

EGU25-4826, updated on 20 May 2025 https://doi.org/10.5194/egusphere-egu25-4826 EGU General Assembly 2025 © Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.

Ozone (O₃) risks to rice yields under warming climate using O₃-FACE observations

Beiyao Xu^{1,2}, Steven Dobbie¹, Huiyi Yang^{3,4}, Lianxin Yang⁵, Yu Jiang⁶, Andrew Challinor¹, Karina Williams^{4,7}, Yunxia Wang⁸, and Tijian Wang²

¹Institute for Climate and Atmospheric Science, University of Leeds, UK

²School of Atmospheric Sciences, Nanjing University, China

³Natural Resources Institute, University of Greenwich, UK

⁴Global Systems Institute, University of Exeter, UK

⁵Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, China

⁶Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, China

⁷Met Office, Exeter, UK

⁸College of Environmental Science and Engineering, Yangzhou University, China

Ozone (O_3) threatens food security by reducing rice yields, a staple food for half of the world's population. While numerical research has shown the negative impact of O_3 on rice through mathematical methods and crop models, existing global assessments have not incorporated data from rice-specific Free Air Concentration Enrichment (FACE) experiments into the mechanical models that simulate the interactions among crop phenology, physiology, and O_3 . FACE experiments are novel field experiments with O_3 distributed directly to the crops in the field. This provides a realistic environment for studying how rice responds to O_3 and is well-suited for evaluating its impact.

To perform this study, we use the calibrated JULES-crop model based on data from O_3 -FACE experiments, to simulate the effects of O_3 on rice. We investigate the response of rice under various shared socio-economic pathways (SSPs) as part of CMIP6. These SSPs represent a range of potential future anthropogenic emissions and different climate projections, from scenarios of regional conflict to those of global cooperation. By assessing the effects of O_3 on rice under these future scenarios, we gain valuable insights into pathways that could mitigate damage to food security. This research provides a critical foundation for policymakers facing the dual challenges of air pollution and climate change.