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Distance-based (and path-based) covering problems for graphs of

given cyclomatic number∗

Dibyayan Chakraborty† Florent Foucaud‡ Anni Hakanen§¶‡

May 20, 2025

Abstract

We study a large family of graph covering problems, whose definitions rely on distances, for graphs
of bounded cyclomatic number (that is, the minimum number of edges that need to be removed from
the graph to destroy all cycles). These problems include (but are not restricted to) three families of
problems: (i) variants of metric dimension, where one wants to choose a small set S of vertices of the
graph such that every vertex is uniquely determined by its ordered vector of distances to the vertices
of S; (ii) variants of geodetic sets, where one wants to select a small set S of vertices such that any
vertex lies on some shortest path between two vertices of S; (iii) variants of path covers, where one
wants to select a small set of paths such that every vertex or edge belongs to one of the paths. We
generalize and/or improve previous results in the area which show that the optimal values for these
problems can be upper-bounded by a linear function of the cyclomatic number and the degree 1-
vertices of the graph. To this end, we develop and enhance a technique recently introduced in [C.
Lu, Q. Ye, C. Zhu. Algorithmic aspect on the minimum (weighted) doubly resolving set problem of
graphs, Journal of Combinatorial Optimization 44:2029–2039, 2022] and give near-optimal bounds in
several cases. This solves (in some cases fully, in some cases partially) some conjectures and open
questions from the literature. The method, based on breadth-first search, is of algorithmic nature
and thus, all the constructions can be computed in linear time. Our results also imply an algorithmic
consequence for the computation of the optimal solutions: for some of the problems, they can be
computed in polynomial time for graphs of bounded cyclomatic number.

1 Introduction

Distance-based covering problems in graphs are a central class of problems in graphs, both from a struc-
tural and from an algorithmic point of view, with numerous applications. Our aim is to study such
problems for graphs of bounded cyclomatic number. The latter counts the number of edges that need to
be removed from a graph to make it acyclic; it is a measure of sparsity of the graph that is popular in both
structural and algorithmic graph theory [17, 47, 73] that has classic applications in program testing [57].

Although distance-based covering problems are very diverse, they share some properties that make
them behave similarly in certain contexts, a fact that has already been observed for some of these
problems, in particular, the metric dimension and the geodetic number problems [8, 29, 28]. Notably,
regarding algorithmic applications, contrary to more “locally defined” problems, they often do not behave
well for graphs of bounded treewidth [41, 44, 50]. The goal of this paper is to demonstrate that, for the
more restrictive graphs of bounded cyclomatic number, interesting bounds can be derived, using a similar
technique that is both simple and powerful. The obtained bounds also lead to efficient algorithms for
these graphs. We will mainly focus on three types of such problems, as follows.
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Metric dimension and its variants. In these concepts, introduced in the 1970s [67, 36], the aim is
to distinguish elements in a graph by using distances. A set S ⊆ V (G) is a resolving set of G if for all
distinct vertices x, y ∈ V (G) there exists s ∈ S such that d (s, x) ̸= d (s, y). The smallest possible size of a
resolving set of G is called the metric dimension of G (denoted by dim(G)). During the last two decades,
many variants of resolving sets and metric dimension have been introduced. In addition to the original
metric dimension, we consider the edge and mixed metric dimensions of graphs. A set S ⊆ V (G) is an
edge resolving set of G if for all distinct edges x, y ∈ E(G) there exists s ∈ S such that d (s, x) ̸= d (s, y),
where the distance from a vertex v to an edge e = e1e2 is defined as min{d (v, e1) , d (v, e2)} [43]. A mixed
resolving set is both a resolving set and an edge resolving set, but it must also distinguish vertices from
edges and vice versa; a set S ⊆ V (G) is a mixed resolving set of G if for all distinct x, y ∈ V (G) ∪ E(G)
there exists s ∈ S such that d (s, x) ̸= d (s, y) [42]. The edge metric dimension edim(G) (resp. mixed
metric dimension mdim(G)) is the smallest size of an edge resolving set (resp. mixed resolving set) of G.
More on the different variants of metric dimension and their applications (such as detection problems in
networks, graph isomorphism, coin-weighing problems or machine learning) can be found in the recent
surveys [48, 70].

Geodetic numbers. A geodetic set of a graph G is a set S of vertices such that any vertex of G lies
on some shortest path between two vertices of S [35]. The geodetic number g (G) of G is the smallest
possible size of a geodetic set of G.

The version where the edges must be covered is called an edge-geodetic set [4]. “Strong” versions of
these notions have been studied. A strong (edge-) geodetic set of graph G is a set S of vertices of G such
that we can assign for any pair x, y of vertices of S a shortest xy-path such that each vertex (edge) of G
lies on one of the chosen paths [3, 51, 54].

Recently, the concept of monitoring edge-geodetic set was introduced in [33] (see also [9, 20, 32, 37])
as a strengthening of a strong edge-geodetic set: here, for every edge e, there must exist two vertices x, y
in the monitoring edge-geodetic set such that e lies on all shortest paths between x and y.

These concepts have numerous applications related to the field of convexity in graphs, see the book [60].
We also consider the concept of distance-edge-monitoring-sets introduced in [30, 31] and further

studied in [38, 74, 75], which can be seen as a relaxation of monitoring edge-geodetic sets. A set S is a
distance-edge-monitoring-set if, for every edge e of G, there is a vertex x of S and a vertex y of G such
that e lies on all shortest paths between x and y.

Path covering and partition problems. In this type of problem, one wishes to cover the vertices
(or edges) of a graph using a small number of paths. For path partition problems, the paths are required
to be vertex-disjoint, but for path covering, they may not be. A path cover (path partition, respectively)
is a set of (vertex-disjoint) paths of a graph G such that every vertex of G belongs to one of the paths.
If one path suffices, the graph is said to be Hamiltonian, and deciding this property is one of the most
fundamental graph-algorithmic problems. The paths may be required to be shortest paths, in which case
we have the notion of an isometric path cover/partition [12, 13, 21, 25, 27, 69]; if they are required to be
chordless, we have an induced path cover/partition [25, 49, 55]. The edge-covering versions have also been
studied [2]. This type of problems has numerous applications, such as program and circuit testing [2, 58],
vehicle routing [72] or bioinformatics [11]. They are the subject of well-known studies in graph theory,
such as the Gallai-Milgram theorem [34] or conjectures by Berge [7] and Gallai [52].

Our goal. Our objective is to study the three above classes of problems, on graphs of bounded cy-
clomatic number. (See Figure 1 for a diagram showing the relationships between the optimal solution
sizes of the studied problems.) A feedback edge set of a graph G is a set of edges whose removal turns
G into a forest. The smallest size of such a set, denoted by c (G), is the cyclomatic number of G [6]. It
is sometimes called the feedback edge (set) number or the cycle rank of G. For a graph G on n vertices,
m edges and k connected components, it is not difficult to see that we have c (G) = m − n + k, since a
forest on n vertices with k components has n − k edges. In this paper, we assume all our graphs to be
connected. To find an optimal feedback edge set of a connected graph, it suffices to consider a spanning
tree; the edges not belonging to the spanning tree form a minimum-size feedback edge set.
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Graphs whose cyclomatic number is constant have a relatively simple structure. They are sparse
(in the sense that they have a linear number of edges). They also have bounded treewidth (indeed the
treewidth is at most the cyclomatic number plus one), a parameter that plays a central role in the area of
graph algorithms, see for example Courcelle’s celebrated theorem [18]. Thus, they are studied extensively
from the perspective of algorithms (for example for the metric dimension [24], the geodetic number [44]
or other graph problems [17, 19, 26, 47, 71]). In particular, in many cases, distance-related problems are
computationally hard on graphs of bounded treewidth [40, 41, 44, 50]. Thus, for this type of problems,
it is of interest to design efficient algorithms for graphs of bounded cyclomatic number. Graphs of given
cyclomatic number are also studied from a more structural angle [1, 64, 65, 66, 73].

Conjectures addressed in this paper. In order to formally present the conjectures, we need to
introduce some structural concepts and notations. A leaf of a graph G is a vertex of degree 1, and the
number of leaves of G is denoted by ℓ (G). Consider a vertex v ∈ V (G) of degree at least 3. A leg attached
to the vertex v is a path p1 . . . pk such that p1 is adjacent to v, deg(pk) = 1 and deg(pi) = 2 for all i ̸= k.
The number of legs attached to the vertex v is denoted by l (v).

A set R ⊆ V (G) is a branch-resolving set of G, if for every vertex v ∈ V (G) of degree at least 3 the
set R contains at least one element from at least l (v) − 1 legs attached to v. The minimum cardinality
of a branch-resolving set of G is denoted by L (G), and we have

L (G) =
∑

v∈V (G), deg(v)≥3, l(v)>1

(l (v)− 1).

It is well-known that for any tree T with at least one vertex of degree 3, we have dim(T ) = L (T )
(and if T is a path, then dim(T ) = 1) [15, 36, 45, 67]. This has motivated the following conjecture.

Conjecture 1 ([66]). Let G be a connected graph with c (G) ≥ 2. Then dim(G) ≤ L (G) + 2c (G) and
edim(G) ≤ L (G) + 2c (G).

The restriction c (G) ≥ 2 is missing from the original formulation of Conjecture 1 in [66]. However,
Sedlar and Škrekovski have communicated to us that this restriction should be included in the conjecture.
Conjecture 1 holds for cacti with c (G) ≥ 2 [66]. The bound dim(G) ≤ L (G) + 18c (G) − 18 was shown
in [24] (for c (G) ≥ 2), and is the first bound established for the metric dimension in terms of L (G) and
c (G) (note that the bound holds even for a vertex-weighted variant of metric dimension). The bound
dim(G) ≤ L (G) + 6c(G) was proved in [10].

Sedlar and Škrekovski [65] also posed the following refinement of the previous conjecture, where δ(G)
is the minimum degree of G.

Conjecture 2 ([65]). If δ(G) ≥ 2 and G ̸= Cn, then dim(G) ≤ 2c (G)− 1 and edim(G) ≤ 2c (G)− 1.

In [65], Sedlar and Škrekovski showed that Conjecture 2 holds for graphs with minimum degree at
least 3. They also showed that if Conjecture 2 holds for all 2-connected graphs, then it holds for all graphs
G with δ(G) ≥ 2. Recently, Lu at al. [53] addressed Conjecture 2 and showed that dim(G) ≤ 2c(G) + 1
when G has minimum degree at least 2.

Conjecture 3 ([64]). Let G be a connected graph. If G ̸= Cn, then mdim(G) ≤ ℓ (G) + 2c (G).

Conjecture 3 is known to hold for trees [42], cacti and 3-connected graphs [64], and balanced theta
graphs [63].

The following conjecture on distance-edge-monitoring sets was also posed recently.

Conjecture 4 ([30, 31]). For any graph G, dem (G) ≤ c (G) + 1.

Here, dem (G) is the the smallest size of a distance-edge-monitoring set of graph G. The original
authors of the conjecture proved the bound when c (G) ≤ 2, and proved that the bound dem (G) ≤
2c (G)− 2 holds when c (G) ≥ 3 [30]. The conjectured bound would be tight [30, 31].

Regarding monitoring edge-geodetic sets, although no formal conjecture was explicitly posed, the
bound meg (G) ≤ 9c (G) + ℓ (G) − 8 was proved in [20, 33], and it was asked whether this can be
improved.
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Figure 1: Relations between the graph parameters discussed in the paper. If a parameter A has a directed
path to parameter B, then for any graph, the value of A is upper-bounded by a linear function of the
value of B. The problems in gray boxes are explicitly studied in this paper; bounds for the other problems
follow from these results.

Our contributions. In this paper, we are motivated by Conjectures 1-4, which we address. We will
show that both dim(G) and edim(G) are bounded from above by L (G) + 2c (G) + 1 for all connected
graphs G. Moreover, we show that if L (G) ̸= 0, then the bounds of Conjecture 1 hold.

We show that Conjecture 3 is true when δ(G) = 1, and when δ(G) ≥ 2 and G contains a cut-
vertex. We also show that mdim(G) ≤ 2c (G) + 1 in all other cases. We also consider the first part of
Conjecture 1, that dim(G) ≤ L (G) + 2c (G) from [66], in the case where δ(G) = 1, and we show that
it is true when L (G) ≥ 1 and otherwise we have dim(G) ≤ 2c (G) + 1. We also consider the conjecture
that edim(G) ≤ L (G) + 2c (G) from [66], and we show that it is true when δ(G) = 1 and L (G) ≥ 1, and
when δ(G) ≥ 2 and G contains a cut-vertex. We also show that edim(G) ≤ 2c (G) + 1 in all other cases.

Thus, our results yield significant improvements towards the Conjectures 1-3, since they are shown to
be true in most cases, and are approximated by an additive term of 1 for all graphs.

Moreover, we also resolve in the affirmative Conjecture 4.
To obtain the above results, we develop a technique from [53], who introduced it in order to study

a strengthening of metric dimension called doubly resolving sets in the context of graphs of minimum
degree 2. We notice that the technique can be adapted to work for all graphs and in fact it applies to
many types of problems: (variants of) metric dimension, (variants of) geodetic sets, and path-covering
problems. For all these problems, the technique yields upper bounds of the form a ·c (G)+f(ℓ(G)), where
ℓ(G) is the number of leaves of G, f is a linear function that depends on the respective problem, and a
is a small constant.

The technique is based on a breadth-first-search rooted at a specific vertex, that enables to compute
an optimal feedback edge set F by considering the edges of the graph that are not part of the breadth-
first-search spanning tree. We then select vertices of the edges of F (or neighbouring vertices); the way
to select these vertices depends on the problem. For the metric dimension and path-covering problems, a
pre-processing is done to handle the leaves of the graph (for the geodetic set variants, all leaves must be
part of the solution). Our results demonstrate that the techniques used by most previous works to handle
graphs of bounded cyclomatic number were not precise enough, and the simple technique we employ is
much more effective. We believe that it can be used with sucess in similar contexts in the future.

A preliminary version of this paper (without most of the proofs) appeared in the proceedings of the
FCT 2023 conference [14].
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Figure 2: Vertices in the same horizontal line are equidistant from the root r. The edges drawn in red
indicate a set of good edges, and these edges form a feedback edge set. Hence, a tree is obtained by
removing the red edges from the given graph.

Algorithmic applications. For all the considered problems, our method in fact implies that the
optimal solutions can be computed in polynomial time for graphs with bounded cyclomatic number. In
other words, we obtain XP algorithms with respect to the cyclomatic number. This was already observed
in [24] for the metric dimension (thanks to our improved bounds, we now obtain a better running time,
however it should be noted that in [24] the more general weighted version of the problem was considered).

Organisation. We first describe the general method to compute the special feedback edge set in Sec-
tion 2. We then use it in Section 3 for the metric dimension and its variants. We then turn to geodetic
sets and its variants in Section 4, and to path-covering problems in Section 5. We describe the algorithmic
consequence in Section 6, and conclude in Section 7.

2 The general method

The length of a path P , denoted by |P |, is the number of its vertices minus one. A path is induced if
there are no graph edges joining non-consecutive vertices. A path is isometric if it is a shortest path
between its endpoints. For two vertices u, v of a graph G, d (u, v) denotes the length of an isometric path
between u and v. Let r be a vertex of G. An edge e = uv ∈ E(G) is a horizontal edge with respect to
r if d (u, r) = d (v, r) (otherwise, it is a vertical edge). For a vertex u of G, let Br(u) denote the set of
edges uv ∈ E(G) such that d (u, r) = d (v, r) + 1, i.e., the vertical edges where one endpoint is u and the
other endpoint v is closer to r than u. A set F of edges of G is good with respect to r if F contains all
horizontal edges with respect to r and for each u ̸= r, |Br(u) ∩ F | = |Br(u)| − 1. A set F of edges is
simply good if F is good with respect to some vertex r ∈ V (G). For a set F of good edges of a graph G,
let TF denote the subgraph of G obtained by removing the edges of F from G.

For example, consider the graph in Figure 2. We have rooted the graph at vertex r, and the vertices
at the same distance from r are on the same level next to each other. Drawn this way, the horizontal
edges with respect to r are horizontal and the vertical edges are either vertical or diagonal. For example,
the edge v1v2 is a horizontal edge since the distance from r is 3 to both of its endpoints. The vertex v3
is an endpoint to three vertical edges but no horizontal edges. The set Br(u) consists of vertical edges
whose endpoint is u and the other endpoint is a vertex on the level above u. For example, Br(v3) consists
of the two vertical edges between v3 and two of the neighbors of r. The third vertical edge incident with
v3, v1v3, is not included in this set since v1 is further away from r and, in fact, we have v1v3 ∈ Br(v1).
Notice that the sets Br(u) form a partition of the vertical edges. The red edges form a good edge set
with respect to r as it contains all horizontal edges and the required number of vertical edges.

Lemma 5. For any connected graph G with n vertices and m edges and a vertex r ∈ V (G), a set F of
good edges with respect to r can be computed in O(n+m) time.

Proof. By doing a Breadth First Search on G from r, distances of r from u for all u ∈ V (G) can be
computed in O(n + m) time. Then the horizontal and vertical edges can be computed in O(m) time.
Then the sets Br(u) for all u ∈ V (G) can be computed in O(n +m) time. Hence the set of good edges
with respect to r can be computed in O(n+m) time.
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Lemma 6. For a set F of good edges with respect to a vertex r of a connected graph G, the subgraph TF

is a tree rooted at r. Moreover, every path from r to a leaf of TF is an isometric path in G.

Proof. First observe that TF is connected, as each vertex u has exactly one edge uv ∈ E(TF ) with
d (u, r) = d (v, r)+1. Indeed, removing horizontal edges or edges in Br(u) does not affect the sets Br(u

′)
where u′ ̸= u. Now assume for contradiction that TF has a cycle C. Let v ∈ V (C) be a vertex that is
furthest from r among all vertices of C. Formally, v is a vertex such that d (r, v) = max{d (r, w) :w ∈
V (C)}. Let E′ denote the set of edges in TF incident with v. Observe that |E′| is at least two. Hence
either E′ contains an horizontal edge, or E′ ∩Br(v) contains at least two edges. Either case contradicts
that F is a good edge set with respect to r. This proves the first part of the observation.

Now consider a path P from r to a leaf v of TF and write it as u1u2 . . . uk where u1 = r and uk = v.
By definition, we have d (r, ui) = d (r, ui−1)+1 for each i ∈ [2, k]. Hence, P is an isometric path in G.

Observation 7. Any set F of good edges of a connected graph G is a feedback edge set of G with minimum
cardinality.

Proof. Due to Lemma 6 we have that TF is a tree and therefore |F | = m − n + 1 which is same as the
cardinality of a feedback edge set of G with minimum cardinality.

The base graph [24] Gb of a graph G is the graph obtained from G by iteratively removing vertices of
degree 1 until there remain no such vertices. We use the base graph in some cases where preprocessing
the leaves and other tree-like structures is needed.

3 Metric dimension and variants

In this section, we consider three metric dimension variants and conjectures regarding them and the
cyclomatic number. We shall use the following result.

Distinct vertices x, y are doubly resolved by v, u ∈ V (G) if d (v, x)− d (v, y) ̸= d (u, x)− d (u, y). A set
S ⊆ V (G) is a doubly resolving set of G if every pair of distinct vertices of G are doubly resolved by a
pair of vertices in S. Lu et al. [53] constructed a doubly resolving set of G with δ(G) ≥ 2 by finding a
good edge set with respect to a root r ∈ V (G) using breadth-first search. We state a result obtained by
Lu et al. [53] using the terminologies of this paper.

Theorem 8 ([53]). Let G be a connected graph such that δ(G) ≥ 2 and r ∈ V (G). Let S ⊆ V (G) consist
of r and the endpoints of the edges of a good edge set with respect to r.

(i) The set S is a doubly resolving set of G.

(ii) If r is a cut-vertex, then the set S \ {r} is a doubly resolving set of G.

(iii) We have |S| ≤ 2c (G) + 1.

A doubly resolving set of G is also a resolving set of G, and thus dim(G) ≤ 2c (G) + 1 when δ(G) ≥ 2
due to Theorem 8. Moreover, if G contains a cut-vertex and δ(G) ≥ 2, we have dim(G) ≤ 2c (G). Notice
that δ(G) ≥ 2 implies that L(G) = 0. Therefore, Theorem 8 implies that Conjecture 1 holds for the
metric dimension of a graph with δ(G) ≥ 2 and at least one cut-vertex. When δ(G) ≥ 2 and the graph
has no cut-vertex, we are +1 away from the bound in Conjecture 1.

A doubly resolving set is not necessarily an edge resolving set or a mixed resolving set. Thus, more
work is required to show that edge and mixed resolving sets can be constructed with good edge sets. A
layer of G is a set Ld = {v ∈ V (G) | d (r, v) = d} where r is the chosen root and d is a fixed distance.

Proposition 9. Let G be a graph with δ(G) ≥ 2, and let r ∈ V (G). If the set S contains r and the
endpoints of a good edge set F with respect to r, then S is an edge resolving set.

Proof. Suppose to the contrary that there exist distinct edges e = e1e2 and f = f1f2 that are not resolved
by S. In particular, we have d (r, e) = d (r, f). Due to this, say, e1 and f1 are in the same layer Ld, and
e2 and f2 are in Ld ∪ Ld+1. If e is a horizontal edge with respect to r, then e1, e2 ∈ S and e and f are
resolved. Thus, neither e nor f is a horizontal edge with respect to r and we have e2, f2 ∈ Ld+1.

If e2 = f2, then e, f ∈ Br(e2). Thus, we have e2 ∈ S and at least one of e1 and f1 is also in S. Now
e and f are resolved by e1 or f1. Therefore, we have e2 ̸= f2 and e2, f2 /∈ S.

6



Let w ∈ V (G) be a leaf in TF such that e2 lies on a path between w and r in TF . Since δ(G) ≥ 2,
the vertex w is an endpoint of some edge in F , and thus w ∈ S. Since e and f are not resolved by S, we
have d (w, f2) = d (w, e2) = d′ − d− 1, where w ∈ Ld′ , due to the path between w and r being isometric
(Lemma 6). Let Pf be an isometric path w − f2 in G, and assume that Pf is such that it contains
an element of S as close to f2 as possible. Denote this element of S by s. We have s ∈ Li for some
d + 1 < i ≤ d′ (notice that we may have s = w). As the edges e and f are not resolved by S, we have
d (s, e) = d (s, f), which implies that d (s, e2) = d (s, f2) = i − d − 1. Let P ′

e and P ′
f be isometric paths

s − e2 and s − f2, respectively. The paths P ′
e and P ′

f are internally vertex disjoint, since otherwise the
vertex after which the paths diverge is an element of S which contradicts the choice of Pf and s. Let ve
and vf be the vertices adjacent to s in P ′

e and P ′
f , respectively. Now, we have sve, svf ∈ Br(s), and thus

ve ∈ S (otherwise, vf ∈ S, which contradicts the choice of Pf and s). If d (ve, e2) < d (ve, f2), then ve
resolves e and f , a contradiction. Thus, we have d (ve, e2) ≥ d (ve, f2), but now there exists an isometric
path w − f2 that contains ve, which is closer to f2 than s is, a contradiction.

Proposition 10. Let G be a graph with δ(G) ≥ 2, and let r ∈ V (G). If the set S contains r and the
endpoints of a good edge set F with respect to r, then S is a mixed resolving set.

Proof. The set S resolves all pairs of distinct vertices by Theorem 8 and all pairs of distinct edges by
Proposition 9. Therefore we only need to show that all pairs consisting of a vertex and an edge are
resolved.

Suppose to the contrary that v ∈ V (G) and e = e1e2 ∈ E(G) are not resolved by S. In particular,
the root r does not resolve v and e, and thus v, e1 ∈ Ld for some d ≥ 1. If e is a horizontal edge, then
e1, e2 ∈ S and e and v are resolved. Thus, assume that e2 ∈ Ld+1. Let w ∈ V (G) be a leaf in TF such that
e2 lies on a path between w and r in TF . Since δ(G) ≥ 2, the vertex w is an endpoint of some edge in F ,
and thus w ∈ S. We have d (w, e2) = d′−d−1, where w ∈ Ld′ . However, now d (w, v) ≥ d′−d > d (w, e2),
and w resolves v and e, a contradiction.

As pointed out in [53], if R is a doubly resolving set that contains a cut-vertex v, then the set R \ {v}
is also a doubly resolving set. The following observation states that the same result holds for mixed
resolving sets, and with certain constraints for (edge) resolving sets.

Observation 11. Let G be a connected graph with a cut-vertex v.

(i) Let R ⊆ V (G) be such that there are at least two connected components in G−v containing elements
of R. If d (v, x) ̸= d (v, y) for some x, y ∈ V (G) ∪E(G), then there exists an element s ∈ R, s ̸= v,
such that d (s, x) ̸= d (s, y).

(ii) If R ⊆ V (G) is a mixed resolving set of G, then every connected component of G − v contains at
least one element of R.

(iii) If R ⊆ V (G) is a resolving set or edge resolving set of G, then at most one connected component of
G−v does not contain any elements of R, and that component is isomorphic to Pn for some n ≥ 1.

Proof. (i) If s ∈ R is such that the isometric paths from s to x and y go through v, then we clearly have
d (s, x) = d (s, v) + d (v, x) ̸= d (s, v) + d (v, y) = d (s, y).

Assume that there are only two connected components G1, G2 of G−v that contain elements of R, and
that x ∈ V (G1)∪E(G1+v) and y ∈ V (G2)∪E(G2+v). Let s1 ∈ V (G1)∩R and s2 ∈ V (G2)∩R. Suppose
that d (s1, x) = d (s1, y). Now, d (s1, v) + d (v, y) = d (s1, x) ≤ d (s1, v) + d (v, x). Since d (v, x) ̸= d (v, y),
we have d (v, y) < d (v, x). Consequently, d (s2, x) = d (s2, v) + d (v, x) > d (s2, v) + d (v, y) ≥ d (s2, y).
Thus, x and y are resolved by s2.

(ii) If a connected component G′ does not contain an element of R, then v and vx, where x ∈ V (G′)
are not resolved by R, a contradiction.

(iii) Easy to see.

The following corollary follows from Propositions 9 and 10, and Observation 11.

Corollary 12. Let G be a graph with δ(G) ≥ 2.

(i) If G contains a cut-vertex, then edim(G) ≤ 2c (G) and mdim(G) ≤ 2c (G).

(ii) If G does not contain a cut-vertex, then edim(G) ≤ 2c (G) + 1 and mdim(G) ≤ 2c (G) + 1.
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When δ(G) ≥ 2, both L(G) = 0 and ℓ(G) = 0. Thus, Corollary 12 proves that when δ(G) ≥ 2,
Conjecture 1 holds for the edge metric dimension when G contains a cut-vertex and we are +1 away in
the case where G does not contain a cut-vertex. Compared to Conjecture 2, we are either +1 or +2 away
from the conjectured bound for the edge metric dimension depending on whether G contains a cut-vertex.
As for the mixed metric dimension, Corollary 12 proves that Conjecture 3 holds when δ(G) ≥ 2 and G
contains a cut-vertex. If δ(G) ≥ 2 and the graph does not contain a cut-vertex, we are +1 away from the
conjectured bound.

We then turn our attention to graphs with δ(G) = 1. We will show that a good edge set can be used
to construct a (edge, mixed) resolving set also in this case. Moreover, we show that Conjecture 3 holds,
and Conjecture 1 holds when L (G) ≥ 1. We also show that dim(G) and edim(G) are at most 2c (G) + 1
when L (G) = 0. We use the following results on trees in our proof.

Proposition 13 ([42]). Let T be a tree, and let R ⊆ V (T ) be the set of leaves of T . The set R is a mixed
metric basis of T .

Proposition 14 ([43, 45]). Let T be a tree that is not a path. If R ⊆ V (T ) is a branch-resolving set of
T , then it is a resolving set and an edge resolving set.

Theorem 15. Let G be a connected graph that is not a tree such that δ(G) = 1. Let r ∈ V (Gb), and
let S ⊆ V (Gb) contain r and the endpoints of a good edge set F ⊆ E(Gb) with respect to r. If R is a
branch-resolving set of G, then the set R∪S is a resolving set and an edge resolving set of G. If R is the
set of leaves of G, then the set R ∪ S is a mixed resolving set of G.

Proof. Let R be either a branch-resolving set of G (for the regular and edge resolving sets) or the set of
leaves of G (for mixed metric dimension). We will show that the set R ∪ S is a (edge, mixed) resolving
set of G.

The graph G− E(Gb) is a forest (note that some of the trees might be isolated vertices) where each
tree contains a unique vertex of Gb. Let us denote these trees by Tv, where v ∈ V (Gb) ∩ V (Tv).

Consider distinct x, y ∈ V (G) ∪ E(G). We will show that x and y are resolved by R ∪ S.

• Assume that x, y ∈ V (Tv) ∪ E(Tv) for some v ∈ V (Gb). Denote Rv = (V (Tv) ∩ R) ∪ {v}. The set
Rv is a (edge, mixed) resolving set of Tv by Propositions 14 and 13. If x and y are resolved by some
element in Rv that is not v, then we are done. If x and y are resolved by v, then they are resolved
by any element in S \ {v}. Since G is not a tree, the set S \ {v} is clearly nonempty, and x and y
are resolved in G.

• Assume that x, y ∈ V (Gb)∪E(Gb). Now x and y are resolved by S due to Theorem 8, Proposition 9
or Proposition 10.

• Assume that x ∈ V (Tv) ∪ E(Tv) and y ∈ V (Tw) ∪ E(Tw) where v, w ∈ V (Gb), v ̸= w. The set S
is a doubly resolving set of Gb according to Theorem 8. Thus, there exist distinct s, t ∈ S such
that d (s, v) − d (s, w) ̸= d (t, v) − d (t, w). Suppose to the contrary that d (s, x) = d (s, y) and
d (t, x) = d (t, y). Now we have

d (w, y)− d (v, x) = d (s, v)− d (s, w) ̸= d (t, v)− d (t, w) = d (w, y)− d (v, x) ,

a contradiction. Thus, s or t resolves x and y.

• Assume that x ∈ V (Tv) ∪ E(Tv) for some v ∈ V (Gb), v ̸= x, and y = y1y2 ∈ E(Gb). Suppose
that d (r, x) = d (r, y). Without loss of generality, we may assume that d (r, y) = d (r, y1) = d. Now
y1 ∈ Ld and v ∈ Ld−dx

, where dx = d (v, x) ∈ {0, . . . , d}. If y2 ∈ Ld, then y is a horizontal edge and
y1, y2 ∈ S. Now x and y are resolved by y1 or y2. So assume that y2 ∈ Ld+1. Let z ∈ V (Gb) be a
leaf in TF such that y2 lies on a path from r to z in TF . Since δ(Gb) ≥ 2, the vertex z is an endpoint
of some edge in F , and thus z ∈ S. Now z ∈ Ld′ for some d′ > d+ 1 and d (z, y2) = d′ − d− 1 by
Lemma 6. Consequently,

d (z, x) = d (z, v) + dx ≥ d′ − (d− dx) + dx = 2dx + 1 + d (z, y2) > d (z, y) .
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Since the root r can be chosen freely, we can choose the root to be a cut-vertex in G whenever G
contains cut-vertices. The bounds in the next corollary then follow from Observations 7 and 11, and
Theorem 15.

Corollary 16. Let G be a connected graph that is not a tree such that δ(G) = 1. We have dim(G) ≤
λ(G) + 2c (G), edim(G) ≤ λ(G) + 2c (G), and mdim(G) ≤ ℓ (G) + 2c (G),

dim(G) ≤ λ(G) + 2c (G) , edim(G) ≤ λ(G) + 2c (G) , mdim(G) ≤ ℓ (G) + 2c (G) ,

where λ(G) = max{L (G) , 1}.

The relationship of metric dimension and edge metric dimension has garnered a lot of attention since

the edge metric dimension was introduced. Zubrilina [76] showed that the ratio edim(G)
dim(G) cannot be bounded

from above by a constant, and Knor et al. [46] showed the same for the ratio dim(G)
edim(G) . Inspired by this,

Sedlar and Škrekovski [62] conjectured that for a graph G ̸= K2, we have | dim(G) − edim(G)| ≤ c (G).
This bound, if true, is tight due to the construction presented in [46]. It is easy to see that dim(G) ≥ λ(G)
and edim(G) ≥ λ(G) (the fact that dim(G) ≥ L (G) is shown explicitly in [15], for example). Thus, we
now obtain the bound | dim(G) − edim(G)| ≤ 2c (G) due to the bounds established in Corollaries 12
and 16.

4 Geodetic sets and variants

We now address the problems related to geodetic sets, and show that the same method can be applied
in this context as well. Note that all leaves of a graph belong to any of its geodetic sets.

We first study geodetic sets explicitly, as this is the most well-studied notion in this area. We then
address monitoring edge-geodetic sets and distance edge-monitoring sets, because these two notions have
been studied in the literature in relation to the cyclomatic number and the number of leaves. Bounds for
other related parameters in Figure 1 follow from the result on monitoring edge-geodetic sets.

4.1 Geodetic sets

Let g (G) denote the size of a smallest geodetic set of a graph G.

Theorem 17. Let G be a connected graph. If G has a cut-vertex then g (G) ≤ 2c (G)+ ℓ (G). Otherwise,
g (G) ≤ 2c (G) + 1.

Proof. Let F be a set of good edges of G with respect to a vertex r obtained by Lemma 5. When G
has a cut-vertex then r shall be a cut-vertex. Let S be the union of the set of leaf vertices of G and the
endpoints of the edges in F . If G is biconnected then include r in S also. Clearly, |S| ≤ 2c (G)+1+ ℓ (G)
when G is biconnected and |S| ≤ 2c (G) + ℓ (G), otherwise. Due to Lemma 6, TF is a tree and let L be
the set of leaf vertices of TF .

If G is biconnected, due to Lemma 6, L ∪ {r} is a geodetic set of G, and clearly (L ∪ {r}) ⊆ S.
Therefore S is a geodetic set of G.

Otherwise, r is a cut-vertex and L ⊆ S. Consider any vertex u of G. Let Cu denote the connected
component of G−{r} containing u. Due to Lemma 6, u lies in an isometric path between r and a vertex
u′ ∈ V (Cu) ∩ L. Since r is a cut-vertex there exists a connected component C ′ different from Cu and
L ∩ V (C ′) is non-empty. Let u′′ be a vertex of L ∩ V (C ′). Clearly d (u′, u′′) = d (r, u′) + d (r, u′′). Let
P ′ be the path in TF between r and u′ and P ′′ be the path in TF between r and u′′. We have that
P = P ′ ∪ P ′′ is an isometric path in G and contains u. Hence, the set L is a geodetic set of G, S is a
geodetic set of G.

The upper bound of Theorem 17 is tight when there is a cut-vertex, indeed, consider the graph formed
by a disjoint union of k odd cycles and l paths, all identified via a single vertex. The obtained graph
has cyclomatic number k, l leaves, and geodetic number 2k+ l. Observe that any odd cycle has geodetic
number 3 and cyclomatic number 1, so the bound g (G) ≤ 2c (G) + 1 is tight when there is no cut-vertex
in the graph. However, we do not know the best possible bound for 2-connected graphs with arbitrarily
large values of c(G). The graph Gk obtained from K2,k by adding an edge between the two vertices of
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degree k is 2-connected, has cyclomatic number k and geodetic number k. We do not know a family of
2-connected graphs of arbitrarily large cyclomatic number whose geodetic number is closer to twice the
cyclomatic number and leave this as an open problem.

4.2 Monitoring edge-geodetic sets

Let meg (G) denote the size of a smallest monitoring edge-geodetic set of a graph G. It was proved
in [33] that meg (G) ≤ 9c (G) + ℓ (G)− 8 for every graph G, and some graphs were constructed for which
meg (G) = 3c (G) + ℓ (G). We next improve the former upper bound, therefore showing that the latter
construction is essentially best possible.

Theorem 18. For any graph G, we have meg (G) ≤ 3c (G) + ℓ (G) + 1. If G contains a cut-vertex, then
meg (G) ≤ 3c (G) + ℓ (G).

Proof. It is not hard to check that when G is a tree, we have meg (G) = ℓ (G) [33]. Let us thus assume
that c (G) ≥ 1.

We will first show the bound meg (G) ≤ 3c (G) + ℓ (G) + 1. We say that an edge e is monitored by a
set S if there are two vertices x, y of S such that e lies on all isometric paths between x and y; S is thus
a monitoring edge-geodetic set of G if it monitors all edges of G.

Let r be an arbitrary vertex of G that belongs to some cycle of G, and let F be a good set of edges
(with respect to r) obtained through Lemma 5. We construct a set S as follows: r belongs to S, all leaves
of G belong to S, and for each edge of F , both its endpoints belong to S. Moreover, for each vertex u of
G with |Br(u)| ≥ 2, we add to S all endpoints of the edges of Br(u) (not just the |Br(u)| − 1 ones that
are in F ).

It is clear that we have |S| ≤ 3|F | + ℓ (G) + 1, since we add to S at most two vertices for each edge
in F , with an additional vertex whenever there is a vertical edge in F (this can only happen |F | times).
By Observation 7, we have |F | ≤ c (G), and so |S| ≤ 3c (G) + ℓ (G) + 1.

We now show that S is a monitoring edge-geodetic set. Let e = uv be an edge of G. If both endpoints
u, v of e are in S, then e is clearly monitored by them. In particular, this is the case if e is horizontal
with respect to r.

Assume that e has at most one endpoint in S. Thus e is vertical with respect to r, and e is also an
edge in TF . Let us consider the tree TF further, and remove the additional edges of the sets Br(w) whose
endpoints we added to S, i.e. all edges in some Br(w) where |Br(w)| ≥ 2. The resulting graph is a forest
where each tree can be rooted in a natural way by following the structure of TF when the root is r. Of
these trees, every root and every leaf is in S. Moreover, the edge e is an edge in one such tree. Consider
a leaf l and a root r′ of one tree T . Now there is in fact a unique isometric path between l and r′ in G,
and this path is completely contained in T (otherwise, there is a vertical edge whose endpoints we added
to S in the path between l and r′ in T , and l is not in the same tree as r′, a contradiction). Thus, e is
monitored by a leaf and the root of the tree that contains e.

Assume then that G contains a cut-vertex. Since the root r can be arbitrarily, we can choose r to be
a cut-vertex. Now the set S \ {r} is a monitoring edge-geodetic set. Indeed, if r and u ∈ S monitor an
edge e, then e is also monitored by u and v ∈ S where v is in a different connected component of G− r
as u. Thus, when G contains a cut-vertex, we have meg (G) ≤ 3c (G) + ℓ (G).

4.3 Distance-edge-monitoring-sets

We now turn our attention to distance-edge-monitoring-sets and prove Conjecture 4. Let dem (G) denote
the size of a smallest distance-edge-monitoring set of a graph G. We shall use the following lemma.

Lemma 19 ([30, Observation 4]). For any graph G, any distance-edge-monitoring-set of its base graph
Gb is also one of G.

Theorem 20. For any connected graph G, dem (G) ≤ c (G) + 1.

Proof. We say that an edge e is monitored by a set S if there are two vertices x ∈ S and y ∈ V (G) such
that e lies on all isometric paths between x and y; S is thus a monitoring edge-geodetic set of G if it
monitors all edges of G.

The statement is true when c (G) ≤ 2 by [30], so we can assume G is not a tree. By Lemma 19, we
may assume G has minimum degree at least 2.
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Let r be an arbitrary vertex of G, and let F be a good set of edges (with respect to r) obtained
through Lemma 5. We construct a set S as follows: r belongs to S, and for each edge of F , one of its
endpoints belongs to S; if the edge is vertical with respect to r, we choose the endpoint that is farthest
from r; if it is horizontal, we choose any of the two endpoints.

It is clear that |S| ≤ c (G) + 1, as |S| ≤ |F |+1 and |F | ≤ c (G) by Observation 7. We next show that
S is distance-edge-monitoring.

Let e = uv be an edge of G. If e is an edge of F , it is monitored by S, since one of its endpoints is
in S. Thus, we can assume that e is not in F . Hence, it is vertical with respect to r, and we assume
without loss of generality that d (u, r) = d (v, r) + 1. Since e is not in F , we have |Br(u)| = 1. Thus, all
isometric paths from u to r go through e, and hence e is monitored by S. Thus all edges are monitored
by S, which establishes the claim.

5 Path covers/partitions and variants

In this section, we consider the path covering and partition problems. We focus on isometric path edge-
covers (sets of isometric paths that cover all edges of the graph) and on isometric path partitions (sets
of isometric paths that partition the vertex set of the graph). Indeed, those have the most restrictive
definitions and the obtained bounds thus hold for the other related path covering/partition problems
from Figure 1. We denote by isopec (G) and by isopp (G), respectively, the smallest size of an isometric
path edge-cover and isometric path (vertex-)partition, respectively.

5.1 Isometric path edge-cover

Theorem 21. For any graph G, isopec (G) ≤ 3c (G) + ⌈(ℓ (G) + 1)/2⌉.

Proof. We construct a set S of paths as follows. Consider the base graph Gb of G, let r be an arbitrary
vertex of Gb, and let F be a good set of edges of Gb (with respect to r) obtained by Lemma 5. For each
horizontal edge xy of F , we add it (as a path) to S, as well as an isometric path from x to r and one from
y to r. For each vertex v with |Br(v)| ≥ 2, we add to S, |Br(v)| isometric paths from v to r, each starting
with a different edge from Br(v). Finally, if G contains some leaves, we consider the set L′ formed by the
set L of leaves of G, together with the vertex r, and an arbitrary pairing of L′, of size ⌈(ℓ (G) + 1)/2⌉,
such that each vertex of L′ is paired with some other one (if ℓ (G) + 1 is odd, one vertex of L′ may be
paired with two vertices, but all others are paired with one only).

Consider a set S′ of ⌈(ℓ (G) + 1)/2⌉ isometric paths between each two mutually paired vertices of
L′. We incrementally modify the pairing as follows. If all edges of G − E(Gb) are covered by S′, we
do nothing. Otherwise, assume some edge e of G − E(Gb) is not covered by a path of S′. Note that
G− E(Gb) is a forest, and e is a bridge of G, with one component of G− e containing at least one leaf,
and one component containing r. Since that leaf and r are paired vertices in L′ but e is not covered by
the isometric paths in S′, there must exist two pairs {a, b} and {c, d} of paired vertices of L′, each pair
being in one component of G− e, say a and b are in a tree component of G− e and c, d are in the same
component as r. We modify the pairing of L′ by replacing {a, b} and {c, d} by {a, c} and {b, d}, and
we claim that the isometric paths induced by this new pairing cover the same edges from G− E(Gb) as
before, and also, the edge e. Indeed, as G − E(Gb) is a forest (and each component of G − E(Gb) has
a unique vertex with neighbors in Gb), any isometric path (in G) from a leaf to any vertex of the same
component of G − E(Gb) is unique. Thus, the a − b isometric path is unique, and any isometric path
from a to c (and from b to d) goes through e. Hence, the union of any two such isometric paths contains
the edges of the a − b path. A similar argument holds for the path from c to d. Thus, we continue this
process until all edges of G − E(Gb) are covered by S′, increasing the number of covered edges at each
step. Finally, we add S′ to S.

It is clear that S contains only isometric paths, by construction; moreover, |S| ≤ 3c (G)+⌈(ℓ (G)+1)/2⌉
because we add at most three paths to S for each edge of F in the first steps of the construction, and the
last step of the construction adds ⌈(ℓ (G)+1)/2⌉ additional paths to S. It remains to show that S covers
all edges of G. Let e be an edge. If e is an edge of G−E(Gb), by the last part of the construction of S, e
is covered by some isometric path between two vertices of L′. If e is a horizontal edge with respect to r,
then e itself is a path of S, so e is covered. If e is a vertical edge with respect to r and e belongs to Gb,
then there must be a vertex w of Gb with |Br(w)| ≥ 2 and e lies on an isometric path from w to r. Let
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w be chosen so as to be the closest to e, among all such vertices. Then, we have selected some isometric
path from w to r in the first step of the construction, each containing a distinct edge of Br(w). By the
choice of w, one such path from w to r goes through e, and thus e is covered.

The upper bound of Theorem 21 is nearly tight, indeed, consider (again) the graph formed by a
disjoint union of k odd cycles and l paths, all identified via a single vertex. The obtained graph has
cyclomatic number k, l leaves, and isometric path edge-cover number 3k + ⌈l/2⌉.

5.2 Isometric path partition

Theorem 22. For any graph G, isopp (G) ≤ 2c (G) + ℓ (G).

Proof. The proof is similar to the one of Theorem 21, except that it is not necessary to consider the base
graph. Consider an arbitrary vertex r of G, and let F be a good set of edges of G (with respect to r)
obtained by Lemma 5. We construct a set S of isometric vertex-disjoint paths as follows. Initially, S = ∅.
For each horizontal edge xy of F , we consider an isometric path Px from x to r and an isometric path
Py from y to r. We first add to S the maximal subpath of Px (starting at r), that does not overlap with
any path already in S. Then, we do the same for Py. Similarly, for each vertex v with |Br(v)| ≥ 2, we
let Nv be the set of vertices u with uv ∈ Br(v). We consider an arbitrary isometric path from v to r (it
goes through some vertex, say u0, of Nv). Then, for every vertex u ∈ Nv \ {u0}, we sequentially consider
an isometric path Pu from u to r. We proceed as before for each of these paths: we add to S a maximal
subpath of Px starting at x, that does not intersect any path already in S. Finally, for every leaf v of G,
we again consider an isometric path from v to r, and select its maximal subpath (starting from v) that
does not intersect any other path in P .

We have added at most 2c (G) + ℓ(G) paths to S (at most two for every edge in F and at most one
for every leaf). By construction, S contains only isometric paths, and they are pairwise vertex-disjoint.
By similar arguments as in the proof of Theorem 21, every vertex is covered by a path of S, and so we
have obtained an isometric path partition of the desired size.

Once again, the bound is nearly tight by the same graph formed by a disjoint union of k odd cycles
(each of length at least 5) and l paths, all identified via a single vertex. It has cyclomatic number k, l
leaves, and isometric path partition number 2k + l − 1.

We remark that for many graphs, the bound of ℓ(G) to cover the leaves of the graph in the above
theorem is not necessarily tight. Indeed, for some trees, one may have an (isometric) path partition of
size ⌈ℓ (G) /2⌉: consider for example a path Pt on t ≥ 3 vertices and for each of its t− 2 internal vertices,
say v, attach a copy of P3 whose central vertex is made adjacent to v. This tree has 2t− 2 leaves and a
path partition of size t− 1.

In fact, it is known that one gets a more precise (always tight) bound for the path partition number
of a tree by considering its scattering number, see [39].

6 Algorithmic consequences

As mentioned in the introduction, for many of the problems studied here, there are no efficient algorithms
for graphs of bounded treewidth: for example, it is NP-hard to compute the metric dimension or the
geodetic number of graphs of constant treewidth (in fact, even pathwidth) [50, 68]. The complexity of
the strong geodetic set problem with respect to treewidth is unknown [21].

Recall that the treewidth is at most the cyclomatic number plus one. Next, we show that for the
vertex-subset problems studied in this paper, our bounds imply polynomial-time (XP) algorithms for
graphs of bounded cyclomatic number, thus partially answering some algorithmic open problems in this
area.

Theorem 23. For all the variants of geodetic sets and metric dimension considered in this paper, if we
have an upper bound on the solution size of a · c (G) + f(ℓ (G)) for some a ∈ N, we obtain an algorithm
with running time O(na·c(G)) on graphs G of order n.

Proof. The algorithm needs to pre-process the leaves and compute a subset of the leaves of size f(ℓ (G)).
This can be done in polynomial time for all the considered problems. For geodetic set types of problems,
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one simply selects all the leaves (for distance-edge-monitoring sets, we must not select any leaf). This
can be done in time O(n+ c (G)) = O(n2). For metric dimension related problems, one has to compute
the structural shape of the leaves; this can be done in time O(n+ c (G)) as well, see for example [24, 45].

After that (and noting that selecting f(ℓ (G)) leaves of G is necessary in each of the considered
problems), the proofs of our bounds show that a · c (G) are sufficient to extend the chosen leaf subset to
a solution. It thus suffices to iterate over all possible subsets of vertices of size at most a · c (G): consider
this as a potential solution, and add the required set of leaves to the solution, and check whether it is a
valid solution. This yields the desired running time.

7 Conclusion

We have demonstrated that a simple technique based on breadth-first-search is very efficient to obtain
bounds for many distance-based covering problems, when the cyclomatic number and the number of leaves
are considered. This resolves or advances several open problems and conjectures from the literature on
this type of problems. There remain some gaps between the obtained bounds and the conjectures or
known constructions, that still need to be closed. Moreover, in some cases, obtaining the best possible
upper bound for 2-connected graphs of arbitrarily large cyclomatic number is also an interesting open
problem, for example for the geodetic number and the monitoring-edge geodetic number.

A refinement of the cyclomatic number of a (connected) graph G is called its max leaf number, which
is the maximum number of leaves in a spanning tree of G. It is known that the cyclomatic number is
always upper-bounded by a quadratic function of the max leaf number plus the number of leaves [22], so,
all our bounds also imply bounds using the max leaf number only.

Regarding the algorithmic applications, we note that the XP algorithms described in Theorem 23 can
sometimes be improved to obtain an FPT algorithm. This is the case for geodetic sets [44], but whether
this is possible for the metric dimension remains a major open problem [22, 44] (this is however shown
to be possible for the larger parameter “max leaf number” [22]).

Also, we leave open whether similar algorithms can be obtained for the path covering/partition prob-
lems studied here. As one has to decide where the paths go through, it seems a little bit more difficult
to design such an algorithm than for the vertex-subset problems. This would be quite interesting, as the
complexity of the isometric path cover problem with respect to treewidth is unknown [21].

We have not been exhaustive. There might be other distance-based covering problems for which the
same approach can be used. For example, this is the case for the problem of geodesic-transversal [56]
(also called maximal shortest path cover in [61]): a set S of vertices of a graph G such that every maximal
isometric path of G contains a vertex of S.

Another distance-related problem which has been studied in relation with the cyclomatic number is the
edge-tracking path problem [16], a variant of the more studied (vertex)-tracking path problem [5, 16, 23].
It is shown in [16] that the edge-tracking path problem can be reduced to essentially finding a feedback
edge set of the graph. This result also implies that the size of an optimal (vertex)-tracking path set is
at most twice the cyclomatic number. Note that, however, the tracking path problem is known to be
efficiently solvable for graphs of bounded treewidth [23], hence it behaves differently from most problems
studied here.

For other distance-based parameters, the type of bounds that are studied here do not hold. For
example, this is the case for strong metric dimension, that is more constrained than the metric dimension:
a solution requires half of the vertices for any cycle graph [59] (which has cyclomatic number 1).
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