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Abstract 

Background Retractions undermine the scientific record’s reliability and can lead to the continued propagation 

of flawed research. This study aimed to (1) create a dataset aggregating retraction information with bibliographic 

metadata, (2) train and evaluate various machine learning approaches to predict article retractions, and (3) assess 

each feature’s contribution to feature-based classifier performance using ablation studies.

Methods An open-access dataset was developed by combining information from the Retraction Watch database 

and the OpenAlex API. Using a case-controlled design, retracted research articles were paired with non-retracted 

articles published in the same period. Traditional feature-based classifiers and models leveraging contextual language 

representations were then trained and evaluated. Model performance was assessed using accuracy, precision, recall, 

and the F1-score.

Results The Llama 3.2 base model achieved the highest overall accuracy. The Random Forest classifier achieved 

a precision of 0.687 for identifying non-retracted articles, while the Llama 3.2 base model reached a precision of 0.683 

for identifying retracted articles. Traditional feature-based classifiers generally outperformed most contextual lan-

guage models, except for the Llama 3.2 base model, which showed competitive performance across several metrics.

Conclusions Although no single model excelled across all metrics, our findings indicate that machine learn-

ing techniques can effectively support the identification of retracted research. These results provide a foundation 

for developing automated tools to assist publishers and reviewers in detecting potentially problematic publications. 

Further research should focus on refining these models and investigating additional features to improve predictive 

performance.

Trial registration Not applicable.

Keywords Retraction prediction, Machine learning, Scientific publishing

Background

Retracting scientific articles is essential for safeguard-

ing the integrity of the research record, but the grow-

ing number of retractions also reveals weaknesses in 

peer review and editorial oversight [1, 2]. Determin-

ing the extent of retractions is complicated by “stealth 

retractions”, which make the retracted articles difficult 

or impossible to trace, often involving the removal of the 

paper and the omission of a formal notice [3]. Separately, 

journals face a persistent tension between preventing the 

publication of flawed work and ensuring timely dissemi-

nation of results [4]. Although retracted research can still 

be useful-alerting the community to invalid findings or 

spurring new investigations-this utility depends on the 

clarity of its retracted status, which is often inconsist-

ently handled. Unchecked, problematic work can damage 

authors’ reputations [5], tarnish journals [6], and under-

mine domain integrity [7].
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The contemporary scientific publishing landscape fur-

ther compounds the challenge of maintaining research 

integrity. Globally, the volume of research submissions 

escalates dramatically, straining the peer review system 

[8, 9]. This high-throughput environment necessitates an 

urgent need for supplementary tools. Automated screen-

ing methods, such as those explored here, could serve as 

valuable aids by flagging potentially problematic manu-

scripts early, thereby helping editors and reviewers focus 

their limited time on critical scientific assessments.

Once published, retracted papers can continue to 

influence discourse if their invalidation is overlooked. 

Avenell et  al. demonstrated how just 12 misconduct-

tainted clinical trials were repeatedly cited in systematic 

reviews and guidelines, substantially altering or obscur-

ing conclusions [10]. Schneider et  al. found that 96% of 

direct citations to a retracted 2008 clinical trial did not 

acknowledge its retraction [11], while Hsiao and Schnei-

der showed that only 5.4% of citing contexts across 7,813 

retracted papers reflected the retraction [12]. Even high-

profile examples, such as the discredited vaccine-autism 

paper, accrue citations that rarely probe the retraction’s 

specific invalidations [13]. Although flawed data do not 

generally spread through secondary citations [14], the 

persistence of direct citations underscores the need 

for consistent, visible retraction notices. While recent 

advances, such as the CrossRef API directly integrating 

the Retraction Watch database into their metadata [15], 

more approaches are needed to increase the visibility of 

retracted works.

Retractions commonly stem from honest errors or 

misconduct such as fabrication, plagiarism, or falsified 

authorship, but the relative prevalence of each is dis-

puted. For example, Steen [2] attributed 73.5% of Pub-

Med retractions to errors, whereas Fang et al. [16] later, 

using additional sources, reclassified 15.9% of this dataset 

from errors to fraud, suggesting that clarifying a paper’s 

retraction status is more straightforward than classifying 

its cause.

Effectively identifying problematic research publica-

tions remains a significant challenge despite growing 

awareness of retraction harms and the importance of 

journal gatekeeping. Previous research has approached 

this issue from several angles: classifying the reasons 

why already withdrawn papers were retracted [17], ana-

lysing characteristics common among articles deemed 

to warrant retraction [18, 19], and highlighting sys-

temic difficulties in retracting papers even when signifi-

cant issues are known [20]. While these studies provide 

valuable insights into the nature and handling of flawed 

research, developing and evaluating predictive machine 

learning models designed to identify articles at high risk 

of future retraction prospectively has received limited 

investigation. This study aims to address this specific gap 

by (1) creating a dataset aggregating retraction informa-

tion with bibliographic metadata, (2) training and evalu-

ating various machine learning approaches to predict 

article retractions, and (3) assessing feature contributions 

using ablation studies.

Methods

This study used existing data from open-access cata-

logues, databases, machine learning models and closed/

open-sourced LLMs. The research design used was a 

retrospective observational study with a case-control 

approach.

Dataset construction

Publicly available data from two online databases were 

used to construct the dataset (Retraction Watch and 

OpenAlex). Retraction Watch is a human-validated 

retraction dataset and is compiled from various sources, 

including journal databases, institutional reports, social 

media, and direct tips [21]. Although not exhaustive due 

to unannounced or “stealth” retractions, it provides par-

tial metadata for some retracted articles, such as title, 

journal, publisher, and author. OpenAlex is an open-

access online catalogue of academic publications, simi-

lar to Scopus and Web of Science, which aggregates data 

from multiple sources and releases monthly updates. 

These resources were combined to create a single dataset 

suitable for predicting article retractions [22].

A set of retracted articles were identified using the 

Retraction Watch dataset (Dataset downloaded on 

24/07/2024). Only articles and review works were con-

sidered. Conference papers were excluded due to a mass 

retraction of conference papers undertaken by the Insti-

tute of Electrical and Electronic Engineers between 2009 

and 2011 (having retracted over 10,000 such papers in the 

past two decades) [23] and because there is no process to 

retract papers from many conference venues. Retractions 

were limited to a 20 year period from 2000 to 2020 due to 

the lack of retracted works before this date, the median 

post-publication time to retraction being 1.8 years [24] 

and the increased use of natural language technologies 

subsequent to this period. Information from OpenAlex 

(API queried on 24/07/2024) was also used to filter out 

some works. A full list of exclusion criteria for journals 

and articles are shown in Tables 1 and 2.

Another set of non-retracted articles was formed. For 

each retracted article, another article was randomly 

matched-pairs sampled from the same journal where a 

retraction had occurred, that was published in the same 

year as the retracted article, did not meet the works 

exclusion criteria outlined in Table  2, was not included 
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in the retraction watch dataset and whose OpenAlex API 

flag of ‘is_retracted’ was False.

Articles containing keywords strongly indicating that 

it has been retracted were also excluded (e.g., “retrac-

tion”, “retracted”, “withdrawn”, “withdrawal”; full list: 

“retraction”, “retracted”, “retract”, “retractionwatch”, 

“retraction watch”, “removed”, “withdrawn”, “withdrawal”, 

“withdraw”, “retracted article”, “article”). This heuristic 

filtering risks excluding some valid non-retracted articles 

where keywords have alternative meanings (e.g., biologi-

cal retraction), but was applied to reduce the inclusion of 

potentially mislabeled retracted articles in the control set.

The following features were extracted for each work 

(retracted and non-retracted): Abstract Inverted Index, 

Publication Date, Primary Topic, First Author, Institu-

tion, Citation Count, First Author Countries, Is Retracted 

Flag and Article Type.

Both sets (retracted articles and non-retracted articles) 

were combined and balanced through undersampling, 

resulting in a total of 9,028 pieces of research, with equal 

numbers of retracted and non-retracted. It was divided 

into training (64%), validation (16%) and test sets (20%). 

Group sizes were chosen with nested split using stand-

ard machine learning splits [25]. A balanced dataset 

was used, as the distribution of retracted works to non-

retracted works across all works is highly imbalanced. 

This imbalance potentially leads to models learning a 

priori class distributions rather than learning from the 

features provided.

All textual fields were preprocessed by converted to 

lowercase, and eliminating non-ASCII characters, special 

punctuation, and numbers. The title and abstract were 

then combined. The Publication Date feature was con-

verted solely to its year in YYYY format.

Classifier creation

Multiple approaches to machine learning classification 

were trained: Feature-based and LLMs (Encoder-based 

and Decoder-based) classifiers.

Feature-based classifiers were selected that have dem-

onstrated effectiveness for text-classification tasks: Gra-

dient Boosting, SVM, XGBoost, Random Forest, MLP 

and Decision Trees [26]. A Super Learner model, an 

ensemble approach with multiple machine learning mod-

els, was also utilised. Several LLMs known for strong 

classification performance was selected. Contrasting 

encoder-based pre-trained models were included: BERT 

(“bert-base-uncased”), trained on a broad dataset, and 

Table 1 Journal exclusion criteria

Criteria Description

CrossRef If journal was not included in CrossRef’s journal title list.

Works Count If work count (based on OpenAlex API) - total retraction count (based on 
Retraction Watch Dataset) < Sample Size (1)

Retraction Count If journal total retractions < 5 (determined by the Retraction Watch dataset).

Table 2 Work exclusion criteria

Criteria Description

Retracted Works If Retraction Watch parameter ‘ArticleType’ not in {Research Article, Conference 
Abstract/Paper, Clinical Study, Review Article, Case Report, Meta-Analysis}

Retracted Works/Non-retracted works If OpenAlex ‘source’ not in {Conference, Journal} and ‘type’ not in {article, review}

English Language Work excluded if OpenAlex API ’language’ value not ’en’

ISSN Data If OpenAlex API ‘issn’ value not available

OpenAlex ID If OpenAlex API ‘id’ value not available

Article Type If OpenAlex API ‘type’ value not in {article, review}

Publication Year If ‘publication_year’ OpenAlex API value not available

Publication Year Minimum If ‘publication_year’ OpenAlex API value < 2000

Publication Year Maximum If ‘publication_year’ OpenAlex API value > 2020

Reformulated Abstract Length If < 5 words

Unretracted works’s whose title contained “retraction”, “retraction:”, “withdrawn”, “correction”, “erratum”, “retracted”, “withdrawal”, 
“conclusion”, “editorial”, “contributions”, “commentary”, “contributors”.

Retracted and unretracted works if abstract or title contained 
the words

“elsevier”, “notice”, “editor”, “editors”, “publisher”.
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BioBERT (“dmis-lab/biobert-base-cased-v1.2”), pre-

trained on biomedical data. Contrasting decoder-based 

LLMs were selected, differentiated by their fine-tuning: 

Llama 3.2 (“unsloth/Llama-3.2-3B-bnb-4bit”), its instruc-

tion-tuned variant (“unsloth/Llama-3.2-3B-Instruct-

bnb-4bit”), Gemma 2 (“unsloth/gemma-2-9b”), and its 

instruction-tuned variant (“unsloth/gemma-2-9b-it-bnb-

4bit”). Unsloth’s versions were selected over the stand-

ard implementations because they significantly reduced 

VRAM requirements due to optimisations like 4-bit 

quantisation and optimised kernels while maintaining 

performance. This was crucial as fine-tuning the standard 

base models exceeded available hardware. Commercially 

available LLMs were also evaluated: GPT-4o mini [27] 

and Claude 3.5 sonnet [28]

Different model architectures necessitated different 

input formats. Inputs for feature-based classifiers were 

formed into a single vector representation: Numerical 

features (Publication Year and Citation Count) were min-

max normalised to scale between 0 and 1. Categorical 

features (First Author’s country) were one-hot encoded 

based on the training data subset. All other text features 

were represented using term weights produced by Best 

Matching 25 [29] with k = 2 , b = 0.3 and no maximum 

vocabulary length specified. All features were then con-

catenated to produce the single vector representation. 

Inputs for the encoder-based LLM models consisted 

of the features (Text, Primary Topic, First Author, First 

Author Country, Citated By Count and Publication Year) 

concatenated with [SEP] tokens separating each feature - 

as shown in Fig. 1. Decoder-based LLMs used the prompt 

template illustrated in Figs. 2 and 3.

All models were trained using the training dataset, with 

early stopping being determined using the validation 

dataset to prevent overfitting. An expectation of this was 

the commercial models (i.e. GPT-4o mini and Claude 

3.5 sonnet), where a zero-shot approach was used. LLM 

fine-tuning was conducted using supervised fine-tuning 

for a maximum of 10 epochs. Only the pooling layer and 

the classification head were updated with encoder-based 

models. Decoder-based LLMs were fine-tuned using the 

input format and prompt template illustrated in Figs.  2 

and 3. With these, a low-order rank adaptation approach 

was used, with output vocabulary restricted to “yes” and 

“no” tokens. During testing, these models were evaluated 

by providing the input text and the question without the 

label to assess their ability to predict the retraction status 

independently, with a softmax of the logits for the “yes” 

and “no” output tokens forming the model’s prediction.

All models output a binary classification label; “0” 

denoting if a piece of work is retracted and “1” not. Mod-

els were evaluated using the testing dataset. From this, 

Fig. 1 Input format for encoder-based models

Fig. 2 Input format for decoder-based models

Fig. 3 Prompt template used for structuring input data during model fine-tuning
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model performance was measured using standard met-

rics for classification problems. Accuracy is the propor-

tion of instances correctly classified as either retracted or 

non-retracted. Precision, recall and F1 scores are com-

puted individually for the retracted and non-retracted 

classes and then averaged.

Ablation

To evaluate the relative contribution of each feature to 

classifier performance on all feature-based classifiers, 

an ablation study was performed. For each feature, an 

“ablated” version of the dataset was created by removing 

that feature from all training instances while leaving the 

remaining features intact. Every feature-based classifier 

was then re-trained from scratch using the ablated data-

set, and evaluated on the same test set employed for the 

full-featured models.

For instance, when ablating the Abstract feature, all 

tokens originating from the abstract were excluded, but 

the Title, Primary Topic, Publication Year, First Author, 

First Author’s Country, and Citation Count features 

were retrained. This procedure was repeated for each of 

the remaining features in turn. The resulting evaluation 

metrics (accuracy, precision, recall, and F1) were then 

compared against the “full-feature” baselines to quantify 

the performance drop caused by removing that feature. 

Lower scores in the ablated setting indicate a more criti-

cal feature, as its removal impairs model performance 

more severely.

Results

Dataset characteristics

Each year’s works distribution is shown in Fig. 4. It can 

be seen that the number of included works associated 

with each year increases over time, reflecting the trend 

of retractions increasing over time in the original Retrac-

tion Watch dataset.

In the generated dataset, 7.54% of the articles reported 

as retracted in Retraction Watch were not marked as 

retracted by OpenAlex, possibly because OpenAlex’s 

metadata is derived from multiple input sources. This 

discrepancy further illustrates the difficulty of identifying 

retracted research since it may not be labelled as such. 

This discrepancy has been recently directly addressed 

with CrossRef integrating the Retraction Watch database 

into the metadata returned from their API.

Analysis of correlations between journal features 

revealed two notable findings: 

1. A weak, significant positive correlation between the 

work count log and the retraction count log (Pear-

son correlation coefficient 0.065, p-value < 0.05). This 

seems counterintuitive, as more retractions are likely 

to occur given more publications, and hence, a strong 

positive correlation would be present. This finding 

could indicate that journals that publish fewer works 

are less proactive at detecting potential retractions, 

that publishing research that will be retracted is more 

complicated within journals with greater work out-

put, presumably due to increased scrutiny of these 

works, or that journals that publish less spend more 

time on the peer review process and manuscript han-

dling, so retractions are not as necessary.

2. A strong negative correlation was observed between 

the journal retraction count and the log of the 

h-index (Pearson correlation coefficient −0.656, 

p-value < 0.05) in this dataset. Interpreting this 

statistical association requires caution. While the 

h-index reflects a journal’s citation impact, assuming 

this directly translates to more rigorous peer review 

Fig. 4 Publication year distribution for retracted and non-retracted works
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or higher quality submissions in a way that consist-

ently prevents retractions is an oversimplification 

and lacks an evidence-based cause. Factors such as 

publisher policies, editorial vigilance in post-pub-

lication monitoring, and specific decisions on han-

dling potential misconduct determine the number of 

recorded retractions. These practices can vary con-

siderably between journals, potentially independent 

of their h-index. Therefore, the observed correlation 

likely reflects a complex interplay of factors rather 

than a straightforward link between impact factor 

and retraction necessity.

Classifier performance

Results for all classifiers are presented in Table 3, show-

ing performance for both the retracted and not retracted 

classes. The highest-scoring approaches for each met-

ric are highlighted in bold. Commercial models were 

excluded from further analysis as all commercial mod-

els responded that no research was retracted within the 

testing dataset. This was thought to be due to the safety 

restrictions implemented within these models, which 

prevented responses that could be considered problem-

atic [30].

All models outperformed random guessing (i.e. 0.5 as 

this is a binary classification task), although the improve-

ment varies considerably between models. The highest 

accuracy (0.682) is achieved by Llama 3.2-base, although 

accuracy scores overall are generally higher for more tra-

ditional feature-based approaches such as gradient boost, 

SVM, XGBoost, and Random Forest achieved superior 

precision compared to the more modern contextually 

aware LLMs.

Regarding the retracted class, SVM achieved the high-

est precision (0.690) and Llama 3.2-base the highest recall 

(0.683). Interestingly, both instruction-tuned decoder-

based LLMs (Gemma 2-instruct and Llama 3.2-instruct) 

also achieve high recall for the retracted class but this 

is achieved by predicting retracted for the majority of 

instances, as demonstrated by the very low recall for 

the non-retracted class. This could be due to instruction 

tuning, as they are trained to be more cautious and risk-

averse, indicating that instruction-tuned models might 

not be suitable for this type of classification task.

These findings establish baseline results using the 

dataset.

Ablation analysis

The importance of individual features to the feature-

based classification models was explored by conducting 

an ablation study on all input features. Datasets were cre-

ated for each feature by permuting the data to exclude 

that feature and then averaging the evaluation metrics 

(F1 score, precision, recall, accuracy) across all mod-

els for each ablation. Lower scoring metrics indicate a 

greater contribution to the performance of a classifier.

Several observations on the ablation of features can be 

made given the results reported in Table 4.

The publication year proved to be the most crucial 

feature, with its ablation resulting in the lowest scores 

across all metrics. This finding is interpreted not as 

implying that specific calendar years inherently produce 

riskier research but rather as indicating that the model 

Table 3 Retraction classifier performance results

Model Acc. Non-Retracted Retracted

P R F1 P R F1

Logistic Regression 0.638 0.638 0.647 0.642 0.639 0.630 0.635

Decision Tree 0.568 0.570 0.574 0.572 0.568 0.564 0.566

Random Forest 0.666 0.648 0.731 0.687 0.689 0.601 0.642

SVM 0.671 0.655 0.725 0.688 0.690 0.616 0.651

XGBoost 0.665 0.654 0.705 0.679 0.678 0.624 0.650

AdaBoost 0.631 0.619 0.684 0.650 0.645 0.577 0.609

Super Learner 0.669 0.661 0.699 0.680 0.678 0.640 0.659

MLP 0.655 0.650 0.675 0.663 0.660 0.634 0.647

Gemma 2-base 0.553 0.615 0.292 0.396 0.534 0.816 0.645

Gemma 2-instruct 0.529 0.730 0.098 0.173 0.515 0.963 0.671

BERT 0.609 0.612 0.602 0.607 0.606 0.616 0.611

BioBERT 0.608 0.598 0.668 0.631 0.621 0.548 0.582

Llama 3.2-base 0.682 0.686 0.674 0.680 0.678 0.689 0.683

Llama 3.2-instruct 0.535 0.714 0.121 0.208 0.518 0.951 0.671
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effectively learned temporal trends in retraction patterns 

present within the 2000-2020 study period. This aligns 

with the significant increase in overall publication vol-

ume and the corresponding absolute number of retrac-

tions observed over these two decades. The temporal 

strength’s dominance in the ablation study underscores 

the challenge that its powerful signal might eclipse other 

valuable predictive features, highlighting the impor-

tance of identifying additional robust signals beyond 

publication date alone. The Primary Topic feature also 

demonstrated substantial importance, producing the 

second-lowest scores when ablated. Reduction in perfor-

mance when First Author Countries are ablated indicates 

the likelihood that a work will be retracted, supporting 

previous findings [31].

Contrary to what might be intuitively expected, the 

abstract, despite being the longest and most detailed tex-

tual component, emerged as the least influential feature 

across all evaluation metrics. When ablated, it yielded 

the highest average scores for accuracy (0.655), preci-

sion (0.657), recall (0.655), and F1 score (0.654), indicat-

ing its removal had the least negative impact on model 

performance. This counterintuitive finding regarding the 

abstract’s limited influence could be attributed to several 

factors. First, structured metadata features (like publica-

tion date and primary topic) may provide more consist-

ent and unambiguous signals for classification compared 

to the potentially noisy and variable nature of abstract 

text. Second, there might be considerable information 

redundancy between the abstract and other textual fea-

tures like the title, making its individual contribution less 

distinctive.

Discussion

Machine learning approaches show potential for iden-

tifying retracted papers using the created open-access 

dataset. While machine learning models trained on the 

dataset outperformed random guessing in identifying 

retracted papers, their overall performance indicates 

significant challenges remain. The results suggest a reli-

ance on correlational patterns within the features used 

(such as publication year and author country) rather than 

a deep understanding of research flaws.

One of the potential applications of the classifier 

described above is as a tool during the peer review pro-

cess, in much the same way that text similarity tools are 

often used to identify potential plagiarism. The required 

level of precision or recall would depend on how the 

tools would be used. If used as a screening tool to flag 

potentially problematic papers for additional review, a 

high recall would be preferable to avoid missing arti-

cles that are subsequently retracted. However, if used as 

a check which a submitted article must pass then high 

precision would be necessary to avoid the suppression of 

valid research. The performance of the models reported 

above, while promising, indicates that identification of 

retracted articles is not a trivial prediction task and may 

not be sufficient for some purposes. The decision regard-

ing the involvement of systems to detect potential retrac-

tions within the peer review process is ultimately the 

choice of publishers.

The automatic prediction of potential retractions also 

raises ethical concerns. Predictive models, such as the 

ones described here, can introduce bias thereby raising 

potential fairness issues [32]. Such biases can unfairly 

penalise the groups more likely to be identified as pro-

ducing research that will be retracted (e.g., first authors 

from particular locations) while benefiting those it is 

less likely to identify. This could introduce inductive 

bias into investigations, potentially leading to unfore-

seen consequences in the scientific publishing landscape, 

such as influencing which research questions are investi-

gated and which methodologies are applied. In addition, 

authors may attempt to report results in ways that avoid 

detection by these models, potentially leading to self-

censorship or overly cautious reporting of results. Con-

versely, bad actors with knowledge of these models may 

Table 4 Ablation performance metrics: lowest scoring ablations are in bold

Model Acc. Non-Retracted Retracted

P R F1 P R F1

Abstract 0.655 0.670 0.612 0.638 0.645 0.678 0.669

Citation Count 0.648 0.659 0.611 0.634 0.638 0.684 0.660

First Author 0.649 0.662 0.609 0.634 0.639 0.689 0.663

First Author Countries 0.649 0.663 0.604 0.632 0.638 0.693 0.664

Primary Topic 0.644 0.658 0.602 0.628 0.634 0.687 0.659

Publication Year 0.641 0.656 0.594 0.622 0.630 0.688 0.657

Title 0.648 0.657 0.618 0.636 0.641 0.678 0.658
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exploit that information to avoid detection, potentially 

facilitating the dissemination of invalid results.

An important consideration is how best to apply these 

models in practice. While machine learning classifiers 

can highlight publications at higher risk of retraction, 

final decisions on whether a paper should be investi-

gated or retracted must rest with human experts-editors, 

reviewers, and domain specialists. For example, auto-

mated models flag potential anomalies in medical and 

clinical contexts, but the ultimate judgment requires 

expert oversight [33, 34]. Similarly, the classifiers 

reported here are intended to aid decision-making rather 

than stand-alone arbiters of scientific validity. A fully 

automated retraction process is not desirable, nor is it 

necessarily the duty of model developers to initiate or 

recommend retraction investigations on every flagged 

paper. Instead, these outputs can be a starting point for 

further human-led scrutiny. This workflow ensures that 

any potential reasons for retraction-which may be mul-

tifaceted and not always captured by the model-are care-

fully examined. It also prevents the undue penalisation of 

authors, institutions, or countries that might otherwise 

be overrepresented due to biases in the training data. By 

maintaining a robust human-in-the-loop process, pub-

lishers and editorial boards can leverage model predic-

tions ethically and effectively to uphold the reliability of 

the scientific record.

Limitations

This study has several notable limitations. The study 

design relied on a single data source, the Retraction 

Watch database, which provides valuable but incomplete 

coverage. The dataset is heavily skewed towards English, 

as the source for non-retracted articles (OpenAlex) com-

prises 75% English publications [35]. The language distri-

bution within the Retraction Watch dataset is not readily 

available. The presence of “stealth retractions”, wherein 

papers are removed without official notice or may not be 

reported to Retraction Watch, creates the potential for 

missed or under-detected retractions. Additionally, it was 

retrospective, using data from 2000 to 2020, which limits 

the ability to assess the models’ real-time or prospective 

effectiveness in detecting erroneous work at publication. 

Theoretical limitations exist within the model choice, as 

they capture correlational rather than causal relation-

ships, potentially leading to false positives or negatives, 

as using these patterns can misrepresent the underlying 

reasons for retractions. Data was sampled from 2000 to 

2020, which would not represent more recent changes in 

retracted works. Since 2020, there have been innovative 

natural language generation models that could poten-

tially increase the count of retracted works. Features that 

are not fully representative of a piece of research were 

used. Due to copyright restrictions, abstracts and meta-

data were used rather than full-text articles. Indicators of 

methodological errors or unsupported conclusions might 

appear in the main text and not the title and abstract, 

potentially reducing the reliability of our retraction-pre-

diction metrics.

Relatedly, models trained on historical data inher-

ently struggle to identify novel misconduct methods 

absent from their training set. Consequently, as unethi-

cal actors develop new bypass techniques, these models 

lag in detecting them. While continuous dataset updates 

can help mitigate this delay, human involvement remains 

essential to identify novel threats as they emerge. A 

key potential advantage of any perfected automated 

approaches is their ability to consistently apply detection 

for existing issues at scale.

Additionally, some LLM may have been partly trained 

on the same corpus used to develop or validate our data-

set, inflating their performance scores. This issue does 

not affect purely feature-based approaches but under-

mines the reliability of LLM-derived results. Features 

such as the first author’s country or institution may 

reflect systemic biases in scientific publishing rather 

than genuine predictors of flawed work. Such biases risk 

penalising authors from certain regions or affiliations if 

used in editorial decision-making. Models may overfit 

to spurious textual or demographic correlations in the 

training data, leading to unjustified flags or missed detec-

tions when applied to new, diverse datasets.

Conclusions

This research demonstrates the potential of machine 

learning approaches in predicting retracted articles, con-

tributing to efforts aimed at enhancing the integrity of 

scientific publication. By creating a novel open-source 

dataset that combines information from the Retrac-

tion Watch database and the OpenAlex API, a resource 

for future investigations in this area has been contrib-

uted. Our dataset encompasses 9,028 articles pub-

lished between 2000 and 2020, evenly divided between 

retracted and non-retracted works, and includes a variety 

of features such as abstracts, citation metrics, and author 

information.

Experiments showed that, with the exception of the 

recently released Llama 3.2 base model, traditional 

feature-based classifiers, such as gradient boost-

ing machines and SVMs, outperformed contextual 

language models like BERT, BioBERT, and Gemma 

in terms of precision. The best-performing model 

achieved a precision of 0.690, indicating that while 

machine learning techniques hold promise, there 

remains a need for significant improvement before 

they can be effectively integrated into the peer review 
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process. The ablation study highlighted the impor-

tance of the publication year, primary topic and the first 

author’s country in predicting retractions in this data-

set, aligning with previous findings that suggest certain 

demographics may be more prone to retractions due to 

various factors.

Future work

There is potential for the approaches described here to be 

extended by making use of additional information with 

the potential to assist in the identification of retracted 

research. For example, the citation network of refer-

ences to a paper and the references within the paper itself 

may provide useful information. In addition, the models 

described here analysed abstracts, but analysis of the full 

text itself could potentially allow models to evaluate flaws 

in methodology, result synthesis or false conclusions. 

Finally, analysis of the full author list of an article could 

reveal patterns of collaboration or even help to identify 

potential paper mills.
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