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Modeling the Impact of Multicancer Early
Detection Tests: A Review of Natural
History of Disease Models

Olena Mandrik , Sophie Whyte, Natalia Kunst , Annabel Rayner, Melissa Harden,

Sofia Dias , Katherine Payne, Stephen Palmer, and Marta O. Soares

Introduction. The potential for multicancer early detection (MCED) tests to detect cancer at earlier stages is currently

being evaluated in screening clinical trials. Once trial evidence becomes available, modeling will be necessary to pre-

dict the effects on final outcomes (benefits and harms), account for heterogeneity in determining clinical and cost-

effectiveness, and explore alternative screening program specifications. The natural history of disease (NHD) compo-

nent will use statistical, mathematical, or calibration methods. This work aims to identify, review, and critically

appraise the existing literature for alternative modeling approaches proposed for MCED that include an NHD com-

ponent. Methods. Modeling approaches for MCED screening that include an NHD component were identified from

the literature, reviewed, and critically appraised. Purposively selected (non-MCED) cancer-screening models were

also reviewed. The appraisal focused on the scope, data sources, evaluation approaches, and the structure and para-

meterization of the models. Results. Five different MCED models incorporating an NHD component were identified

and reviewed, alongside 4 additional (non-MCED) models. The critical appraisal highlighted several features of this

literature. In the absence of trial evidence, MCED effects are based on predictions derived from test accuracy. These

predictions rely on simplifying assumptions with unknown impacts, such as the stage-shift assumption used to esti-

mate mortality impacts from predicted stage shifts. None of the MCED models fully characterized uncertainty in the

NHD or examined uncertainty in the stage-shift assumption. Conclusion. There is currently no modeling approach

for MCEDs that can integrate clinical study evidence. In support of policy, it is important that efforts are made to

develop models that make the best use of data from the large and costly clinical studies being designed and imple-

mented across the globe.

Highlights

� In the absence of trial evidence, published estimates of the effects of multicancer early detection (MCED)

tests are based on predictions derived from test accuracy.
� These predictions rely on simplifying assumptions, such as the stage-shift assumption used to estimate

mortality effects from predicted stage shifts. The effects of such simplifying assumptions are mostly

unknown.
� None of the existing MCED models fully characterize uncertainty in the natural history of disease; none

examine uncertainty in the stage-shift assumption.
� Currently, there is no modeling approach that can integrate clinical study evidence.
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Novel technologies have recently emerged that look for

markers of cancer in blood, urine, saliva, or stool and have

the potential to detect signals from multiple cancer types

from a single sample. These are termed multicancer early

detection (MCED) tests. Their use in screening asympto-

matic persons has the potential to detect cancer at an ear-

lier stage, when treatment is likely to be more effective and

perhaps less costly.1,2 However, policy makers have

demanded evidence of mortality effects and a fuller exami-

nation of the potential harms and consequences of the

test’s imperfect accuracy (including of diagnostic resolution

pathways), overdiagnosis, and the effect on existing screen-

ing programs.3 The Galleri� test (GRAIL, Inc., Menlo

Park, CA, USA) test is the blood multicancer test that is

most advanced in the stage of clinical research, with a ran-

domized clinical trial currently underway in the United

Kingdom, the NHS-Galleri trial (NCT05611632), aiming

to demonstrate the clinical effectiveness of the test in stage

shifting advanced cancer in a population screening setting.4

To inform policy decisions on screening programs

involving MCED tests, modeling will be required to 1)

link evidence and predict expected effects over final out-

comes (mortality, life expectancy, and quality-adjusted

life-years), 2) appropriately reflect heterogeneity in the

value of stage shifts across different cancer types to allow

estimation of cost-effectiveness, and 3) allow alternative

specifications for a screening program to be evaluated

(e.g., different age and risk groups, alternative screening

intervals, etc.). Modeling is therefore likely to underpin

such policy evaluations of MCED tests. This may include

statistical, mathematical, or calibration modeling to inte-

grate cancer-screening data and infer the natural history

of disease (NHD). It may also include decision modeling

to predict results with alternative screening regimens and

their longer-term clinical and cost-effectiveness.

Cancer-screening models typically include an NHD

component that describes the prevalence of preclinical

cancer (undiagnosed but detectable) and allows for

examining the effect of important policy options, such as

alternative specifications for the screening program. The

NHD model component describes cancer progression

through its preclinical stages over time (in the absence of

the proposed screening test) and may also consider can-

cer onset and the competing risks of clinical detection

(both incidental findings and symptomatic presentation)

and mortality. The challenge in evaluating these NHD

models arises from the fact that preclinical progression is

unobserved. Empirical data, however, can still provide

relevant information on preclinical cancer prevalence and

progression supporting inference, where the data are used

to infer the NHD model and help gain an understanding

of the likely values of the NHD model parameters in the

underlying population, using statistical and mathematical

approaches5 or calibration.6,7 Besides alternative evalua-

tion approaches, models in the general cancer screening

literature8,9 also use a variety of data sources and analyti-

cal methodologies, vary the core elements of the NHD

that are modeled (they may or may not model cancer

onset, the likelihood of clinical detection, and/or mortal-

ity), and vary whether and how within-tumor heterogene-

ity and overdiagnosis are modeled.

The objective of this article is to identify, review, and

critically appraise the existing literature for alternative

modeling approaches proposed for MCED that include

an NHD component. As the literature and approaches in

this area continue to develop and evolve, it is important

to critically examine the range of modeling approaches

that have been proposed for MCEDs and to assess the

extent to which specific features of model structure and

model evaluation can accommodate the complexity of

multicancer modeling. While there has been extensive dis-

cussion and consideration of the appropriate study design

to inform clinical utility,10 we are not aware of any publi-

cations that have attempted to systematically identify and
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critique existing modeling approaches and specifically the

extent to which they will be able appropriately integrate

the findings of these clinical utility studies. The article is

structured in the following way: the existing models are

identified and described in the ‘‘Review of Models’’ sec-

tion and critically appraised in the ‘‘Critical Appraisal’’

section, and the overall findings are discussed in the ‘‘Dis-

cussion’’ section. Box 1 provides a glossary of definitions

that will be used throughout.

Review of Models

Methods

Literature search for MCED models. A scoping litera-

ture review was developed and undertaken to identify

published models of MCEDs in relation to a compara-

tor. The review included models of NHD that incorpo-

rate both detection rates and predicted stage distribution

(stage shift) and that may also have extended these

Box 1 Glossary

Stage shift: change in the stage distribution attributed to screening

Sojourn time, time to transition, and dwell time: Sojourn time refers to the time spent in preclinical cancer, that is, the total time
from cancer onset to clinical diagnosis or death without diagnosis. Cancer onset is defined as the time when cancer is potentially
detectable by any medical test. This ensures that, for any particular analysis, sojourn time is independent of the individual
screening tests. Sojourn time for a particular cancer stage is the time spent in that preclinical stage of cancer; specifically, it is the
time until progression to the next stage, clinical detection, or death (whichever first).

Natural history of disease (NHD) models may be parameterized by using distributions that describe the times to each individual
transition allowed in the model, for example, time for early cancer in the preclinical stage to progress to advanced preclinical
cancer or time for preclinical cancer to be clinically detected.

Dwell time has been used in the literature to reflect time to stage progression, given the cancer does not get clinically detected at
that stage or the individual does not die from other causes at that stage. Note that, because GRAIL models model only
individuals who would be clinically diagnosed with cancers under current care, the term dwell time can be used interchangeably
to represent sojourn time.

Inference: Inference (statistical) is the process of forming judgments about the parameters of a population on the basis of data
obtained from (usually random) sampling. For NHD modeling, inference is often sought on multiple (populational) parameters
describing the NHD. Inference uses data to gain an understanding of the likely values of the NHD model parameters in the
underlying population.

Model identifiability: Identifiability is achieved when the number of observed quantities (the number of screen-detected and
interval cancers across different screens) is larger than the number of model parameters.

Correlation in progression parameters: Uncorrelated (or independent) parameters describing the progression between stages
assume that the time it takes for a cancer to progress between stage 1 and 2 is independent of the time it takes for the same
cancer to progress between stages 2 and 3. These quantities may also be assumed correlated, meaning that a cancer with a lower
time to progression between stage 1 and stage 2 would be expected to also present a lower time to progression in subsequent
transitions. Correlation or independence can also apply to sojourn time.

Length time bias: Length bias occurs when tumors with a longer sojourn time (slow growing), and more likely to be screen
detected, present a better prognosis. This implies that faster-progressing cancers (shorter sojourn time), and more likely to be
missed, present worse prognosis. In this case, screen-detected cases may appear to present a survival benefit that is due only to
the heterogeneity in detected cases.

Stage-shift assumption: This means that cases shifted to an earlier stage via screening are assumed to have the same survival as
cases detected in an earlier stage without screening.

Lead-time assumption: Lead time is defined as the time between when a cancer is detected by screening and when it would have
been detected without screening. The term lead-time assumption means mortality is not considered during lead time, and
therefore, bringing forward diagnosis through screening does not bring forward harms such as those from more aggressive
treatment.

Cancer overdiagnosis: We define overdiagnosis as the diagnosis, from screening, of a cancer that would not have been diagnosed
under current care.

Mandrik et al. 3



models to quantify effects on mortality. The search

methodology is reported in full in the online appendix.

Additional selected models. To further support the criti-

cal appraisal, additional selected models were added pur-

posively. We included 2 multidisease (but non-MCED)

models that were contemporary examples developed by

elements of our research team (and were therefore under-

stood in depth). We also included 2 single-disease models

that were cited by relevant authors to support existing

MCED models. For these additional models, the focus of

the review was on the modeling mechanisms and related

assumptions. These models provide background and con-

text for the modeling assumptions made in MCED mod-

els and for any changes/extensions made.

Extraction. The review extracted information on the fol-

lowing aspects: 1) model structure, including the number

and types of cancer, NHD parameterization, and model-

ing of screening impact; 2) how data were used within

the models, including key NHD assumptions and data

requirements; and 3) uncertainties related to NHD and

how these were considered. From the extracted informa-

tion, we identified the following features of the models

reviewed:

� Scope: The population modeled (whether only indi-

viduals with clinically diagnosed cancer were modeled

or the entire population eligible for screening, which

would have allowed quantifications of overdiagnosis)

and whether mortality effects were considered.
� Key data sources: Whether evidence on detection

with screening was considered (e.g., clinical trial) or

only evidence on cancer incidence under current care,

and whether external evidence on preclinical progres-

sion parameters (elicited or from the literature) was

used.
� Evaluation: Whether the model evaluation was based

on prediction or on inference and whether it is evalu-

ated at the cohort or individual level.

A predictive approach uses input evidence to directly

describe model parameters and calculates expected can-

cer detection algebraically, with and without screening.

NHD model parameters are prespecified using values or

distributions (using external sources such as other eva-

luations or expert opinion) before running the model,

which then outputs predictions. In contrast, inferential

approaches use cancer diagnosis data from samples of

individuals (for example, repeat screening data) to learn

about NHD model parameters. Because sojourn time is

not directly observable, the methods used differ from

standard regressions and employ mathematical tech-

niques such as deconvolution11 or calibration.6,7,12

� Structure and parameterization: whether a common

structure across cancer types is used; what level of dis-

aggregation of cancer stages was used (i.e., whether

individual stages were considered or whether they

were aggregated, e.g., early v. late cancer); whether

the impact of screening is predicted from test accu-

racy; whether mortality effect is predicted by applying

mortality in clinically detected cancer to the screening

stage distribution predicted by the model; what para-

meterization, distributional assumptions, and assump-

tions about the correlation between progression

parameters were used; whether overdiagnosis (defini-

tion in Box 1) is quantified within the NHD model.

Results

The review identified 5 different MCED models with an

NHD component: 4 funded by GRAIL (hereafter termed

GRAIL models) and specifically related to the Galleri

test13–16 and 1 based on a hypothetical MCED (although

using some inputs derived from the Galleri test).17 Four

additional models (non-MCED) were also reviewed: 2

multicancer models by Thomas18 and Mandrik et al.19

and 2 single-cancer models by Pinsky11 and Skates and

Singer.20 The 9 models were reviewed; these are described

in Table 1.

MCED models. Table 2 describes the key features of the

models reviewed. These models are referred to by the

name of the first author in the publication.

There are 4 GRAIL models: Hubbell, Sasieni, Tafaz-

zoli, and Dai.13–16 These use a common approach,

referred to as the interception model, to determine the

NHD and stage shift with the Galleri test, with the core

methodology rooted in the Hubbell model. These also

use a common set of evidence, including national cancer

incidence statistics (by type, stage, age, and gender),

expert or literature-derived sojourn time evidence,13,21

and test sensitivity from diagnostic studies.

The NHD component of the GRAIL models focuses

on individuals clinically diagnosed with cancer under

standard care. The GRAIL models use a common NHD

structure, assuming (Table 3) 1) disease progression

across 4 stages (stages 1, 2, 3, and 4) without regression;

2) progression is sequential, with cancers moving through

each stage until clinically detected; 3) sojourn times are

exponentially distributed; 4) sojourn times are

4 Medical Decision Making 00(0)



independent between stages; 5) mean sojourn times may

differ across cancer types (models consider groups of

cancers with distinct mean sojourn times); and 6) there is

no heterogeneity in sojourn times within tumor types

beyond that expected by chance (i.e., the expected value

of the sojourn time is equal for all individuals in the

model). The NHD does not include the probability of

cancer onset nor of clinical detection, and therefore, the

main NHD parameters are the stage-specific sojourn, or

dwell, times (see Box 1 for definitions).

All 4 GRAIL models consider stage shift as the main

clinical benefit of screening. Stage shift is evaluated pre-

dictively, using test sensitivity to determine the likelihood

of earlier detection. Mortality effects are also predicted

under the stage-shift assumption and the lead-time

assumption (Box 1), except in a scenario of the Tafazzoli

model, which considers mortality during lead time.

None of the GRAIL models reviewed evaluated

uncertainty probabilistically. In the context of predictive

modeling, this would have entailed describing uncer-

tainty in the input parameters and running probabilistic

analysis to evaluate uncertainty over models’ outputs.

Also, models incorporate within-tumor heterogeneity

only from the distribution of cancer diagnosis by age and

sex. Further consideration of these aspects is provided in

the ‘‘Critical Appraisal’’ and ‘‘Discussion’’ sections.

Although the GRAIL models are underpinned by the

same core methodology proposed in Hubbell, there are a

number of specific differences in terms of their parame-

terization and structural assumptions. The Sasieni

model15,22 applies the Hubbell model to UK cancer inci-

dence and mortality data and examines structural exten-

sions allowing consideration of differential survival of

cfDNA-detectable cancers, alternative cohorts and

screening regimens, and the possibility of nonsequential

progression from stage I to IV only. Tafazzoli’s model16

integrates Hubbell’s stage-shift matrices (i.e., the likeli-

hood of a cancer clinically detected in a particular stage

being detected by Galleri at each earlier cancer stage)

within a cohort model of 50-y-old individuals tested annu-

ally with Galleri until the age of 79 y. In Tafazzoli’s

model, stage-shifted individuals in each model cycle are

time shifted (shifted back in time to earlier cycles to

account for an earlier time of diagnosis), based on cancer-

specific sojourn times. Tafazzoli is the only Galleri model

that incorporates overdiagnosis (but not explicitly in the

NHDmodel) by increasing detection by a proportion that

is applied as an input to the model and extends the eva-

luation to cost-effectiveness. Dai’s model13 uses the core

assumptions of Hubbell’s model but evaluates the model

using individual patient simulation. It also describes

sojourn times from empirically derived estimates sourced

from other screening studies, rather than elicitation.

Our review identified only 1 MCED model that was

not funded by GRAIL: this is Lange’s model.17 This

model examines the impact of a hypothetical MCED

(using the estimates for test sensitivity that are relevant to

Galleri) on 12 cancer types. The model does not evaluate

overdiagnosis or mortality (extensions to mortality have

been further considered since publication, see https://ce-

darmodelingframework.shinyapps.io/mcedmodel/). It is

based on the same type of evidence as the GRAIL models

(age- and stage-specific clinical incidence data under cur-

rent care) but applies an alternative NHD model that is

more comprehensive in that it, in addition to preclinical

progression (for which it uses the more aggregate classifi-

cation of early v. late disease), also characterizes the

probability of cancer onset, the age of cancer onset, and

Table 1 List of Models Reviewed

Model Technology N Cancers Modeled Outcomes

GRAIL models
Hubbell 202114 Galleri test 19 Clinical
Sasieni 202315 Galleri test 24 Clinical
Tafazzoli 202216 Galleri test 23 Clinical and cost-effectiveness
Dai 202413 Galleri test 25 Clinical

Other MCED
Lange 202417 Hypothetical MCED (based on Galleri test) 12 Clinical

Other multicancer
Mandrik 202519 Dipstick test for bladder and kidney cancer 2 Clinical and cost-effectiveness
Thomas 202518 Imaging test for abdominal cancers 10 Clinical and cost-effectiveness

Other single-cancer
Skates 199120 Blood test (CA 125) for ovarian cancer 1 Clinical
Pinsky 200411 CT screening for lung cancer 1 Clinical

CT, computed tomography; MCED, multicancer early detection.

Mandrik et al. 5
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Table 2 Key Features of the Natural History of Disease (NHD) Models Reviewed

Scope Structural NHD Model Evaluation

Evidence for

NHD Uncertainty

Model

Population

Modeled

in the NHD

Mortality Effects

Included?

Common

Structure

across Cancer

Types?

Disease

Stages

in NHD?

Clinically Diagnosed

Cancer Mortality

Used on

Screen-Detected

Cases?

Cohort

Model

(v. IPL)

Approach,

NHD

Approach,

Comparative

Screening

Outcomes

Detection Data

on Screening?

External Preclinical

Progression Evidence?

Uncertainty Evaluated

(above Individual

Variability, Where

Relevant)?

GRAIL models

Hubbell 202014 Incident Yes Yes 1, 2, 3, and 4 Yes Cohort Prediction Prediction No Yes No

Sasieni 202315 Incident Yes Yes 1, 2, 3, and 4 Yes Cohort Prediction Prediction No Yes No

Tafazzoli 202216 Incident Yes Yes 1, 2, 3, and 4 Yes Cohort Prediction Prediction No Yes No

Dai 202413 Incident Yes Yes 1, 2, 3, and 4 Yes IPL Prediction Prediction No Yes No

Other MCED

Lange 202417 All No Yes Early v. late NA Cohort Inference,

ML

Prediction No Yes Yes

Other multidisease

Mandrik 202519 All Yes No 1, 2, 3, and 4 Yes IPL Inference,

Bayesian

calibration

Prediction No Yes (within priors) Yes

Thomas 202518 Screen

detected

Yes Yes 1, 2, 3, and 4 Yes Cohort,

multiple

Inference,

calibration

Prediction Yes, cases

of cancer

detected with

screening; no

data in the absence

of screening

Yes No

Other single disease

Skates 199120 Incident Yes NA Early v. late Yes IPL Prediction Prediction No Yes No

Pinsky 200411 All No NA Early v. late NA Cohort Inference,

ML

Yes, cases of

screen-detected

and interval cancers

by screening round

No Yes

IPL, coefficient of variation; individual patient level; ML, maximum likelihood estimation; NA, not applicable; NHD, natural history of disease.

6



Table 3 Assumptions over the Natural History of Disease (NHD) Model

NHD Model Element

Cancer Onset Preclinical Progression Parameter Probability of

Clinical

Identification

Mortality Included

in NHD Model

Overdiagnosis

Included in NHD

Model OtherDistribution Heterogeneity Parameterization Distributions Correlation?

GRAIL models Not modeled Individual parameters for

progression between stages

Exponential No Not modeled Yes, predictive No NA

Other MCED:

Lange

Hypoexponential (fixed

parameter m)

No Fixed values for time in overall

and late-stage preclinical

disease

Exponential No Exponential No No Clinical detection

rates described by

Poisson

distribution as

part of inference

Other multidisease:

Mandrik

Annual probability as a

function of age and

other risk factors

(cohort model

component)

Yes Individual parameters for

progression between stages,

using assumptions,

informative priors, and

constraints to ensure

identification

Weibull (IPL

model component)

Yes Annual probability

(cohort model

component)

Yes Yes Bayesian

calibration with

multiple targets

Other multidisease:

Thomas

Not modeled Individual parameters for

progression between stages

Triangular No Yes, for

comparator arm;

triangular

distribution

Yes, predictive Yes, by considering

competing

mortality

NA

Other single disease:

Skates

Not modeled Four-variate normal

distribution; ratio of time in

early v. late stage and

constant CV for each stage

were assumed constant

Four-variate normal

distribution

Yes Not modeled Yes, predictive No NA

Other single disease:

Pinsky

Cubic polynomial

function of age

No Single parameter for

progression between early

and late

Weibull (exponential

as special case)

No Weibull

(exponential as

special case)

Yes, predictive and

not used in NHD

model inference

Yes, predicted

using NHD

model estimates

and external

mortality

estimates

NA

CV, coefficient of variation; IPL, individual patient level; MCED, multicancer early detection; ML, maximum likelihood estimation; NA, not applicable; NHD, natural history disease
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the likelihood of clinical detection. Lange evaluates the

underlying NHD model parameters using an inferential

approach to describe clinical incidence rate data using a

Poisson distribution; however, not all parameters of the

model are identifiable based on age- and stage-specific

incidence data. Therefore, given these data, the authors

assumed fixed values for overall and late-stage sojourn

times (user defined) allowing estimating all unknown

parameters. It is unclear how inference over the early-

stage sojourn times is, however, reached.

Selected non-MCED models

Selected multicancer screening models. Mandrik’s

model19 examines the clinical and cost-effectiveness of a

urine dipstick test in screening for bladder and kidney

cancers. The NHD model structure includes cancer onset,

preclinical cancer progression through cancer stages (1 to

4), cancer detection, and mortality. Heterogeneity is

included by considering cancer onset to depend on age

and smoking status and by considering a separate cancer

pathway for nonfatal low-risk bladder cancers. Man-

drik’s model uses detection data for current care only

(due to the absence of data for the screening test under

evaluation) and summary evidence from the literature on

the impact of risk factors, test sensitivity, and other ele-

ments. The model is Markovian for all transitions except

for progression of preclinical cancers, which uses an indi-

vidual patient time-to-event formulation. The NHD

model was evaluated using Bayesian calibration (Metro-

polis–Hastings algorithm), an inferential calibration pro-

cedure that allows for uncertainty to be appropriately

integrated. Due to the absence of screening data, and to

ensure model identification, strong priors, assumptions,

and constraints over the NHD parameters were used. A

predictive approach anchored on test accuracy was used

to project screening outcomes from test accuracy, over-

diagnosis, and mortality impacts (from stage shifts)

Thomas’ model18 evaluates upper abdominal CT ima-

ging for the screening of 10 cancers (alongside other

abdominal diseases). It adopts a common structure

across all cancers, with progression across stages 1 to 4.

The model uses clinical incidence data with screening,

combined with elicited estimates of test sensitivity.

Despite not considering the probability of cancer onset,

the model considers the age of onset in those who were

screen detected. For the comparator arm, the model

simulates what would have happened to the screen-

detected individuals had they not been screened. In doing

so, it considers the competing events of stage progression,

clinical detection, and mortality in its structure. The

model is a multicohort Markov model, considering

various age and sex cohorts. The model conducts infer-

ence using a simplified non-Bayesian calibration (or fit-

ting process), which does not consider uncertainty over

the NHD, to evaluate outcomes for a cohort of

unscreened individuals from elicited values describing

stage-specific preclinical progression. Mortality impacts

were predicted from stage shifts. By considering that

those who would have been screen detected were at risk

of death if unscreened, the comparator arm considers

individuals dying with undiagnosed cancer and predicts a

lower number of cancer cases than in the screening arm.

Single-cancer models cited by authors of existing

MCED models. Skates’ model20 is cited in the GRAIL

models in support of the proposed interception model.

Skates examines the impact of screening for ovarian can-

cer with a blood biomarker using a predictive approach

combining ovarian cancer incidence with preclinical pro-

gression times across 4 cancer stages. The key difference

between this NHD model and the GRAIL NHD models

are that Skates uses patient-level simulation (all GRAIL

models except for Dai), a different parameterization of

time to stage progression using log-normal distributions

with fixed mean ratios between stages and a coefficient

of variation, and accounts for correlation between stages.

The impact of screening is predicted from biomarker lev-

els, and the mortality impact is predicted using the stage-

shift assumption and the lead time assumption while also

assuming a proportion of patients are cured.

Pinsky’s model11 is the key reference cited by Lange.

It uses the same structure as Lange but considers a range

of distributions for the NHD parameters and imposes

age dependency on time to cancer onset. Pinsky’s model,

however, uses screening trial data to achieve inference on

the NHD via maximum likelihood estimation. In doing

so, it carefully considers parameter identifiability from

the data.

Critical appraisal. In this section, we critically appraise

the existing MCED models for their key features, includ-

ing how these accommodate the multicancer context, and

highlight key uncertainties.

MCED effects are based on predictions rather than

direct evidence. A critical feature of this evaluation prob-

lem is the current absence of data on cancer detection

and mortality from screening with Galleri or other

MCED. The NHD models therefore use similar data,

namely, on cancer incidence data under current care and

expected sojourn times, to back-calculate or infer undiag-

nosed cancer prevalence. The lack of screening data

means that the accuracy of predictions and inferences in
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MCED models will rely on the use of an appropriate

NHD model and on the quality of the evidence underly-

ing/supporting the NHD parameters.

MCED models apply simplifying assumptions. It is unclear

where adding complexity may be most important. Existing

MCED models, despite the similarity in the data included,

have proposed a wide variety of modeling approaches for

the NHD—from predictive to inferential models, cohort to

individual-level simulation, more complex (or simpler)

assumptions over the NHD.MCEDmodels apply the most

assumptions (see Table 3) despite many being shared with

other models. This may be motivated by the multicancer

context and the need to reduce parameterization and

employ simpler evaluation approaches. There has been lim-

ited exploration of the impact of these simplifications, and

it is unclear where additional complexity may add value.

Some of the simplifying assumptions allow the NHD

to be evaluated algebraically as with the GRAIL models

(i.e., exponentially distributed preclinical progression

times with a common mean and independent across

stages). However, models run as individual patient-level

simulation, such as Skates and Mandrik, allow relaxing

these assumptions and varying the level of variation (het-

erogeneity) in sojourn time, that is, the proportion of

cases with extreme sojourn times. Existing explorations

are insufficient to identify the likely sources and key

impacts of heterogeneity but suggest important impacts

(see, for example, Sasieni’s scenario considering a pro-

portion of very-fast-progressing cancers).

Overdiagnosis is not explicitly modeled in MCED mod-

els, and adding this may add complexity to modeling. One

important potential harm of screening is overdiagnosis.

Overdiagnosis has the potential to be explicitly estimated/

predicted within an NHD model with a fuller structure

that characterizes heterogeneity and includes cancer onset

and mortality alongside preclinical progression and clini-

cal detection. None of the MCEDmodels have estimated/

predicted overdiagnosis within the NHD model, presum-

ably because of the reliance on a restricted structure and

scope to allow evaluation from cancer incidence data; for

example, Hubbell characterized only cancer progression

and Lange also included cancer onset but not mortality.

Of the broader models reviewed, those including a full

NHD structure, such as Mandrik, included overdiagnosis,

but none explicitly examined whether and how heteroge-

neity may affect overdiagnosis estimates.

Current MCED models do not appropriately character-

ize uncertainty in the NHD. Decisions in health are often

made under uncertainty, and explicit descriptions of

uncertainty help determine appropriate funding and

research decisions. Uncertainty in model inputs can be

described and propagated in prediction modeling; how-

ever, none of the predictive MCED models reviewed have

done so. Since our review was conducted, GRAIL pub-

lished an extension of the Tafazzoli model that includes

probabilistic analysis,23 although, in this analysis, none of

the NHD parameters were assumed uncertain (e.g.,

sojourn times, mortality). Of the MCED models, only

Lange considers uncertainty in the NHD by implementing

an inferential procedure describing the cancer incidence

data as uncertain. However, other important sources of

uncertainty were not formally included in Lange’s model,

such as uncertainty over sojourn times, but can be exam-

ined by varying the choice of sojourn time inputs.

All models predict mortality effects using the stage-shift

assumption. The stage-shift assumption is plausible only

if cancers detected by a screening test do not differ sys-

tematically in their characteristics from clinically detected

cancers. For example, if the higher ctDNA shedding

expected in cancers detected by Galleri is associated with

worse prognosis, the capacity of stage-shifted cancers to

benefit may be smaller than expected. The Sasieni model

examined hypothetical reductions in the capacity to bene-

fit of stage-shifted cancers and showed that the effect can

be significant. A number of publications have explored

the accumulation of evidence, across screening trials, in

support of the stage-shift assumption.13,24,25 However,

the validity of this assumption for particular multicancer

tests is unknown until well-designed clinical research

reports on the mortality effects. The NHS Galleri trial, at

the time its primary endpoint reports, may not provide

sufficient mortality evidence, and this is therefore likely

to remain a key uncertainty for decision making.

Discussion

We identified, summarized, and critically appraised the

NHD components of models of the clinical and/or eco-

nomic impact of using MCED tests in a screening pro-

gram and found that these models are characterized by

the absence of screening data, by the limited use of infer-

ence, and by the limited characterization of uncertainty,

heterogeneity, and overdiagnosis within the NHD. Our

critical appraisal identified limitations of current MCED

models and highlighted the limited exploration of the

impact of modeling assumptions.

While recognizing the value of predictive models in

anticipating future effects and making data-informed

research and development decisions, our findings have

important implications for the development of future

models of the clinical and cost-effectiveness of MCED

Mandrik et al. 9



screening programs used to inform clinical and policy

decisions, which will need to incorporate clinical utility

study evidence in support of these decisions. This requires

an inferential approach, but, to date, no such approach

has been developed to include screening data in the multi-

cancer context. There is an extensive literature on inferen-

tial approaches used in the single-disease context, which

includes 1) mathematical/statistical models that typically

using a single main source of evidence and a clear specifi-

cation of the model (NHD) with lower dimensionality

(e.g., typically aggregating cancer stages for example) and

2) calibration models, typically using multiple sources of

evidence (as calibration targets) and, perhaps for this rea-

son, a higher dimensionality. In this article, we did not

review this broader literature, but the future development

of an inferential approach for MCEDs should draw on it.

MCED trials, like the NHS-Galleri trial, are likely to

be powered on stage-shift outcomes aggregated over mul-

tiple cancer types, and estimates for each cancer type will

need to be strengthened using modeling alongside addi-

tional external evidence. Model identifiability will need

to carefully consider higher parameterizations (e.g., more

detailed descriptions of between- and within-tumor het-

erogeneity) and the support of the evidence for structural

simplifications in such descriptions and in the potential

aggregation across cancer stages. GRAIL models disag-

gregate across the 4 cancer stages, but most mathematical

approaches aggregate stages into early and advanced

cancer or simply distinguish preclinical from clinical can-

cers. Uncertainty over the stage-shift assumption needs

to be examined in further work in support of decision

making. This should have appropriate consideration for

the fact that screen-detected cancers may differ (in prog-

nosis) from non–screen-detected cancers.

Computational burden is also of concern, as more com-

plex models may compromise transparency and accessibil-

ity, particularly for calibration approaches, typically using

individual-level simulation, applied in the multicancer con-

text. Alternatives to individual-level simulation can be

considered, such as the multicohort model structure exem-

plified in Thomas. It partitions the cohort into subcohorts

based on relevant baseline characteristics, such as risk or

demographic groups.

Other key considerations for future MCED model

development relate to overdiagnosis and within-tumor

heterogeneity. In what concerns overdiagnosis, there are

important challenges in obtaining valid empirical esti-

mates,26 and therefore, decision making may initially need

to consider estimates from modeling that require exten-

sions to existing MCED modeling approaches (see the

‘‘Critical Appraisal’’ section). With regard to within-tumor

heterogeneity, this is known to exist across several cancer

types. Heterogeneity has been considered in the broader

screening modeling literature structurally, for example, by

adding states for indolent or slow-growing cancers27 and

in its contribution to overdiagnosis.28 While describing

heterogeneity depends on model specification,29 it can lead

to more accurate estimates but also increased uncer-

tainty.30,31 The NHS-Galleri trial will not provide charac-

terization of within-tumor heterogeneity, so it is important

to better understand its potential effects (on detection,

overdiagnosis, and mortality), to support further evidence

gathering in support of further model development.

Multicancer technologies are developing rapidly, and

large and costly clinical studies are being designed and

implemented across the globe. Recognizing the need to

produce clinical and economic evidence suitable for con-

sideration by committees deciding whether to introduce

MCED-screening programs, it is important that similar

efforts are made in the development of MCED models

that make the best use of the available data and that the

data required to fit those models from clinical studies are

made widely available.
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