38N 10 25 50 6 5 156, 150 219, 756
39U, 39N 10 25 50 12 3 329, 700 412, 512
40U, 40N 10 25 100 6 2 127, 950 181, 656
41U, 41N 10 25 100 12 2 435, 900 543, 312
42U, 42N 10 25 250 3 5 214, 950 340, 353
43U, 43N 10 50 50 3 2 45, 450 75, 303
44U, 44N 10 50 50 3 3 63, 600 104, 403
45U, 45N 10 50 50 6 5 312, 300 437, 706
46U, 46N 10 50 100 3 2 82, 950 135, 753
47U, 47N 10 50 100 6 2 255, 900 361, 506
48U, 48N 10 50 250 6 5 1, 422, 300 1, 914, 906
49U, 49N 10 50 250 12 3 3, 119, 400 3, 772, 212
50U, 50N 10 50 250 12 5 5, 094, 600 6, 079, 812

Table A3. Table for generate parameters.

Set K I J T �

Dimension 3 5 10 10 25 50 50 100 250 3 6 12 2 3 5
Frequency 13 19 18 18 17 15 19 16 15 19 16 15 16 14 20
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Figure A1. Scatter plot of the number of decision variables and number of the constraints.
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