
This is a repository copy of Mapping regional risks from climate change for rainfed rice 
cultivation in India.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/226902/

Version: Published Version

Article:

Singh, K. orcid.org/0000-0003-2764-0852, McClean, C.J., Büker, P. et al. (2 more authors) 
(2017) Mapping regional risks from climate change for rainfed rice cultivation in India. 
Agricultural Systems, 156. pp. 76-84. ISSN 0308-521X 

https://doi.org/10.1016/j.agsy.2017.05.009

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Contents lists available at ScienceDirect

Agricultural Systems

journal homepage: www.elsevier.com/locate/agsy

Mapping regional risks from climate change for rainfed rice cultivation in

India

Kuntal Singha,⁎, Colin J. McCleanb, Patrick Bükerc, Sue E. Hartleya,d, Jane K. Hilla,d

a Department of Biology, University of York, York YO10 5DD, UK
b Environment Department, University of York, York YO10 5NG, UK
c Stockholm Environment Institute, Environment Department, University of York, York YO10 5NG, UK
d York Environmental Sustainability Institute, University of York, York YO10 5DD, UK

A R T I C L E I N F O

Keywords:

Rainfed rice

Climate envelope model

biomod2

Boosted regression trees

India

A B S T R A C T

Global warming is predicted to increase in the future, with detrimental consequences for rainfed crops that are

dependent on natural rainfall (i.e. non-irrigated). Given that many crops grown under rainfed conditions support

the livelihoods of low-income farmers, it is important to highlight the vulnerability of rainfed areas to climate

change in order to anticipate potential risks to food security. In this paper, we focus on India, where ~50% of

rice is grown under rainfed conditions, and we employ statistical models (climate envelope models (CEMs) and

boosted regression trees (BRTs)) to map changes in climate suitability for rainfed rice cultivation at a regional

level (~18 × 18 km cell resolution) under projected future (2050) climate change (IPCC RCPs 2.6 and 8.5, using

three GCMs: BCC-CSM1.1, MIROC-ESM-CHEM, and HadGEM2-ES). We quantify the occurrence of rice (whether

or not rainfed rice is commonly grown, using CEMs) and rice extent (area under cultivation, using BRTs) during

the summer monsoon in relation to four climate variables that affect rice growth and yield namely ratio of

precipitation to evapotranspiration (PER), maximum and minimum temperatures (Tmax and Tmin), and total

rainfall during harvesting. Our models described the occurrence and extent of rice very well (CEMs for occur-

rence, ensemble AUC = 0.92; BRTs for extent, Pearson's r = 0.87). PER was the most important predictor of

rainfed rice occurrence, and it was positively related to rainfed rice area, but all four climate variables were

important for determining the extent of rice cultivation. Our models project that 15%–40% of current rainfed

rice growing areas will be at risk (i.e. decline in climate suitability or become completely unsuitable). However,

our models project considerable variation across India in the impact of future climate change: eastern and

northern India are the locations most at risk, but parts of central and western India may benefit from increased

precipitation. Hence our CEM and BRT models agree on the locations most at risk, but there is less consensus

about the degree of risk at these locations. Our results help to identify locations where livelihoods of low-income

farmers and regional food security may be threatened in the next few decades by climate changes. The use of

more drought-resilient rice varieties and better irrigation infrastructure in these regions may help to reduce these

impacts and reduce the vulnerability of farmers dependent on rainfed cropping.

1. Introduction

Global temperatures rose above pre-industrial levels by +0.85 °C in

the last century, and are predicted to exceed +2 °C this century (RCP

8.5 scenario; IPCC, 2013). There are aspirations to limit this tempera-

ture rise by reducing anthropogenic greenhouse gas emissions (Hulme,

2016), but current global warming trends are expected to lead to a

greater intensity, frequency and severity of droughts (Diffenbaugh

et al., 2015; Prudhomme et al., 2014). Higher temperature and in-

creased rainfall variability will reduce yields of major crops such as

maize, wheat and rice (Sage et al., 2015; Lobell et al., 2011) (there is

evidence that climate change has already begun to reduce yields (Lesk

et al., 2016)) in spite of the benefits for plants from increased atmo-

spheric CO2 (Hasegawa et al., 2013).

Rainfed areas supply ca. 58% of global food production and play an

important role in food security (Seck et al., 2012). Rice is one of the

major crops grown and consumed in rainfed areas, and rainfed culti-

vation accounts for about 25% of global rice production. Due to its

dependence on climate, rainfed rice cultivation is vulnerable to changes

in temperature and rainfall. Warm temperature (optimal range

20 °C–30 °C) and high rainfall (optimal range 1500 mm–2000 mm)

(http://ecocrop.fao.org/) generally increase growth rates of rice plants,
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and hence yield (Yoshida, 1981). By contrast, very high temperatures

(> 35 °C) induce heat stress and affect plant physiological processes,

leading to spikelet sterility, non-viable pollen and reduced grain quality

(Nguyen et al., 2014; Welch et al., 2010). Drought, on the other hand,

reduces plant transpiration rates and may result in leaf rolling and

drying, reduction in leaf expansion rates and plant biomass, im-

mobilisation of solutes and increased heat stress of leaves (Jagadish

et al., 2010; Van Oort et al., 2011).

Climate is the primary factor driving locations for rainfed rice cul-

tivation and rice yields. Hence changes in climate, such as those pro-

jected to occur in the future, particularly those related to increased

variability in rainfall (Meinshausen et al., 2011), could result in some

areas becoming climatically unsuitable for cultivating rainfed rice, or at

least reduce crop yields. Statistical models have been used to map crop

production in relation to climate, and to project changes in the suit-

ability of cultivation for a wide variety of crops including cereals

(Fischer et al., 2005; Jones and Thornton, 2003), spices (Vlok and

Olivier, 2003), biofuel crops (Tuck et al., 2006), and fruit (Machovina

and Feeley, 2013; White et al., 2006). Climate envelope models (CEMs)

have been used at regional scales to map distributions of crops in re-

lation to climate variables and, by incorporating outputs from future

climate change scenarios, to make projections about changes in the

suitability of cropping areas (Estes et al., 2013; Liu et al., 2015). Gen-

erally, outputs of CEMs are expressed in terms of spatial (usually

gridded) maps of probabilities of occurrence of the crop under study,

with declines in probability under future climate change implying de-

creasing suitability for growing crops. CEM outputs can be used to

identify regions that may become climatically unsuitable in the future,

and highlight vulnerable areas where crops are most at risk from the

detrimental impacts of climate change (Liu et al., 2015). This mapping

approach can be used at regional scales to guide policy makers in their

choice of adaptation strategies, such as breeding new cultivars that can

cope with the predicted climate change, developing irrigation infra-

structure or shifting to new cropping systems.

In this study, we examine changes in climate suitability of rainfed

rice cultivation in India, to highlight areas at risk from future climate

changes. It is important to study rainfed rice cultivation here because

India is the world's second largest producer of rice, of which a sub-

stantial amount is grown under rainfed conditions during the Kharif

(i.e. summer monsoon season). Any detrimental impacts of climate

would have major consequences for food security from local to global

levels. Moreover, the majority of Indian farmers cultivating rainfed rice

are smallholders, whose local livelihoods are highly vulnerable to cli-

mate changes and since 1980, the number of smallholder farmers in

India increased by ~77% to almost 66 million in 2010–11(Joshi,

2015). In addition, the agricultural sector in India employs almost half

of the labour force of the country, so any changes in rice cultivation are

likely to have considerable social impacts.

We use multiple CEMs and BRTs (see Materials and methods) to

model the occurrence (presence/absence) and extent (area under cul-

tivation) of rainfed rice cultivation in relation to four climate variables

during the main summer monsoon growing season (precipitation-eva-

potranspiration ratio, total rainfall, average minimum and maximum

temperatures). Modelling continuous data, i.e. extent of rainfed rice

using boosted regression trees (BRTs), as well as categorical occurrence

data using CEMs, allowed us to map changes in the suitability of rainfed

rice growing areas (from CEM outputs), as well as to quantify changes

in the absolute area available for rainfed rice cultivation (from BRT

outputs). Our study has three main aims. First, we examine whether the

occurrence and extent of current-day rainfed rice cultivation can be

modelled successfully using climatic variables derived from tempera-

ture and precipitation during the summer monsoon, and whether CEM

and BRT model outputs agree in terms of which areas are climatically

most suitable for growing rainfed rice. Second, we assess whether the

models agree on which climate variables are important predictors of

rainfed rice cultivation; we hypothesise here that rainfall-derived

variables will be more important than temperature in this respect. Fi-

nally, we map future changes in the climate suitability of areas where

rainfed rice is currently cultivated, and identify risk areas that our

models project to possibly become climatically unsuitable for rainfed

rice cultivation by 2050.

2. Materials and methods

2.1. Sources of rice data

We modelled the occurrence (presence versus absence, categorical

variable) and extent (area under cultivation, continuous variable) of

rainfed rice cultivation in India. In order to generate these occurrence

and extent data, we compiled existing data on the total area of rice

cultivation (ha; combining irrigated and rainfed rice) and net irrigated

rice area (ha) at district level (mean area of 519 districts = 5857 km2)

in India. These data are for the period 1998–2013, and are from the

Ministry of Agriculture, Government of India (http://eands.dacnet.nic.

in/) for the Kharif season (summer monsoon season, June–September).

For each district in India, we calculated the area of rainfed rice culti-

vation, by subtracting the net irrigated rice area from the total rice area

for each year for the period 1998–2013, and then averaged the annual

rainfed rice area over 16 years to produce a single mean value for the

area of rainfed rice cultivation for each district. There were changes to

district boundaries over time, and new districts created during

1998–2013 were merged with parent districts before computing rainfed

rice areas in order to analyse 519 districts over time. Thus, the final

computed district-level data comprised the average area under rainfed

rice cultivation (in ha) for 519 districts in India (Fig. S1, Appendix A;

excluding West Bengal, Tripura and the Island territories of Andaman,

Nicobar and Lakshadweep where data were unavailable). These coarse

district-level data were downscaled and converted into a gridded da-

taset (10 arc-minute resolution, which is ~18 km cell spatial resolution

at the equator; Fig. S1, Appendix A) to match the resolution of the

climate datasets used in this study (see below). Our downscaling

methods are described in Appendix B. This downscaling resulted in a

total of 9674 cells from which we excluded cells without any rainfed

rice cultivation (n = 1700 cells) to eliminate locations where rice

cannot be grown (e.g. Thar Desert).

From the remaining 7974 cells, we produced two datasets for in-

clusion into models; our first dataset mapped observed occurrence of

rainfed rice per 18 km cell (binary variable; 1 = high occurrence of

rainfed rice areas, 0 = low occurrence of rainfed rice area, subse-

quently termed ‘presence’ and ‘absence’). All 18 km cells where rainfed

rice occupied≥15% of the cells were classified as presences (n = 1171

cells) and remaining cells were classified as absences (n = 6803 cells;

Fig. 1a). Models have been generally shown to perform best when the

harvested area is above 10%–15% of the gridded area being modelled

(Watson et al., 2015). We tested the sensitivity of our findings to dif-

ferent thresholds at 10% and 20%, and we found that our main con-

clusions were not largely affected by our choice of threshold value (Fig.

S2, Appendix A). Our second dataset quantified the area of rainfed rice

cultivation per 18 km cell (continuous variable (ha), subsequently

termed observed ‘extent’; Fig. 1b).

2.2. Sources of climate data

We examined the impact of four climate variables known to have

important effects on rice growth, development and ripening (Table 1).

Rice plant sensitivity to temperature and moisture varies during the

different plant growth stages, and so we split our growing season into

two periods: June–September (plant growth and reproductive stage)

and October–November (grain ripening and harvesting) following

Auffhammer et al. (2012). The exact timing of these periods differs

across India depending on monsoon onset and rice planting dates, but

these periods broadly correspond with the main rice growing periods
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during the summer monsoon. There are> 400 rice varieties cultivated

in rainfed regions in India (http://drdpat.bih.nic.in/Downloads/Rice-

Varieties-1996-2012.pdf), but there is little information on how many

of these varieties are actually adopted and cultivated by farmers. Thus,

we split the growing season in two stages, to cover the likely growth

and ripening periods of the most common rice varieties (Auffhammer

et al., 2012). Our four climate variables were (Table 1): the precipita-

tion-evapotranspiration ratio (ratio of total rainfall to total potential

evapotranspiration during plant growth, June–September; PER),

average monthly maximum temperature during plant growth (further

averaged over June–September; Tmax), average monthly minimum

temperature during ripening (further averaged over October–No-

vember; Tmin), and total rainfall during harvesting (October–November;

Rain). Potential evapotranspiration was calculated using Hamon's

equation and PER was expressed as the ratio of total rainfall (mm) to

potential evapotranspiration (mm). Detailed methods for computing

PER are outlined in Appendix D.

Correlations among all four climatic variables were< 0.6; Rain and

Tmin were most strongly correlated (r =+0.47, P < 0.05), whereas

PER and Tmin were not correlated (r = +0.04, P > 0.05; Table S1,

Appendix C). Monthly data for Rain, Tmax and Tmin were downloaded

from WorldClim (http://www.worldclim.org/) for the present

(1950–2000) and future scenarios at 10 arc-minute (~18 km) cell re-

solution (Hijmans et al., 2005). There is considerable variation in future

projections from different GCMs (Jayasankar et al., 2015), and so we

examined projections for 2050 for two scenarios, spanning the highest

and lowest severity of future climate change, from three GCMs. IPCC

RCP 8.5 represents the most severe (‘business-as-usual’) scenario, and

RCP 2.6 represents the least severe (‘mitigation’) scenario (IPCC, 2013).

We obtained RCP 2.6 and 8.5 climate data from three different GCMs

(BCC-CSM1.1, MIROC-ESM-CHEM, and HadGEM2-ES), selected to en-

compass a range of different modelling approaches and projections.

These GCMs have been shown to be largely independent from each

other (Knutti et al., 2013) and encompass a range of different modelling

approaches. In addition, these GCMs project a range of different tra-

jectories for the Indian monsoon in the future: HadGEM2-ES predicts

decreased variability in the Indian monsoon, MIROC-ESM-CHEM pre-

dicts little change from the present day whereas BCC-CSM1.1 predicts

increased variability in future (Jayasankar et al., 2015). Finally, all

three GCMs have been shown to reproduce the current regional rainfall

across India, albeit with low confidence (Menon et al., 2013). There-

fore, using climate projections from multiple GCMs and RCPs allowed

us to incorporate uncertainties associated with rainfall in our mapping

of risk.

2.3. Modelling relationships between rainfed rice cultivation and current

climate

We modelled the occurrence (presence/absence) of rainfed rice with

the biomod2 package in R using five CEMs (MAXENT, GBM, ANN, SRE

and MARS) (Thuiller et al., 2009). All five models were trained on 75%

of these occurrence data and tested on the remaining 25% (repeated

three times per model), and model performances were assessed by AUC

values from the Receiver Operating Characteristic (ROC) curve

(Marzban, 2004). For models displaying AUC > 0.85, the CEM outputs

reported the mean probability (averaged across the five models) of

rainfed rice occurrence (0 = unsuitable, to 1 = suitable) for each of the

7974 study cells. In order to quantify the impacts of future climate

Fig. 1. Observed (a) occurrence and (b) extent of rainfed rice. Data are plotted at 18 km cell resolution, black = presence/high extent; white = absence/low extent. (c) Number of

cropland cells (0.5 km cell) per 18 km cell from Broxton et al. (2014). State boundaries are plotted. Some areas were excluded from analysis due to unavailability of rice data (e.g. West

Bengal) or because regions do not grow rice (e.g. western India).

Table 1

List of predictor variables used for modelling current and future spatial distribution of rainfed rice. The correlation coefficient (Pearson's r for correlations between these variables) is

shown in Table S1, Appendix C. The same set of predictor variables was used in both occurrence (CEM) and extent (BRT) models.

Variable Abbreviation and unit Importance for rainfed rice

PER (June–September) PER The ratio of total rainfall (June–September; mm) to total potential evapotranspiration

(June–September; mm). Reduced moisture leads to stomata closure, reduced transpiration, reduced

photosynthesis rate, immobilisation of solutes and heat stress on leaves in the absence of

transpiration cooling (Van Oort et al., 2011; Cho and Oki, 2012)

Mean maximum monthly temperature

(June–September)

Tmax (°C) Higher Tmax during the vegetative and reproductive stage leads to reduction in plant height, reduced

tiller number, sterile spikelets and non-viable pollen (Kim et al., 2011; Nguyen et al., 2014; Shah

et al., 2011)

Mean minimum monthly temperature

(October–November)

Tmin (°C) Higher Tmin increases night-time respiration which increases maintenance respiration and uses up

carbon fixed through photosynthesis. This leads to empty grains, or lower grain weight, as a result of

less carbohydrate available for grain-filling during ripening (Mohammed and Tarpley, 2009; Peng

et al., 2004; Shi et al., 2013).

Total precipitation (October–November) Rain (mm) An indicator of physical damage to the standing crop during ripening and harvest via excessive

rainfall (Auffhammer et al., 2012)
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changes (see Section 2.4 below), these continuous probability values

were transformed into categorical data (modelled presence/absence

data) using a threshold probability value derived from the ROC curve

(Marzban, 2004). The threshold value (0.17) was selected as the

probability value at which sensitivity (number of observed presences

predicted correctly) and specificity (number of observed absences

predicted correctly) were maximised using the pROC package in R

(Robin et al., 2011). Transforming probability values from CEMs into

categorical presence/absence data allowed us to compare modelled and

observed occurrence data, and to facilitate comparisons of outputs from

CEMs and boosted regression trees (BRTs, see below) in order to assess

spatial agreement between the two methods.

We modelled the extent of rainfed rice cultivation using BRTs (Elith

et al., 2008). Our initial data exploration indicated that the gridded

extent data had a negatively skewed distribution (i.e. most cells had

little rainfed rice whereas a few cells had very large amounts of rainfed

rice). Therefore, we ln-transformed these data (using the transforma-

tion ln(extent + 1)) before running the BRTs (see Appendix D for BRTs

details). We then back-transformed the BRT model outputs (which were

on a natural logarithmic (ln) scale) and converted this continuous ex-

tent variable into a categorical variable (i.e. modelled ‘high’ and ‘low’

rainfed rice extent) using the same thresholding approach used for CEM

outputs, derived from the ROC curve (see above; a threshold of

1517.93 ha of rainfed rice cultivation per cell was used for separating

high extent from low extent cells).

We assessed the spatial agreement in modelled occurrence (CEMs)

and extent (BRTs) of rainfed rice by mapping cells where CEM and BRT

model outputs agreed/disagreed (i.e. modelled presences were in

agreement with modelled high extent, and modelled absences agreed

with modelled low extent). We also assessed the relative importance of

the four climate variables using the inbuilt functions for CEMs and BRTs

(Elith et al., 2008; Friedman and Meulman, 2003). For CEMs, the re-

lative importance of each climate variable was determined by making

predictions based on including only a single climate variable into

models and computing the correlation (Pearson's r) between these

model outputs and models that include all four climate variables. The

highest value of Pearson's r is obtained for the climate variable that has

the most influence (Thuiller et al., 2016). For BRTs, the importance of a

climate variable in a single regression tree was determined from im-

provements at each split in the tree, and the relative importance of each

climate variable is the averaged improvement over all the trees where

the climate variable was used for splitting (Friedman and Meulman,

2003).

2.4. Projecting impacts of future climate change on rainfed rice cultivation

We incorporated outputs for 2050 from two IPCC RCPs scenarios

(2.6. and 8.5, representing the lowest and highest radiative forcing) and

from three climate models: BCC-CSM1.1, HadGEM2-ES and MIROC-

ESM-CHEM. For each GCM × RCP combination, we quantified changes

in climate suitability for rainfed rice cultivation by subtracting outputs

based on current climate from those based on future climate projec-

tions. A change in probability values (CEMs) or change in extent (BRTs)

was taken to indicate change (either increase or decrease) in climate

suitability for rainfed rice cultivation in the future. We focussed spe-

cifically on cells where rainfed rice cultivation is recorded in the pre-

sent-day (n = 1171 cells, see Section 2.1 above), because changes in

climate suitability in these cells will have greatest impacts on rainfed

rice production. We classified changes in the climate suitability of these

cells into three suitability categories: improved (increased probability

of occurrence/extent in future), less suitable (decreased probability of

occurrence/extent) and unsuitable (decreased probability of occur-

rence/extent below current climate thresholds for cultivation; see

Section 2.3). We combined results from the three GCMs to produce an

ensemble result for each cell for each RCP. If all three GCMs were in

agreement (e.g. all GCMs projected the cell to become unsuitable), then

we deemed the result for the cell to be ‘high confidence’, if two GCMs

agreed it was ‘medium confidence’ and if all three GCMs differed, this

was ‘uncertain’ (i.e. the three GCMs projected the same cell to be more

suitable, less suitable and unsuitable). Cells which became less suitable

or unsuitable, and for which there was high confidence in their pro-

jections, are henceforth referred to as cells ‘at risk’. All analyses were

carried out in R 3.1.2 (R Core Team, 2013).

3. Results

3.1. Current distribution of rainfed rice in relation to climate

Overall, the CEMs were very good at modelling the occurrence of

rainfed rice in relation to the four selected climate variables (ensemble

AUC = 0.92). Rainfed rice was predicted to occur in 2435 cells and be

absent from 5539 cells (Fig. 2a; based on the CEM threshold probability

of 0.17 to convert probability values into modelled presences and ab-

sences). Our model sensitivity was 91% (i.e. 91% of modelled presences

were in agreement with observed presences) and our model specificity

was 79% (79% of absences were modelled correctly). CEMs tended to

predict rainfed rice in more cells than those where there were observed

presences (Fig. 2a) in India, implying that rainfed rice cultivation is also

restricted by non-climatic factors not included in CEMs. For example,

when we overlaid modelled presences from CEMs (n = 2435 cells) on

Fig. 2. Modelled rainfed rice (a) presence/absence (from CEMs) and (b) high/low extent (from BRTs). Green and white areas show where model outputs agree with observed rainfed rice

cultivation data, whereas yellow and brown areas are where models disagree with observed data. (c) Spatial agreement in CEM and BRT outputs, where green areas show agreed

presences, and white areas are agreed absences. Disagreements are shown in orange (CEMs predict presence but BRTs predict low extent) and blue (CEMs predict absence but BRTs

predict high extent). Data are plotted at 18 km cell resolution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the landcover map (Fig. 1c), we found that about a third of modelled

presences were in locations with low availability of cropland. Thus our

subsequent focus on examining future changes in climate suitability

only in those cells where rainfed rice is present in high extent (‘pre-

sence’ cells in Fig. 1) means that we avoided studying locations where

there was little available cropland.

The BRTs were also very good at predicting the observed extent of

rainfed rice (Pearson's r = 0.87 between observed and modelled extent;

Fig. S3, Appendix A). The extent of rainfed rice was predicted to be high

in 2408 cells and low in 5566 cells (AUC = 0.89, sensitivity = 84%,

specificity = 79%, based on a threshold extent of 1517.93 ha; Fig. 2b).

Comparing CEM and BRT outputs showed that 73% (5819/7974) of

cells were in agreement (Fig. 2c), such that 55% of CEM rainfed rice

presences were predicted by BRTs to have high extent of rice, and 80%

of CEM absences were predicted to have low extent.

Thus the CEMs and BRTs were in broad agreement in terms of the

locations of climatically suitable cells for rainfed rice, but the models

differed in terms of which climate variables were the most important

predictors of rainfed rice cultivation. In the CEMs, PER was the most

influential variable and it was almost 1.5 times more important than

Rain and 2.5 times more important than Tmin and Tmax (Fig. 3a). For

BRTs, Rain was the most important variable, but was only marginally

more influential than PER and only 1.5 times more important than the

two temperature-derived variables (Fig. 3b).

3.2. Future spatial distribution of rainfed rice

By 2050, all the GCMs and RCPs generally predict hotter tempera-

tures (Tmax increase ranges from +0.3 to +1.9 °C; Tmin increase ranges

from +1.3 °C to +3.1 °C) and increased rainfall (Rain increase ranges

from +3% to +68%) during the summer monsoon in India (Fig. S4,

Appendix A).

Focussing on the cells where rice cultivation is recorded in the

present-day (n = 1171 cells; see Fig. 1a for the location of these cells),

CEMs projected the average probability of rainfed rice occurrence to

increase slightly under the RCP 2.6 scenario but decrease under RCP 8.5

(Fig. S5, Appendix A), whereas BRTs generally projected decreases in

extent in most RCPs and GCMs (Fig. S6, Appendix A). There was var-

iation in the projections for changes in climate suitability according to

the different GCMs and CEM/BRT models. Overall, there was more

agreement in the number of cells improving in climate suitability and

less agreement in cells becoming less suitable or unsuitable between

CEMs and BRTs. The percentage of cells becoming less suitable or un-

suitable varied across the two modelling approaches: CEMs projected

39% to 57% of cells to become less suitable (depending on GCM), and

1% to 8% of cells to become unsuitable (Fig. 4a), whereas BRTs pro-

jected 29% to 42% of cells to become unsuitable and 20% to 29% of

cells to become less suitable (Fig. 4b; for spatial locations of these cells,

refer to Figs. S7 and S8, Appendix A). However, all three GCMs reached

a consensus on whether a cell was climatically improved, less suitable

or unsuitable in future in 40% (BRTs)–60% (CEMs) of cells for RCP 2.6,

and between 40% (BRTs) and 70% (CEMs) of cells for RCP 8.5. We

focussed on those cells that were projected to become less suitable or

unsuitable in future, and where there was high confidence across the

GCMs (i.e. all three GCM outputs were in agreement). These data

suggest that by 2050, between 15% and 40% of locations where rainfed

rice is currently cultivated could be at risk of adverse impacts of climate

change, i.e. our models predict with high confidence that these loca-

tions will become either less suitable or unsuitable for rainfed rice

cultivation by 2050 (Fig. 5).

Both CEMs and BRTs project that cells at risk are mostly located in

eastern states of Chhattisgarh and Odisha, although the severity of that

risk, i.e. whether the location becomes unsuitable or less suitable for

rainfed rice cultivation, differs between the two modelling approaches.

4. Discussion and conclusions

Rainfed food production systems are highly dependent on climate

and our study maps the locations where the production of rainfed rice is

at risk from future climate change. Our results predict that between

15% and 40% of locations where rainfed rice is currently grown may be

less suitable or even unsuitable for that method of agriculture by 2050.

Rice production is a function of yield, cropping area and cropping

frequency, and it has been shown that changes in cropping area (and

frequency) contribute more to changes in agricultural output than

changes in yield (Cohn et al., 2016). Hence our predictions, that up to

40% of existing rainfed rice areas in India may be at risk in future,

highlight the considerable vulnerability of rainfed rice production to

climate change.

4.1. Declining climate suitability in important rainfed rice areas

Both CEM and BRT models project that 15%–40% of current rainfed

rice locations may be at risk from climate change by 2050, based on the

consensus across multiple GCMs. These declines in suitability were

most pronounced in eastern India, in the States of Odisha, Assam and

Chhattisgarh. These States predominantly use rainfed cultivation

methods and contribute more than a quarter of India's annual rice

production. The farming communities in these States are dominated by

small-landholders (usually owning< 2 ha; Joshi, 2015), with little

opportunity to produce surplus grain for consumption or for generating

income. In addition, small-holders often have limited access to financial

markets or crop insurance (Thapa and Gaiha, 2011), and so these

projected climate-driven declines in rainfed rice cultivation would be

expected to be detrimental to local livelihoods. Our model outputs

agree with other studies projecting declines in rainfed rice yields in

future, based on outputs of process-based crop models (Rao et al., 2016;

Soora et al., 2013) and statistical crop models (Auffhammer et al.,

2012). Rainfed areas already have a large yield gap compared with

irrigated areas (Mueller et al., 2012) and further reductions in the ex-

tent of climatically-suitable areas could widen these yield gaps with

Fig. 3. (a) Importance of four climate variables in (a) CEMs and (b) BRTs for modelling

rainfed rice cultivation. In (a) the y-axis is the mean correlation coefficient (Pearson's r)

(and SE) from model projections made with a single climate variable against predictions

made by using all four variables. In (b) the y-axis plots the relative influence of each

variable (higher numbers indicate stronger influence). Refer to Section 2.3 for a brief

description and Friedman and Meulman (2003) for full details.
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Fig. 4. Future projected changes in the climate suitability of cells

where rainfed rice is currently grown (n = 1171 cells) for (a) CEMs

and (b) BRTs. Cells are projected to become either climatically

unsuitable (brown) or less suitable (yellow), or have improved

suitability (green). The bars show all combinations of RCP (2.6 and

8.5) and GCMs (BC = BCC-CSM1-1, HE = HadGEM2-ES,

MI = MIROC-ESM-CHEM). These data are plotted as maps in Figs.

S7 (CEMs) and S8 (BRTs) in Appendix A. (For interpretation of the

references to colour in this figure legend, the reader is referred to

the web version of this article.)

Fig. 5. Maps showing spatial agreement in future changes in climate suitability of cells (cells becoming climatically unsuitable, less suitable or improved suitability by 2050) under RCP

2.6 and RCP 8.5 for CEMs and BRTs. Three GCMs (BCC-CSM1-1, HadGEM2-ES and MIROC-ESM-CHEM) were used. For a given scenario (RCP 2.6 or 8.5) and method (CEM or BRT), if

outputs from the three GCMs agreed, then confidence is high. If any two GCMs agree, confidence is medium, and if no GCMs agree, it is uncertain. Panels focus on areas around

Chhattisgarh and Odisha (area enclosed by the red box in the map of India) which are two major rainfed rice growing States and have large numbers of small land-holders. White areas are

where there is no rainfed rice, or little rainfed rice grown (based on 15% threshold criterion; Fig. 1). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

K. Singh et al. Agricultural Systems 156 (2017) 76–84

81



negative consequences for regional food security (Aggarwal et al.,

2008). Both CEMs and BRTs identified similar areas at risk in the states

of Chhattisgarh and Odisha, although they differ in the projected se-

verity of risk in these locations (i.e. they differ in the number of cells

projected to become less suitable or unsuitable in future). The major

difference between the projections for the two approaches across the

GCM ensemble is that CEMs project more cells becoming less suitable

but with high confidence, whereas BRTs project more cells to be un-

suitable but with only medium confidence. This difference in model

outputs could be due to differences in the climate variables deemed as

the most influential by the two approaches (see below).

4.2. Rainfall is generally more important than temperature-derived

variables for mapping rainfed rice areas

The CEM and BRT models were very good at mapping rainfed rice at

a regional (~18 km cell) scale using only monsoon climate variables,

confirming the dependency of rainfed rice cultivation on climate. Of the

four climate variables included in our models, PER was the most im-

portant for mapping the occurrence of rainfed rice using CEMs, but all

four variables were important for projecting extent of rainfed rice cul-

tivation using BRTs, although there was some indication that rainfall

variables were slightly more important. Previous studies have shown

that monsoon rainfall affects important decisions such as planting dates

(Zhao et al., 2016) and choice of rice cultivar (Xiong et al., 2014), and

that rainfall is also important for other rainfed crops such as wheat

(Mavromatis, 2016), sunflowers (Valverde et al., 2015), and sorghum

(Alemaw and Simalenga, 2015). It is most likely that planting decisions

by farmers are based on monsoon conditions in the initial growing

periods (PER and Tmax) as opposed to variables during the final growing

periods (Tmin and Rain), which may explain why PER was the most

important predictor in CEMs, and why there was more spatial con-

sensus in outputs from CEMs than from BRTs. PER is a ratio of rainfall

and potential evapotranspiration, both of which are expected to in-

crease in the future, although projections for rainfall are less certain

(Jayasankar et al., 2015; Sharmila et al., 2015) than those for tem-

perature (Chaturvedi et al., 2012). However, increased temperatures

will increase potential evapotranspiration and hence reduce water

available to plants, showing that both rainfall and temperature changes

are important. Nonetheless, since GCMs have less agreement on future

rainfall patterns compared with temperature, any model that relies

predominantly on rainfall, rather than PER which combines rainfall and

temperature, might be expected to show more spatial heterogeneity

across different GCMs. This explanation could be why there was less

consensus for BRTs (i.e. fewer high confidence cells) compared with

CEMs.

4.3. Use of statistical models to map areas at risk

Statistical models are usually important tools for undertaking re-

gional studies similar to ours if sufficient fine-scale data are unavail-

able. Our statistical models used averaged decadal measures of rice

cultivation and climate rather than yearly or finer temporal scale in-

formation as used in process-based crop models (e.g. Chun et al., 2016;

Rao et al., 2016). By aggregating data, our statistical models provide

information on changes in the suitability of rice cultivation at relatively

large spatial scales, and so provide risk maps rather than predictions of

short-term changes in yield at specific locations. We recommend run-

ning finer scale processed-based models (e.g. DSSAT; Corbeels et al.,

2016) to examine if the conclusions we have obtained using low data-

intensive statistical models are in agreement with projections from

more mechanistic models that include physiological, genetic, soil and

management information for rice. Studies that combine the two mod-

elling approaches may provide more robust projections about changes

to rice yields and areas suitable for cultivation (Watson et al., 2015).

4.4. Can locations with improved suitability compensate for declining

suitability elsewhere?

Although our CEM and BRT models projected large areas to decline

in climate suitability, some areas are projected to have improved cli-

mate suitability for rainfed rice cultivation in future. In addition, some

areas which currently do not cultivate rainfed rice may potentially

become climatically suitable in future. However, it is unlikely that any

increases in new locations will offset the declines in existing rainfed rice

growing areas, because local communities in these new areas may not

practise agriculture, or rice may not constitute a major part of local

diets and there may be a preference for other cash crops in these areas

(Behera et al., 2015; Semwal et al., 2004). In addition, many of these

potential new areas are already cultivating irrigated rice (Nirmalendu

et al., 2016) or supporting other land-uses such as forests and urban

areas (Pandey and Seto, 2015). Some locations where rice is currently

grown are projected to increase in climate suitability in future, but

these areas may already have reached the maximum attainable yield

(Conway and Toenniessen, 1999) or already grow irrigated rice, and

improved climate suitability may offer small additional returns in these

locations, unless supported by new rice cultivars or irrigation infra-

structure. Hence we conclude that any benefits from increased climate

suitability are unlikely to compensate for large–scale declines in the

occurrence and extent of rainfed rice cultivation that our models project

in future, and that local communities, especially in north-eastern states

of India, are particularly vulnerable to climate changes.

4.5. Adaptation options for lowering the risk in climatically unsuitable

locations

Our models map regions at risk from future climate change, and

regional food security and local livelihoods in these high risk areas will

depend largely on the capacity of small holders to adapt to these cli-

mate changes, for example by the take-up of new drought-tolerant

cultivars, or improved management practise. The development of irri-

gation systems would reduce the dependence on rainfall and would also

enable the planting of high-yielding rice varieties (Fischer et al., 2005).

The results from our work highlight locations (e.g. eastern Odisha and

central Chhattisgarh) most at risk and where such new initiatives

should be targeted.
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