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Silicon (Si) is taken up from the soil as monosilicic acid by plant roots, transported

to leaves and deposited as phytoliths, amorphous silica (SiO2) bodies, which are a

key component of anti-herbivore defense in grasses. Silicon transporters have been

identified in many plant species, but the mechanisms underpinning Si transport remain

poorly understood. Specifically, the extent to which Si uptake is a passive process,

driven primarily by transpiration, or has both passive and active components remains

disputed. Increases in foliar Si concentration following herbivory suggest plants may

exercise some control over Si uptake and distribution. In order to investigate passive

and active controls on Si accumulation, we examined both genetic and environmental

influences on Si accumulation in the forage grass Festuca arundinacea. We studied

three F. arundinacea varieties that differ in the levels of Si they accumulate. Varieties not

only differed in Si concentration, but also in increases in Si accumulation in response to

leaf damage. The varietal differences in Si concentration generally reflected differences

in stomatal density and stomatal conductance, suggesting passive, transpiration-

mediated mechanisms underpin these differences. Bagging plants after damage was

employed to minimize differences in stomatal conductance between varieties and in

response to damage. This treatment eliminated constitutive differences in leaf Si levels,

but did not impair the damage-induced increases in Si uptake: damaged, bagged plants

still had more leaf Si than undamaged, bagged plants in all three varieties. Preliminary

differential gene expression analysis revealed that the active Si transporter Lsi2 was

highly expressed in damaged unbagged plants compared with undamaged unbagged

plants, suggesting damage-induced Si defenses are regulated at gene level. Our findings

suggest that although differences in transpiration may be partially responsible for varietal

differences in Si uptake, they cannot explain damage-induced increases in Si uptake

and deposition, suggesting that wounding causes changes in Si uptake, distribution

and deposition that likely involve active processes and changes in gene expression.

Keywords: silicon, inducible defense, Festuca arundinacea, stomatal conductance, transporter, tall fescue, stress

INTRODUCTION

Silicon (Si) is considered a non-essential element, but it has many useful functions in plants
(Guntzer et al., 2012). Plants take up Si in the form of monosilicic acid [Si(OH)4] via the roots (Ma
et al., 2006). It is transported through the xylem and deposited in the leaves to form phytoliths.
Phytoliths are solid bodies of silica (SiO2) found in epidermal layers, both within and between the

Frontiers in Plant Science | www.frontiersin.org 1 July 2017 | Volume 8 | Article 1199



McLarnon et al. Active Uptake of Si Defenses

plant cells (Piperno, 1988; Currie and Perry, 2007). Trichomes
(small hairs found on the leaf surface) may also become enriched
with Si and increase the abrasiveness of leaf surfaces. Plants
within the grass family (Poaceae) accumulate Si in varying
concentrations (up to 10% dry weight) where its primary function
is to defend the leaf surface against a range of stresses including
drought (Emam et al., 2014; Mitani-Ueno et al., 2016), pathogen
attack (Fauteux et al., 2005; Liang et al., 2015) and herbivory
(Massey et al., 2006, 2007; Hartley et al., 2015). Many species
of grass show diversity in their reported shoot Si concentrations
(Ma et al., 2001; Hodson et al., 2005; Massey and Hartley, 2006;
Hunt et al., 2008). Differences in the density and efficiency of Si
transporters may underpin these differences, as reported in rice
(Wu et al., 2006;Ma et al., 2007), whilst environmental conditions
such as water availability and herbivory can also drive changes
in Si concentration (Quigley and Anderson, 2014; Wieczorek
et al., 2015). The relative importance of genotypic, phenotypic
and environmental factors for Si uptake remains unclear (Hartley
et al., 2015; Hartley and DeGabriel, 2016).

Lsi1 is a root-specific Si transporter involved in the transport
of Si from the soil solution [as Si(OH)4] to within the root, first
identified in rice (Ma et al., 2006), though orthologues of Lsi1
have now been identified in other crop species (e.g., Zea mays
L, Mitani et al., 2009a,b; Hordeum vulgare L., Chiba et al., 2009;
Yamaji et al., 2012 and Glycine max (L) Merr., Deshmukh et al.,
2013). Lsi1 in rice is a passive aquaporin-like transmembrane
protein (Yamaji and Ma, 2007) which transports Si into the root
cells, whilst a Si efflux transporter, Lsi2, actively pumps (driven
by a proton gradient) Si out of the root cells and into the stele
(Ma et al., 2007; Deshmukh and Bélanger, 2016). Aquaporins
permit the passage of water through the cell membrane following
the gradient in water potential, suggesting that Si can enter the
plant cells without the need and use of Si specific transporters
(Exley, 2015). Contrary to this, some studies have found that the
Si transporters in rice (a hyper-Si accumulator, accumulating up
to 10% Si in dry weight) and maize are down-regulated after
constitutive Si supply (Yamaji and Ma, 2007; Ma and Yamaji,
2008;Mitani-Ueno et al., 2016), which would not be the case if the
transport was purely via water flow into the cells. Furthermore,
some studies have reported tissue Si concentrations above that
plausible for passive transport only (Faisal et al., 2012; Yamaji
and Ma, 2014; Yamaji et al., 2015). Si has been identified in
plant parts with low transpiration such as the husk, presumably
actively redirected to these locations by Si-mediated transporters
(Yamaji and Ma, 2014). Silicon concentrations within specific
plant tissues are not always strongly related with transpiration
rate, with silicification of silica cells (specific epidermal cells filled
with silica) mainly occurring at night (Blackman, 1969) when
transpiration rates are low. Silicon deposition has also been found
to be independent of water evapotranspiration (Kumar et al.,
2016), even when transpiration played a role in the uptake of
Si into plants. Further, evidence of silicification of live cells in
the absence of transpiration suggests that the cells are actively
moving Si into the cells independent of transpiration (Kumar
et al., 2016). Thismay explain the highly organized and distinctive
patterns of deposition observed in different species (Hartley et al.,
2015).

Increases in Si uptake and changes in Si deposition in
response to herbivory may also suggest active redirection of
Si within the plant (Hartley et al., 2015). Silicon defenses are
now known to be inducible, with up to 400% increases in Si in
response to leaf damage (Massey and Hartley, 2006; Massey et al.,
2007). Herbivory-induced increases in Si occur in response to a
range of herbivores, persist for several months and have been
demonstrated in the field (Massey and Hartley, 2006; Massey
et al., 2007; Garbuzov et al., 2011; Reynolds et al., 2012; Soininen
et al., 2013; Hartley et al., 2015; Wieczorek et al., 2015). To
date, no studies have tested whether this increase occurs due to
leaf damage leading to higher rates of water loss (i.e., increases
in transpiration) and thus subsequent changes in uptake and
deposition of Si, or if there is an up-regulation in Si transporter
genes in the root, brought on by a damage response from the
leaves.

Festuca arundinacea Schreb. (tall fescue) has been classified
as both a Si accumulator (Hodson et al., 2005) and a non-
accumulator (Ma et al., 2001), suggesting its Si uptake in
the natural environment is not uniform. Silicon uptake and
deposition is relatively uncharacterized within this species,
though previous work (Hartley et al., 2015) has shown it has
the ability to take up and deposit Si upon the leaf epidermis,
and that the levels of Si within the leaf tissues and the structures
it enriches differ amongst breeding varieties within the species
(very very soft = 0.43%–0.69% Si, harsh = 0.46%–0.80% Si).
Varieties have been described as harsh and soft in terms of their
leaf texture, which reflects Si deposition (Hartley et al., 2015).
However, how these varieties respond to damage, in terms of Si
uptake, and whether any damage-induced increases in Si result
from changes in passive Si uptake via transpiration or other more
active processesmediated by plant defense responses has not been
tested. To date, the studies that have investigated the effects of
transpiration on Si uptake have not included an assessment of
the effects of damage. Previous studies have focused on the role
of transpiration in undamaged plants in cucumber over a short
period of time (Faisal et al., 2012) or in detached leaves placed
on solution to understand the silicification of cells within the leaf
(Kumar et al., 2016). In contrast, our study investigates the effects
of herbivore-simulated damage, in an attempt to understand
mechanisms driving the induction process. The aim of this study
was to determine if damage-induced increases in Si uptake could
be explained by environmental variables such as differences in
transpiration rates, or if Si-induced defenses are mediated at gene
level by changes in Si transporter expression.

This study investigates how altering transpiration rate and
simulating herbivory affects the Si concentration of three varieties
of F. arundinacea.We hypothesize that:

(1) If Si uptake is largely a passive process associated
primarily with transpiration rate, varietal differences in
Si concentration will be driven by differences in stomatal
conductance and stomatal density;

(2) Damage will induce an increase in Si uptake and varieties
with a greater rate of Si uptake and deposition will also show
a larger induction response and an increased expression of
Si transporters;
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(3) If damage-induced increases in Si uptake are driven by
changes in water relations, then reducing transpiration
differences between undamaged and damaged plants will
prevent this increase in Si uptake after damage.

MATERIALS AND METHODS

Plant Growth and Experimental
Treatments
Three genotypically distinct breeding varieties of F. arundinacea
contrasting in their ability to accumulate Si (under standard
greenhouse conditions, average leaf Si concentrations: very very
soft = 0.44%; very soft = 0.43%; and harsh = 0.55%) and varying
in leaf texture were provided by the commercial seed company
DLF Seeds Ltd., Denmark. The leaf texture is a qualitative
trait measured and defined by plant breeders according to how
harsh or soft the leaf texture felt on a numerical scale. These
were:

- VVS (very very soft leaf texture);
- VS (very soft leaf texture);
- H (harsh leaf texture).

Plants were grown individually in a loam-based compost
(John Innes No.2) in 13-cm plastic pots in standard greenhouse
conditions: 16 h daylight, 20◦Cday, 15◦Cnight. Once established,
plants were randomly subjected to a combination of bagging and
damage treatments:

- Undamaged;
- Damaged;
- Undamaged or damaged, then placed in perforated plastic
bags.

The aim of the bagging treatment was to control water
flow through the plant; bagging the plants would subject both
damaged and undamaged plants to similar levels humidity,
thus reducing transpiration (Sellin et al., 2014). Treatments
were applied four weeks after sowing, with plants harvested
8 weeks later. There were ten replicate plants of each variety
per treatment. Plants were watered twice a week with 100ml of
deionized water with 150 mgL−1 dissolved sodium metasilicate
(Na2SiO3·9H2O); tap water was added as required. In the
treatments where damage was applied, half of the total leaves
of each plant were damaged twice a week using a metal file.
Damaged and undamaged leaves were separated at harvest and
leaf Si concentration analyzed separately.

Epidermal Peel Analysis
During the plant harvest, 5 cm of one leaf from eight replicate
plants of each variety per treatment were clipped and painted
with clear nail varnish. Transparent sticky tape was placed
onto the nail varnish once dried, peeled off and the tape
stuck to microscope slides. The slides were analyzed via Nikon
Eclipse Ni-U light microscope (Nikon Instruments, Kingston
Upon Thames, Surrey) for stomatal, trichome, and phytolith
counts.

Si Analysis by Portable X-Ray
Fluorescence Spectrometry (P-XRF)
Si was analyzed by portable P-XRF, calibrated using Si-spiked
synthetic methyl cellulose and validated using Certified Reference
Materials of NCS DC73349 ‘Bush branches and leaves’ obtained
from China National Analysis Center for Iron and Steel. Leaf
material was ball milled (Retsch MM 400, Haan, Germany) for
2 min at a vibrational frequency of 30 Hz (60 min−1) with
2 cm diameter steel grinding balls in 25 ml grinding jars. Leaf
material was pressed at 10 tons into 13 mm diameter pellets with
a manual hydraulic press using a 13 mm die (Specac, Orpington,
United Kingdom). Si analysis (% Si DW) was performed
using a commercial P-XRF instrument (Niton XL3t900 GOLDD
analyzer: Thermo Scientific Winchester, United Kingdom) held
in a test stand (SmartStand, Thermo Scientific, Winchester,
United Kingdom; Reidinger et al., 2012).

Stomatal Conductance Measurements
Stomatal conductance measurements were taken using the
Delta –t AP4-UM-3 porometer (Delta-T devices Ltd, Cambridge,
United Kingdom). The porometer was calibrated according to
the manufacturer’s instructions and then the porometer probe
was placed on the leaf and the time taken for the leaf to release
sufficient water vapor to change the relative humidity in a small
chamber by a fixed amount was measured; once stabilized (i.e.,
the same value was observed for two consecutive readings),
the stomatal conductance value was recorded. Five readings per
variety, per treatment were taken 1 or 2 days after treatments on
five different days. Separate readings of undamaged leaves and
damaged leaves of damaged plants were taken.

RNAseq and Differential Gene
Expression Analysis (DGEA)
At harvest, three biological replicate samples of unbagged,
undamaged, and damaged roots for the VVS and H varieties
were flash frozen in liquid nitrogen for RNA extraction.
RNA was extracted using TRIzolTM Reagent method from
100 mg of root material according to manufacturer’s instructions
(Invitrogen, United Kingdom). The RNA quality was checked on
a 1% agarose gel to test for degradation and quantified using
NanoDrop. DNA digestion and cDNA libraries were prepared
and sequenced by Leeds Institute of Molecular Medicine (Leeds,
United Kingdom). Sequencing was performed using Illumina
HiSeq 3000 (Illumina, Inc., United States) using one lane
for all libraries, comprising 2 × 150 bp paired end reads.
For library assembly, low quality reads and adapter sequences
were removed from the raw FASTQ files using Cutadapt1

with parameters set to: quality >20 and read length >75 bp.
The transcriptome was assembled de novo using Trinity RNA-
Seq2.1.1 according to the online user-guide2. Library reads were
aligned to the transcriptome using bowtie2 (Langmead and
Salzberg, 2012) and transcript abundance calculated using the
RNA-Seq by Expectation Maximization (RSEM) method (Li and

1https://github.com/marcelm/cutadapt
2https://github.com/trinityrnaseq/trinityrnaseq/wiki
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Dewey, 2011). Transcripts were annotated in Trinotate v3.0
using BLAST searches (E value < 10−20) against Swissprot.
DGEA was carried out on the annotated transcripts using the
edgeR package (Robinson et al., 2010; McCarthy et al., 2012)
to test for differences in log fold changes (logFC) > 1 with a
false discovery rate (FDR) set to <0.05 to correct P-values for
multiple testing. To confirm the identity of Lsi2 sequences, the
transcripts were searched for sequence similarity to using BLAST
and their transmembrane domains were compared to the barley
Lsi2 (accession AB447483.1; Mitani et al., 2009a) sequence using
TMHMM Server v2.03. The sequences for Lsi2 (Supplementary
Table S1) were only partial sequences, but the transmembrane
domains found in these sequences closely matched those in the
barley Lsi2 transporter.

Statistical Analyses
All statistical analyses were performed using R (version 3.3.2).
Analysis of variance (ANOVA) tests were used to test the main
and interactive effects of variety, bagging and damage (using
damaged leaves of damaged plants) on leaf Si concentration
and stomatal conductance. Paired t-tests were used to test for
statistical differences between undamaged leaves and damaged
leaves of the same damaged plants, where the aim was to
test for localized and systemic responses in Si uptake and
differences in stomatal conductance. Bonferroni’s correction
was applied for t-tests, setting the level of significance to
P < 0.02. Generalized linear models were used to test the
main effects of variety on stomatal, trichome, and phytolith
densities. Linear models were used to check for normality and
homogeneity of variance following Crawley (2007). Si (%) values
were transformed using the arcsine square root transformation
to meet the assumptions of the tests. Significance was set at
P < 0.05 for all analyses other than t-tests. Linear regression
was used to test for relationships between stomatal conductance
and Si concentration. Post hoc Tukey tests were carried out and
significance was set at P < 0.05. Where models did not meet
the assumptions, generalized linear models were applied instead
of linear models. Packages used for analyses were as follows:
lsmeans package (Lenth, 2016), multcompView (Graves et al.,
2015), and ggplot function from ggplot2 package (Wickham,
2009).

RESULTS

Undamaged Plants
Stomatal conductance did not differ significantly between the
three varieties but there was a trend for increased stomatal
conductance with increasing harshness: VVS displayed the lowest
stomatal conductance. Stomatal density, trichome density and
Si concentration differed between variety. Stomatal density was
higher in the H variety (F2,23 = 4.05, P = 0.03, Figure 1A)
compared with the VS variety.

The VS and H varieties had more trichomes per mm2

compared to the VVS variety (F2,23 = 6.02, P = 0.008;

3http://www.cbs.dtu.dk/services/TMHMM/

Figure 1B), but phytolith density did not differ between the
varieties (Supplementary Table S2).

The H and VVS varieties differed in their leaf Si concentration
(F2,18 = 8.75, P = 0.002; Figure 1D). There was a positive
relationship between stomatal conductance and Si concentration
(n= 15, r = 0.52, P= 0.049; Figure 2A) in undamaged, unbagged
plants.

The H variety had a higher expression of two Lsi2 gene
isoforms compared to the VVS variety in undamaged conditions
(log fold changes = 3.72 and 7.60, FDR < 0.05, TRINITY_
DN45085_c2_g1_i1 and TRINITY_DN45085_c2_g2_i2 in
Supplementary Table S1).

Damaged Plants
Stomatal conductance was higher in the damaged leaves of
damaged plants in the H variety compared with the VVS variety
(F2,12 = 6.38, P = 0.01; Figure 3A). There were no differences in
stomatal conductance between undamaged leaves and damaged
leaves of damaged plants in any of the three varieties.

In undamaged leaves of damaged plants, the VVS variety
had significantly fewer trichomes per mm2 compared to the VS
and H variety (F2,23 = 5.03, P = 0.02; Supplementary Table
S2). In the damaged leaves of damaged plants, no significant
varietal differences were observed in terms of trichome density –
although there was still a trend for the VVS variety to have fewer
trichomes compared to the VS and H variety. Phytolith density
was highest in the VS variety for both undamaged leaves of
damaged plants (F2,23 = 8.20, P = 0.002) and damaged leaves
of damaged plants (F2,23 = 813.83, P < 0.001; Supplementary
Table S2).

The damaged leaves of damaged H plants had more Si than
both VS and VVS subjected to this treatment (F2,27 = 19.89,
P < 0.001; Figure 3B). Paired t-tests between undamaged leaves
and damaged leaves of damaged plants showed there was a
localized response to Si uptake in the H variety only – i.e.,
the damaged leaves had more Si compared to the undamaged
leaves of the same plant (t = 4.58, df = 8, P = 0.002).
There was a significant positive linear relationship between leaf
Si concentration and stomatal conductance under damaged,
unbagged conditions for both undamaged leaves (n = 15,
r = 0.62, P = 0.02; Figure 2B) and damaged leaves of damaged
plants (n = 15, r = 0.75, P = 0.001; Figure 2C).

In unbagged, damaged conditions showed that three
Lsi2 gene isoforms were expressed, and these were up-
regulated in the H variety compared to the VVS variety
(log fold changes = 4.52, 3.51 and 6.78, FDR < 0.05,
TRINITY_DN45085_c1_g1_i1, TRINITY_DN45085_c2_g1_i1
and TRINITY_DN45085_c2_g2_i2 in Supplementary Table S1).

Bagged Plants
Under bagged conditions, the patterns of stomatal conductance
between varieties were similar to those in unbagged conditions.
VVS had significantly lower stomatal conductance compared to
VS and H varieties (F2,24 = 19.07, P < 0.001; data not shown).

The VVS variety had significantly fewer trichomes compared
to the VS and H varieties under undamaged, bagged conditions
(F2,22 = 10.96, P < 0.001). This relationship was the same for
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FIGURE 1 | (A) Stomatal density, (B) Trichome density, (C) Stomatal conductance, and (D) Leaf Si concentration. VVS = very very soft, VS = very soft, and

H = harsh. Values represent unbagged and undamaged plants. Bars are mean values ± SE. N = 9 for stomatal density, n = 5 stomatal conductance and n = 10 for

leaf Si. Letters within bars denote significant differences between treatments (post hoc Tukey p < 0.05).

both undamaged leaves (F2,22 = 10.07, P < 0.001, Supplementary
Table S3) and damaged leaves of damaged plants (F2,22 = 6.39,
P = 0.007, Supplementary Table S3). Phytolith density was higher
in the VS variety compared with H and VVS in undamaged,
bagged plants (F2,22 = 8.63, P = 0.002, Supplementary Table S3)
and also in damaged, bagged plants with undamaged leaves
(F2,22 = 12.43, P < 0.001, Supplementary Table S3). The H
variety had significantly fewer phytoliths on damaged leaves
compared with the other two varieties under damaged, bagged
conditions (F2,22 = 6.23, P = 0.007, Supplementary Table S3).

In bagged conditions, leaf Si concentration did not differ
between varieties in either the damaged leaves or undamaged
leaves (Figure 4). However, damaged leaves of damaged plants
had significantly higher leaf Si than undamaged plants in all three
varieties (F1,54 = 11.21, P = 0.001; Figure 4). No relationship
between leaf Si concentration and stomatal conductance was
reported for undamaged, bagged plants or for damaged leaves
of damaged, bagged plants. There was a weak relationship
between leaf Si concentration and stomatal conductance in the
undamaged leaves of damaged, bagged plants (F1,13 = 0.33,
P = 0.03).

DISCUSSION

There are clear differences in the accumulation and deposition
of Si between the varieties, and in how the varieties respond
to damage in terms of induction of Si defenses. In unbagged
conditions, these varietal differences tend to reflect similar
differences in stomatal density and stomatal conductance, with
the H variety tending to have the highest Si concentration and
trichome density as well as the highest stomatal density and
stomatal conductance, and with VVS having the lowest. Silicon
concentration is significantly positively correlated with stomatal
conductance in these plants. The H variety also shows higher
induction of Si uptake after damage than the two soft varieties,
increased expression of the active Si transporter Lsi2 and shows
some evidence of systemic induction the other two varieties
do not show. However, in bagged conditions, these varietal
differences disappear – undamaged bagged plants have the same
Si concentration, regardless of variety, and all varieties respond
to damage with induction in Si defenses and we no longer
see the systemic induction in H plants. Further, these varieties
continue to deposit trichomes and phytoliths on the leaf surface
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FIGURE 2 | Linear regression between stomatal conductance and leaf Si concentration of unbagged plants. (A) Undamaged plants. (B) Damaged plants,

undamaged leaves. (C) Damaged plants, damaged leaves. Regression line equation based on raw Si and stomatal conductance data; statistical analysis based on

arcsine transformed Si data (see text for details).

under bagged conditions in similar quantities to the unbagged
plants, despite the likely difference in transpiration between these
two conditions. These findings cannot be explained purely by
passive processes linked to water evapotranspiration, implying
that damage-inducted increases in Si deposition require active
physiologically regulated processes (Kumar et al., 2016).

Undamaged Plants
We hypothesized that if Si uptake was largely a passive
process associated with transpiration rate, varietal differences
in Si concentration would be driven by differences in stomatal
conductance and stomatal density because Si uptake into the
tissues, although mediated by the Si transporters, mainly follows
the flow of water from the external environment into the root
cells (Raven, 1983; Epstein, 1994, 1999; Exley, 2015). Our findings
of a correlation between stomatal conductance and Si support

this hypothesis of a strong role of the transpiration stream in
Si uptake also found in previous studies (Sangster and Parry,
1971; Henriet et al., 2006; Cornelis et al., 2010; Faisal et al.,
2012; Kumar et al., 2016) and suggests a strong role of the
transpiration stream in Si uptake. However, the clear differences
in Si concentration between the varieties, despite no statistical
differences observed in stomatal conductance between them,
suggests other factors than transpiration stream may have some
influence on Si accumulation and deposition in the undamaged
plants. The H variety had a higher expression of the active Si
transporter Lsi2 compared to the VVS variety; varietal differences
have also been reported in barley cultivars in expression of
Lsi2, where Si concentration was positively correlated with Lsi2
expression (Mitani et al., 2009a). It was reported that constant
Si supply led to the down-regulation of Lsi2 in barley and maize
over a period of a week (Mitani et al., 2009a). In our study, Si was
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FIGURE 3 | (A) Stomatal conductance, and (B) Leaf Si concentration of damaged plants in unbagged conditions. VVS = very very soft, VS = very soft and

H = harsh. Bars are mean values ± SE. N = 5 for stomatal conductance and n = 10 for Si concentration. Letters within bars denote significant differences between

treatments (post hoc Tukey p < 0.05).

constantly supplied over a period of 12 weeks, and it is possible
that the VVS variety is less able to upregulate Lsi2 than the H
variety under these conditions. These results suggest Lsi2 has
an important role in driving varietal differences in terms of Si
concentration in tall fescue.

Damaged Plants
We hypothesized that damaging plants would induce an increase
in Si uptake, and that varieties with a greater rate of Si
uptake and deposition would show larger induction responses.
However, in unbagged conditions damaging leaves only elicited

a response from the H variety, both systemically and locally.
The undamaged leaves of damaged plants increased leaf Si
concentration by 27% and the damaged leaves by 47% compared
to the undamaged plants. Such increases in Si after induction
have been observed in many other studies (Massey and Hartley,
2006; Massey et al., 2007; Garbuzov et al., 2011; Reynolds et al.,
2012; Soininen et al., 2013; Hartley et al., 2015). Although under
undamaged conditions varieties did not differ significantly in
stomatal conductance (though there was a trend for higher
conductance in harsher varieties), in damaged plants the H
variety had significantly higher stomatal conductance than the
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FIGURE 4 | Leaf Si concentration of undamaged plants and damaged leaves

of damaged plants under bagged conditions. VVS = very very soft, VS = very

soft and H = harsh. Bars are mean values ± SE. N = 10. Letters within bars

denote significant differences between treatments (post hoc Tukey p < 0.05).

VVS and VS varieties (see Figures 1C, 3A). This suggests that
varietal differences in Si in damaged, unbagged plants may at
least in part, be driven by the uptake of water. The lack of
response in stomatal conductance, by the VS and VVS varieties
is surprising given that most studies (Warrington et al., 1989;
Oleksyn et al., 1998; Aldea et al., 2005; Pincebourde et al., 2006)
find an increase in stomatal conductance and transpiration when
leaves are grazed or perforated, due to damage of the stomata
causing impaired function, such as altering the ability of the
guard cells to open and close properly. There was also a lack of
response to damage in terms of increased Si uptake by VVS and
VS varieties, but the VS variety had more phytoliths per mm2

than in undamaged plants. Thus, although Si concentration did
not increase, this variety investedmore Si in phytolith production
suggesting a shift in allocation patterns of Si under damaged
conditions. In damaged plants, there was a greater expression of
Lsi2 gene isoforms compared to the undamaged plants suggesting
that this transporter is at least partially responsible for Si-
induced defenses in this species. The Lsi2 transporters were
up-regulated in the H variety compared to the VVS variety. Tall
fescue is an outbreeding, allohexaploid (Gibson and Newman,
2001) and therefore there may be splice variants of these Si
transporters in the different varieties which are only activated
upon damage.Wewere able to see differences between treatments
using a small number biological replicates in a species with a
complex genome such as tall fescue, providing clear evidence
that Si-induced defenses are under molecular control in this
species. In barley, Si concentration was positively correlated with
Lsi2 expression (Mitani et al., 2009a), here we also see plants

with more Si in the leaves also have a higher expression of
Lsi2.

Bagged, Undamaged, and Damaged
Plants
We hypothesized that if damage induced increases in Si uptake
were driven by changes in water relations, bagging plants would
prevent this increase in Si uptake after damage. Bagging the plants
removed the differences observed between the undamaged and
damaged plants in terms of stomatal conductance compared to
when plants were not bagged, and also removed the varietal
Si differences observed in unbagged plants. However, bagging
plants did not remove the Si differences between the undamaged
and damaged plants: there was still an induction response to
damage, increasing the leaf Si concentration in damaged plants
compared to the undamaged plants in all 3 varieties. The systemic
induction in the H variety observed in unbagged damaged plants
was not found in this treatment, suggesting systemic induction
is in part influenced by water relations, but localized responses
to damage with increased Si deposition are not. The trend in
trichome and phytolith deposition between the varieties remains
similar between unbagged and bagged conditions (i.e., that VVS
has less trichomes compared to the VS and H variety and that
the VS variety has more phytoliths compared with the H and
VVS varieties), again suggesting this deposition is not primarily
transpiration driven.We also see differences between the varieties
in terms of the deposition patterns, even though the stomatal
conductance is the same (Supplementary Table S3). Transpiration
seems necessary for plants to accumulate Si from the roots to the
leaf tissues, but other active means must be at play during the
deposition to explain findings in our study. Other work supports
this assertion, silica accumulation in silica cells takes place only
during leaf development (Sangster, 1970; Motomura et al., 2006;
Kumar et al., 2016); if transpiration were the sole cause of Si
deposition then all leaves (despite their age) would continue to
deposit Si in the silica cells, but this is not the case (Kumar et al.,
2016).

Studies that have investigated the relationship between
passive/ active uptake of Si in plants have found content of Si both
higher (Faisal et al., 2012; Gocke et al., 2013; Kumar et al., 2016)
and lower Si than expected for passive uptake (Cornelis et al.,
2010), which again goes against the suggestion that Si uptake and
distribution is a purely passive process (Exley, 2015). Silicic acid
may move freely into the roots but uptake and distribution of
Si increases in the presence of the influx and efflux transporters
(Farooq and Dietz, 2015; Yamaji et al., 2015). Many studies
have shown Si transporters are responsible for the uptake and
distribution of Si in different grass species (Ma et al., 2006; Chiba
et al., 2009; Mitani et al., 2009a,b; Montpetit et al., 2012). Si
transport, both within and between species is variable as is the
regulation of the Si transporters – Lsi1 is down regulated in rice
during constant Si supply after 3 days (Ma et al., 2006) whereas
in barley and maize for example, the expression is constitutive
(Chiba et al., 2009; Mitani et al., 2009a). In terms of inducible
plant defenses, plants may only up-regulate expression of Si
transporters as needed and rely on their base transcript levels of
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Si transporters and transpiration to utilize Si under undamaged,
unbagged conditions. Complex interactions between genetic and
environmental controls on the expression of transporters may
explain why Si levels for the same species are often so variable
(Ma et al., 2001; Hodson et al., 2005; Soininen et al., 2013).

Given that Si transporters have been identified in many other
species of grass such as rice (Ma et al., 2006) and barley (Mitani
et al., 2009a and in some dicotyledons, cucumber, pumpkin, and
soybean (Deshmukh et al., 2013) for example (see Deshmukh
et al., 2015; Deshmukh and Bélanger, 2016 for others), it is
likely that F. arundinacea has Si transporters and that differences
in these underlie differences in Si uptake and deposition we
observe between varieties. Other studies have found intraspecific
differences in uptake abilities in rice (Wu et al., 2006; Ma
et al., 2007) which revealed that the higher Si accumulating
genotypes were able to accumulate more Si due to a higher
level upregulation of Si transporters. Perhaps this is also the
case for the differences in these varieties and may also be why
the high accumulating variety (H) is better able to respond to
damage as there is a greater number of Si transporters present.
The spacing between the conserved (asparagine-proline-alanine
(NPA)) domains in Si transporters is also likely to influence
uptake abilities within and between species; the spacing between
these amino acids have been shown to determine whether plants
are able to import or reject importing Si into the root cells
(Deshmukh et al., 2015).

CONCLUSION

Few studies have looked at the relationship between Si
accumulation and transpiration, and to date none have looked
at these in combination with damage. To date, no studies have
looked at differential expression of the Si transporters between
undamaged and damaged conditions to test for molecular
evidence of Si-induced responses. There were clear differences
in the response of the three varieties to the damage treatments
within this study, suggesting that damage is an important driver
in the accumulation of Si. Removal of differences in stomatal
conductance also removed the difference in Si levels between
the varieties, suggesting that transpiration has a role in Si
accumulation, but the higher Si levels under damaged, bagged
conditions show these increases must occur bymechanisms other

than just passive movement of Si in the transpiration stream.
This gives clear evidence for active Si-induced defenses within
this species. Further, we provide the first evidence of molecular
based Si-induced defenses by the up-regulation of the active Si
transporter, Lsi2, in damaged plants. Clearly, further molecular
characterization of the mechanisms involved in Si uptake and
transport following damage is necessary to fully understand how
Si gets from the xylem and into the cells in the leaves. These
results not only provide evidence for Si-defenses being regulated
at gene level, they also provide insights into target traits for
selecting plant genotypes resistant to herbivory for agriculture
and other uses.
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