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AbstractÐWe present FLAMO, a Frequency-sampling Library
for Audio-Module Optimization designed to implement and
optimize differentiable linear time-invariant audio systems. The
library is open-source and built on the frequency-sampling filter
design method, allowing for the creation of differentiable modules
that can be used stand-alone or within the computation graph
of neural networks, simplifying the development of differentiable
audio systems. It includes predefined filtering modules and auxil-
iary classes for constructing, training, and logging the optimized
systems, all accessible through an intuitive interface. Practical
application of these modules is demonstrated through two case
studies: the optimization of an artificial reverberator and an
active acoustics system for improved response coloration.

Index TermsÐAudio systems, gradient methods, machine
learning, optimization, reverberation.

I. INTRODUCTION

As Engel’s differentiable digital signal processing

(DDSP) [1] became a popular approach to modeling audio

synthesis and processing techniques, there has been increasing

interest in interpretable and differentiable audio processors

such as filters, equalizers (EQs), and reverberators [2]±[6]. The

appeal lies in the ability to run gradient-based optimization of

their parameters, embed them in neural networks, or generate

their parameters via hyperconditioning [7].

Frequency sampling is a technique used in DDSP, where

the system’s response is sampled at discrete complex fre-

quencies. This approach is particularly useful for linear time-

invariant (LTI) systems, as the convolution operation allows

factorization of their frequency response into a cascade of

processing units with multiplied frequency responses. More

often, frequency sampling is used to obtain a finite impulse

response (FIR) approximation of infinite impulse response

(IIR) filters [2], simplifying the implementation compared to

time-domain methods, which suffer from vanishing/exploding

gradients, high memory costs, and slow training [2]±[4]. Us-

ing frequency-sampling, Nercessian [8] realized a parametric

EQ using differentiable biquads, later extending it to model

audio distortion effects [7]. Similarly, Lee at al. [5] applied

this approach to create differentiable artificial reverberators

using filtered velvet noise [9] and feedback delay networks

(FDN) [10], and used them to train a neural network as a

The Aalto University School of Electrical Engineering funded the work of
the first author.

parameter estimator. The authors used frequency sampling to

optimize an FDN for smooth, natural-sounding reverbs [11],

[12]. Similarly, the authors optimized an active acoustics (AA)

system to achieve a flat feedback loop magnitude response and

improve system stability [13].

This paper presents FLAMO, a Python library for trainable

DDSP modules based on frequency sampling. The library

is developed using the PyTorch framework for automatic

differentiation [14]. It is freely available online1, under a per-

missive open-source license, and comes with comprehensive

documentation2. We demonstrate its application in artificial

reverberation and AA by replicating the author’s previous

work [11]±[13] using the library’s classes and modules.

One issue with frequency sampling is balancing accuracy

and computational efficiency. Higher sampling densities can

provide more accurate filter response approximations by reduc-

ing time-aliasing [15], but they also increase the computational

load. Moreover, ensuring the stability of IIR filters can be

challenging. To address these challenges, we propose an anti-

aliasing method that uses exponential decaying time envelopes

and assignable mapping functions to map raw filter parameters

to a target distribution. In addition, FLAMO provides methods

for logging intermediate results, domain flexibility, integration

with neural networks, and pre-configured trainer and dataset

classes, making it a versatile tool for the DDSP community.

The paper is structured as follows. Sec. II provides back-

ground on frequency-domain optimization and the proposed

time-aliasing reduction method. Sec. III gives an overview

of the library’s core and utility classes. Sec. IV validates the

library’s effectiveness. Sec. V concludes the paper.

II. FREQUENCY-DOMAIN OPTIMIZATION

A. Frequency sampling method

IIR filters can be found in many audio effects, such as re-

verbs, EQs, and tone-shaping filters [16], [17]. While differen-

tiable FIR filters can be implemented directly by convolutional

layers [2], implementing IIR filters is more challenging due to

their recursive nature and stability requirements. To avoid the

drawbacks of time-domain optimization [2]±[4], the frequency

1https://github.com/gdalsanto/flamo
2https://gdalsanto.github.io/flamo
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sampling method can be used to create an FIR approximation

of IIR filters by sampling the filter’s frequency response

at discrete complex frequencies [7], [8] whose resolution is

chosen to minimize time-aliasing distortion [5], [7].

The response of a real-valued filter is sampled on a vector

of linearly-spaced frequencies from 0 to π rad/s:

zM “ reȷπ 0

M´1 , eȷπ
1

M´1 , . . . , eȷπ
M´2

M´1 , eȷπs, (1)

where M is number of frequency bins, and ȷ “
?

´1. The

frequency response of a single-input and single-output IIR

filter H of order N can be evaluated over zM as follows

HpzM q “ DFTpbq
DFTpaq “ b0 ` b1z

´1

M ` ¨ ¨ ¨ ` bNz
´N`1

M

a0 ` a1z
´1

M ` ¨ ¨ ¨ ` aNz
´N`1

M

, (2)

where coefficients b “ rb0, b1, . . . , bN s and a “
ra0, a1, . . . , aN s are the feedforward and feedback gains of

the filter, respectively. We assume real-time-domain signals

such that their discrete Fourier transform (DFT) is described

completely by the frequency bins in zM .

The overall frequency response of two cascaded systems,

denoted as H1 and H2, is obtained by multiplying their

frequency response matrices, as long as the input and output

dimensions are consistent,

HseriespzM q “ H1pzM qH2pzM q, (3)

where the use of boldface notation indicates a multiple-

input and multiple-output (MIMO) system. Meanwhile, for

a recursive system with feedforward path described by G

and feedback path described by F , the resulting frequency

response is determined by

HrecursionpzM q “ pI ´ GpzM qF pzM qq´1
GpzM q, (4)

where I is the identity matrix of the same size as GF .

To determine hrns we perform the inverse DFT (IDFT) by

using the Hermitian property of real-valued signals on the

frequency response HpzM q. However, if the effective duration

L of the impulse response (IR) exceeds the Fourier transform

length 2pM ´ 1q, hrns will experience aliasing [2], [5],

[15]. This issue is especially significant for lossless systems,

where there are frequency points zm “ eȷπ
m

M´1 such that

Hpzmq “ 8. For lossy IIR filters, the time-aliasing error

asymptotically decreases as the value of M increases [5], at the

cost of higher computational expense. Fig. 1 demonstrates time

aliasing in the IR of an FDN used to synthesize reverb with

homogeneous decay [18], characterized by a reverberation

time T60 of 9 s. To produce the IR, we performed DFT with

M “ 2fs (orange) and M “ 10fs (black), where fs is the

sampling frequency. Due to time aliasing, the orange curve

exhibits spurious impulses both before and after the actual

onset time.

B. Time-aliasing mitigation

To mitigate time-aliasing, we propose an anti-aliasing

method that involves applying an exponentially decaying en-

Fig. 1. IR of an FDN decaying with T60 “ 9 s with (orange) and without
(black) time aliasing.

velope, denoted as γn for n ě 0, before transforming to the

frequency domain. The IR of each module is then given by

ĥrns “ hrnsγn, (5)

where 0 ă γ ď 1 is the decay parameter.

Using the DFT pair f rnsγn “ f rnsen ln γ and F pω`ȷ ln γq,

where f rns is a real function with DFT F pωq and ω is the

angular frequency in rad/s, we can express the frequency

response of (5) as Ĥpeȷωq “ Hpeȷpω`ȷ ln γqq “ Hpeȷω{γq.

Thus, introducing an exponential decay in the time domain

corresponds to sampling the frequency response outside the

unit circle, with a radius of 1{γ. The original IR h can then

be recovered from ĥ by compensating for the decay in time-

domain, i.e.,

hrns “ ĥrnsγ´n “ IDFTpĤpeȷωqqγ´n. (6)

If samples in the wrapping region during convolution are not

sufficiently attenuated by γn, they appear at the start of the

impulse response. Conversely, a very small γn can amplify

numerical noise, which depends on machine precision. Thus,

γ must be carefully selected to balance attenuation and noise.

The technique can be applied to a series of multiple LTI

modules. By consistently applying the same exponential decay

to each time-domain filter before performing the DFT, one

can effectively manage time-domain aliasing. This method

is particularly useful for enhancing the early response of a

system. Without such a technique, avoiding aliasing would

either necessitate excessive damping of the system or require

computing the entire response, both of which are inefficient.

III. FLAMO LIBRARY STRUCTURE

Fig. 2 provides an overview of the FLAMO library’s

structure. The primary class is DSP, from which the Gain,

Filter, and Delay classes inherit attributes and methods.

The library’s interface has been simplified by the Trainer

and Shell utility classes, which allow users to set training

parameters, initiate optimization, and log intermediate results.

Each processing module receives the frequency response of

the incoming signal as input and multiplies it by the frequency

response of the system that the module represents. This opera-

tion is defined using notation based on the Einstein summation

convention using the torch.einsum() function [19]. Fre-

quency responses are complex-valued tensors, and we utilize



DSP

Gain
parallelGain

Filter
parallelFilter

Delay
parallelDelay

Matrix
HouseholderMatrix

SVF
parallelSVF

Biquad
parallelBiquad

GEQ
parallelGEQ

Transform FFT
IFFT

Series
Recursion
Shell
Trainer

Signal processing Utility

Fig. 2. Inheritance tree of the classes in the FLAMO library designed for
signal processing (left) and utility (right) purposes.

PyTorch’s ability to backpropagate through real-valued func-

tions of complex tensors via Wirtinger calculus [20]. Safety

checks are implemented to ensure coherent tensor shapes and

frequency-sampling parameter values.
Each module operates as a MIMO system. In the case

of parallel processing, where each channel of the incoming

signal passes through a different instance of the same system,

element-wise vector multiplication of the frequency responses

can be used to reduce the number of computations. For this

purpose, each class has a corresponding parallel* version,

where * denotes the original system module. A summary of

the shapes of the tensors expected and produced by each class

is provided in Table I, from which the Delay class has been

omitted since it shares the same shapes as the Filter class.

A. Digital signal processor class

The DSP class represents a generic learnable module within

the library. It inherits from PyTorch’s nn.Module [21],

with its primary attribute, param, representing the learnable

parameters for each instance of the class. These parameters

can be mapped from the initial distribution to a user-specified

distribution via the map argument. By default, the distribution

is set to normal at initialization. Some inherited classes built

into the library have predefined mappings to ensure system

stability or to achieve filter-specific parameterizations.

The Gain and Matrix child classes implement systems

of broadband gains. The latter allows one to choose among

a set of pre-built mappings, such as mappings to orthogonal

matrices [22]. For FIR filters one can use the Filter class.

The library provides subclasses for the most commonly used

filter parameterizations, including biquad, state variable filter

(SVF) [3], [23], and graphic EQs (GEQs) [17], [24]. The

Biquad class implements low-pass, high-pass, and band-pass

filters using RBJ cookbook formulas [25], which map the cut-

off frequency and gain parameters to the b and a coefficients.

For higher-order filters, the SVF class allows cascading mul-

tiple biquad filters parameterized by SVF parameters. These

parameters offer simpler stability conditions [3], [23] and often

outperform raw biquad parameters [5]. The SVF class includes

pre-built mappings for second-order low-pass, high-pass, and

band-pass filters, as well as low-shelf, high-shelf, peaking,

and notch filters [23]. Alternatively, the class can initialize a

generic SVF filter with random mixing coefficients. The GEQ

class implements GEQs as described in [24] for full and one-

third octave intervals.

TABLE I
FREQUENCY RESPONSE SHAPES FOR EACH MODULE, THEIR EXPECTED

INPUT, AND THE PRODUCED OUTPUT. NIN AND NOUT ARE THE INPUT AND

OUTPUT DIMENSIONS, M IS THE NUMBER OF FREQUENCY POINTS, AND B

IS THE BATCH SIZE.

Class Module Hpzq Input Output

Gain NoutNin BMNin BMNout

parallelGain Nin BMNin BMNin

Filter MNoutNin BMNin BMNout

parallelFilter MNin BMNin BMNin

Differentiable delays are implemented directly in the fre-

quency domain via the complex exponential z´m
M , where m

is the delay in samples. By default, delays are fractional,

but integer sample delays can be requested. The learnable

parameter of the Delay class is the delay length in seconds.

We recommend adjusting the unit attribute, which controls

the time unit, as using subdivisions or multiples of time can

improve update effectiveness in certain applications.

B. Utility classes

The Series class extends PyTorch’s

nn.Sequential [26] to maintain coherence among

chained modules and prevent error-prone nesting. The

Recursion class implements a recursive closed-loop

frequency response (4) having processing modules as

feedforward and feedback paths. The Shell class is

a container designed to interface the user-defined DSP

chain with the desired loss function and to provide

auxiliary functionalities. It has three main attributes:

core, input_layer, and output_layer. The core

represents the differentiable system to be optimized, while

input_layer and output_layer handle transformations

between the system, the dataset input, and the loss function.

The Shell keeps these components separate, allowing the

system to be defined independently of the loss function and

dataset. Additionally, the class includes methods to return

the system’s time and frequency responses by temporarily

modifying the input and output layers.

Series, Recursion, and Shell classes also ensure

that the operational flow attributes, e.g. M , are consistent

across all modules, between feedforward and feedback paths,

and between input_layer, core, and output_layer,

respectively. The Trainer class manages the optimization

of the modules within a system, it handles key functionalities

such as initialization of training parameters, criterion manage-

ment, training loop, and logging of intermediate states.

IV. APPLICATIONS

A. Active acoustics

AA systems are used to electronically provide controlled

variability in the acoustics of closed spaces [27]±[29]. They

consist of microphones, loudspeakers, and a DSP unit. The AA

system must be well-tuned to blend the artificial sound field

with the natural-room sound field and to avoid coloration arti-

facts. The tuning process requires time and expertise, as many



Fig. 3. (Left) Eigenvalue magnitude distribution and (right) spectrogram of
an active acoustics system before and after optimization for spectral flatness.

parameters, e.g. transducer gains and filter coefficients, must

be carefully chosen. Previously, the authors have demonstrated

the applicability of DDSP in the AA scenario to automatize

the tuning process to flatten the spectral behavior, which led

to a reduced coloration in the full-system IR [13].

We redefine the former design [13] with the FLAMO library.

The Filter class implements the learnable FIR matrix Upzq
and a fixed white-Gaussian-noise-reverb matrix Rpzq. The

general system gain G is built with the parallelGain

class. The loudspeaker-to-microphone IR matrix HLM is im-

plemented as a Filter-class instance of the measured room

IRs. The transfer function matrix describing one feedback-

loop iteration is FMMpzq “ GHLMpzqRpzqUpzq. We run

optimization to flatten the frequency response of FMMpzq
and improve the system stability. Fig. 3 presents the opti-

mization results for the magnitude eigenvalue distribution and

the spectrograms of the full-system IR. In the box plot, the

lower and upper edges represent the 25th and 75th percentiles,

respectively, highlighting the narrowing of the magnitude

eigenvalue distribution from initialization. The coloration arti-

facts, indicated by long-ringing modes in the spectrograms, are

also considerably attenuated. The black dot in Fig. 3 indicates

the maximum outlier of the initial and optimized eigenvalue

magnitude distribution and it is responsible for the strong

resonance at 1 kHz in the top-spectrogram. Further outliers

have not been considered as they don’t add information

regarding system stability or spectral flatness.

B. Delay-line-based artificial reverberation

The FDN is a recursive system used in reverb synthesis [10],

[16], [18] and consists of delay lines m, a set of input and

output gains b and c, and a scalar feedback matrix through

which the delay outputs are coupled to the delay inputs. The

transfer function of the FDN is

Hpzq “ c
J

“

Dmpzq´1 ´ A
‰´1

b ` d (7)

where A is the N ˆ N feedback matrix, with N being the

number of delay lines, Dmpzq is the diagonal delay matrix,

and d is the direct gain. The operator p¨qJ denotes the trans-

pose. A common design choice is to start with a lossless FDN

prototype with a smooth response. This can be achieved by

-60

-40

-20

0
(dB)

-60

-40

-20

0
(dB)

Fig. 4. Effect of the optimization of an FDN of size N “ 6 with gain
coefficient optimized to improve smoothness. Echo density profile (a) modal
excitation distribution (c) and spectrogram of the IR (b) before and (d) after
optimization.

using an orthogonal matrix A [30], [31] optimized for spectral

flatness and temporal density [11], [12]. Attenuation filters are

then inserted to control frequency-dependent T60 [10], [24],

[32], [33]. We implement and optimize a lossless FDN with

temporal anti-aliasing using FLAMO. This approach contrasts

with [11], [12], where the system had to be made lossy to

enable backpropagation. Matrix A is implemented using a

learnable Matrix-class instance with orthogonal mapping.

Input and output gains are learnable Gain-class instances. De-

lays of given lengths are an instance of the parallelDelay

class. The attenuation filters are then implemented using the

class parallelGEQ, with the parameter mapping proposed

in [24], and inserted in the optimized system.

Improvements in temporal density can be observed from

the echo density profile [34], which is representative of the

distribution of reflections over time. Fig. 4 (a) shows a faster

echo build-up achieved by the optimized FDN. Reduction in

coloration is reflected by a narrower distribution of the modal

excitation [35] depicted in Fig. 4 (c), where a significant

attenuation of the loudest modes can be observed. Fig. 4 (b)

and (d) show the spectrogram of the system’s response before

and after optimization, respectively. The optimization results

in more evenly distributed energy across the frequency range,

reducing coloration artifacts.

V. CONCLUSION

The FLAMO library for frequency-sampling optimization of

differentiable audio modules simplifies the implementation and

optimization of differentiable LTI systems, offering an intuitive

API, and can be integrated with PyTorch neural networks.

We validate the library’s effectiveness through artificial and

enhanced reverberation scenarios. The source code is available

in an online repository1 and on the Python package index3. We

plan to continuously expand the FLAMO library to support the

audio signal processing community.

3https://pypi.org/project/flamo

https://pypi.org/project/flamo
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