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Abstract

Reliable forecasting models are necessary to mitigate the risks posed by solar flares to human technology. This
study introduces a novel deep learning forecasting approach while emphasizing the need for performance
evaluation methods tailored to better highlight current models’ limitations. In particular, we show that models
reaching state-of-the-art performance with traditional metrics have similar explanatory power to no-skill
persistence models and notably struggle to forecast change in activity significantly better than random guesses. We
also discuss shortcomings in traditional evaluation metrics like the True Skill Statistic (TSS), which we show to be
mathematically dependent on the class balance for specific models. We introduce patch-distributed CNNs, which
allow us to perform full-disk forecasts while providing event probabilities in solar subregions and position
predictions. This new framework offers similar information to active region (AR)-based forecasting models while
bypassing the problem of unrecorded and misattributed flares that are detrimental to machine learning training. As
a result, the model also operates independently of prior feature extraction and AR detection, thus offering
promising operational utility with minimal external dependencies. Finally, a method is proposed for constructing
balanced and independent cross-validation folds for full-disk models. Models combining Solar Dynamic
Observatory (SDO)/Atmospheric Imaging Assembly EUV images as inputs show improved performance
compared to employing SDO/HMI photospheric magnetograms, with a TSS of 0.74 for the C+ model and 0.62
for the M+ model.

Unified Astronomy Thesaurus concepts: Solar flares (1496); Convolutional neural networks (1938);
Magnetogram (2359)

1. Introduction

1.1. Background and Related Works

Solar flares are one of the most energetic manifestations of solar

activity. They are bursts of electromagnetic radiation and particles

believed to be caused by magnetic reconnections converting huge

amounts of magnetic energy into heat and kinetic energy. To

characterize their potential danger, flares are commonly classified

according to their Soft X-Rays (SXRs; wavelength from

0.1 to 0.8 nm) maximum peak flux (MPF): A-class flares

with a MPF < 10−7Wm−2, B-class flares with MPF

ä [10−7, 10−6[Wm−2, C-class flares with MPF ä [10−6,
10−5[Wm−2, M-class flares with MPF ä [10−5, 10−4[Wm−2,

and X-class flares with MPF > 10−4Wm−2. Flares above the

M-class start representing a threat to human health and

technologies, motivating efforts toward reliable forecasting

methods.
Early machine learning solutions typically began by

engineering physically interpretable features—often derived

from magnetogram observations—believed to correlate with

imminent flare activity. These features were then used as inputs

to train predictive models. However, more recent approaches
exploit deep learning methods that automatically learn features
from images or time series data. For example, X. Huang et al.
(2018), E. Park et al. (2018), X. Li et al. (2020), Z. Deng et al.
(2021), and C. Pandey et al. (2023) employed convolutional
neural network (CNN) architectures on magnetogram images,
while N. Nishizuka et al. (2018) used a multi-layer perceptron
(MLP) artificial neural network on a combination of physical
parameters. Other works combined CNN and long short-term
memory (LSTM) modules to capture both spatial and temporal
information (S. Guastavino et al. 2022a; Z. Sun et al. 2022), or
combined CNN with traditional techniques such as random
forests (V. Deshmukh et al. 2022).

1.1.1. Current Limitations

Although these works have advanced the field, major
limitations persist. First, forecasting flare activity directly on
preidentified active regions (ARs) leads to a dependence on
external AR-detection procedures, which can miss or mis-
attribute events. K. Van der Sande et al. (2022) noted up to 8%
misattributed labels and about 20% missing M-class or above
flares in standard catalogs, highlighting potential errors that
degrade both training and evaluation. Second, most full-disk-
level models (E. Park et al. 2018; K. Yi et al. 2021; C. Pandey
et al. 2023) do not provide information about flare positions,
limiting their operational usefulness when event localization is
required. Third, model evaluations in existing studies often rely
on standard machine learning metrics and conventional train-
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test splits, which, while widely used, may be inadequate for this
specific task due to data set selection biases and the dynamic
nature of flare production (G. Barnes et al. 2016; K. D. Leka
et al. 2019; T. Cinto et al. 2020; S. Guastavino et al.
2022a, 2022b).

1.1.2. Present Work’s Contributions

This paper aims to address these limitations by introducing:

1. A weakly supervised learning framework with a full-disk
forecasting model using a CNN that does not rely on AR
identification. Unlike previous full-disk approaches, it
retrieves subregional predictions and potential flare
positions while using only full-disk labels at training,
thus mitigating issues arising from misallocated flares or
unrecorded ARs.

2. A robust evaluation procedure that includes new metrics
to quantify improvements over a simple persistence
baseline and to gauge performance on periods exhibiting
changes of solar activity. These methods reveal that,
while models can appear powerful under conventional
metrics, they may actually struggle to surpass basic no-
skill benchmarks when predicting activity changes.

3. A careful cross-validation (CV) strategy that reduces bias
in training and testing in full-disk context, leading to
more realistic performance estimates suitable for real
operational contexts.

These contributions together aim to advance solar flare
forecasting by minimizing labeling errors, improving autonomy
from external modules, and demonstrating more comprehen-
sive evaluation procedures that help reflect operational utility.

We employ the flare catalog from N. Plutino et al. (2023),
focusing on 24 hr forecasting windows. Throughout this work,
a model predicting whether at least one flare above the C-class
threshold will occur in the next 24 hr is referred to as a C+
model, while predicting at least one flare above the M-class
threshold is referred to as an M+ model.

This work is organized as follows. Section 2 reviews
commonly used binary metrics, highlighting their limitations
(Section 2.1), and then introduces complementary evaluation
methods (Section 2.2). Section 3 introduces our methodology,
presenting the data (Section 3.1), our weakly supervised model
(Section 3.2), and our training and new evaluation procedures
(Section 3.3). Section 4 presents the main results, and Section 5
discusses the remaining limitations and orientations for
future work.

2. Metrics

This section provides an overview of commonly employed
metrics in flare forecasting, some of their drawbacks, and new
evaluation methods that better highlight models’ limitations—
particularly concerning changes in solar activity. For concise-
ness and clarity, we place basic formulas and additional
discussions in Appendix A.

2.1. Standard Binary Evaluation Methods

Flare forecasting typically deals with highly imbalanced
data, posing challenges for model evaluation. Common metrics
are defined through the confusion matrix (Equation (A1)),
whose elements true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) can be translated into

class accuracy rates (e.g., true positive rate (TPR), true negative
rate (TNR)) and class precision rates (e.g., positive predictive
value (PPV), negative predictive value (NPV)). In practical
“alert system” scenarios, the false alarm ratio (FAR; the
complement of PPV) is also closely monitored to mitigate false
alarms.
F1 score. Defined in Equation (A6), the F1 score is the

harmonic mean of PPV and TPR. It provides a single-value
assessment for alert systems, balancing detection of positive
events against excessive false alarms. Variants like Fβ-score
can assign different weights to these two quantities, reflecting
operational priorities.
True skill statistic (TSS). The TSS (Equation (A7)) is widely

used in flare forecasting and is independent of the class ratio
only under very specific assumptions (Appendix A.2.1). In
practice, many flare forecasting models exhibit strong sensitiv-
ities to the class balance and the rate of changes in activity,
causing the TSS to vary with data set composition. Moreover,
the TSS includes no information about PPV, making it
incomplete and potentially misleading in imbalanced situations
(Appendix A.2.2).
Heidke Skill Score (HSS). The HSS (Equation (A10))

compares model performance to random guessing and accounts
for both class accuracy and class precision rates. However, it
may be difficult to interpret or compare across models because
it encompasses TSS and markedness (Equation (A8)) with
weights that depend on the model’s frequency bias
(Appendix A.1.7).
Matthews correlation coefficient (MCC). The MCC

(Equation (A11)) is a less common, but often more robust,
measure of a model’s explanatory power. It treats positives and
negatives symmetrically, synthesizing all four confusion matrix
components (TP, TN, FP, FN) in a balanced way
(Appendix A.2.4). It also tends to be more stable with respect
to variations in data set composition (Appendix B).
Ultimately, no single metric can fully capture all the

strengths and weaknesses of a model. For alert systems, the
F1 score (or Fβ) is particularly relevant, while the MCC
provides a reliable and agnostic measure of a model’s
explanatory power in imbalanced cases.
Thresholding. Many flare forecasting studies optimize their

decision threshold to maximize a selected metric. However,
K. D. Leka et al. (2019) showed that threshold “optimality”
often depends greatly on the class balance of the data set,
introducing additional biases in performance estimates. To
avoid this complication, we evaluate all metrics at a fixed
threshold of 0.5.

2.2. Identifying Flare Forecasting Models’ Weaknesses

Although standard metrics offer valuable insights, they can
mask key deficiencies when forecasting changes in solar
activity. We therefore introduce complementary evaluations to
better pinpoint where models fail.

2.2.1. Activity-change and No-change Performances

We label each time window as activity change (AC) if its
binary flare label differs from the previous consecutive, non-
overlapping window; otherwise, we classify it as no change
(NC). Figure 1 illustrates examples of such windows in the case
of M+ forecasting. Models can achieve decent performance on
NC windows—basically “recognizing” a stable configuration

2
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Figure 1. The first column displays examples of AC windows, with a positive AC window on the first row (colored in red) and a negative AC window on the second
row (colored in blue). The second column displays examples of NC windows: positive NC window on the first row and negative NC window on the second one. The
white time windows are the ones that precede the windows of interest. The gray bars correspond to flares plotted from their starting to end dates. The green bars
correspond to the biggest flare inside the corresponding window. The label on top of the flares corresponds to their SXR-MPF.
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of the solar activity—yet struggle on AC windows, which
require the crucial ability to forecast the first flare after a quiet
period and the first quiet period after an active one. This
limitation is often not visible from the performance evaluated
on the whole data set with standard metrics like HSS and TSS,
which can reach high scores. To highlight these shortcomings,
we recommend evaluating metrics separately on AC and NC
subsets, denoted AC metrics and NC metrics, respectively.

2.2.2. Persistence Relative Skill Scores

Common skill scores compare model performances to
random or constant baselines. In flare forecasting, a persistence
model predicting that the next time window’s label will be the
same as the current one and can be surprisingly competitive
(Section 4.1 and Appendix B.2). We define the persistence
relative skill score (PRSS) (Equation (1)) that rescales a metric
relative to the persistence model, producing a value in [−1, 1]
to quantify the degree to which a model over- or underperforms
the no-skill persistence.
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This normalization often reduces sensitivity to data set

composition biases and gives a clearer picture of real-world
utility, particularly for imbalanced tasks (Appendix B.2), where
Smodel represents the model’s score, S

*

is the score of the
persistence baseline, and Sup and Inf denote the upper and
lower theoretical limits of the metric being normalized. By
combining standard metrics such as F1 and MCC with AC/NC
breakdowns and persistence relative scores, we establish a
more comprehensive evaluation framework. This approach
helps identify practical shortcomings, particularly in forecast-
ing transitions between active and quiet periods

3. Method

3.1. Data

We prepared a data set of 56,664 samples spanning 2010
May 14–2023 April 18, at a temporal cadence of 2 hr. The
interval from 2010 May to 2019 December serves as the
training and CV period, while the interval from 2020 January to
2023 April constitutes the test data set. This temporal split
ensures that the test data, drawn from a distinct solar cycle,
meets the criteria of an “operational” test set as defined per
T. Cinto et al. (2020), providing a reliable evaluation of
generalization performance at the start of a new solar cycle.

Each sample comprises:

1. One SDO/HMI (W. D. Pesnell et al. 2012) photospheric
line-of-sight (LOS) magnetogram, and

2. A triple-channel image combining the 193Å, 211Å, and
94Å SDO/AIA (J. R. Lemen et al. 2012) extreme
ultraviolet (EUV) observations of the solar corona.

We selected these three coronal wavelengths as they collec-
tively cover a broad range of plasma temperatures in the solar
corona. Specifically, the 211Å channel is highly sensitive to
medium-intensity activity around 2MK (typical of AR), the
94Å channel is more responsive to hotter plasma at
approximately 6MK (often associated with flares), and the

193Å channel can observe both cooler plasma near 1MK and
extremely hot plasma reaching 20MK (P. S. Athiray &
A. R. Winebarger 2024). This choice provides rich thermal
information of the corona and is thus suitable for our aim to
compare magnetogram-based (photospheric) features with
coronal—thermal and morphological—features for flare fore-
casting. Furthermore, limiting the input to three EUV channels
—whose observed structures are morphologically correlated—
aims at leveraging optimally transfer learning from the use of
CNN pretrained on standard red-green-blue (RGB) images,
which also typically involve three morphologically correlated
channels.
Flare windows labels. The labels are defined from the

activity of the 24 hr time window, which starts from the sample
date (i.e., the date at which we forecast the activity for the next
24 hr). Those binary flare labels (C+ or M+) are computed
from an extended version (N. Plutino et al. 2024) of the
N. Plutino et al. (2023) catalog, which uses GOES SXR flux
data (H. A. Garcia 1994). To evaluate regional predictive skill
on the operational test set, we also extract flare positions above
the C-class threshold for events occurring after 2020 January 1.
To that extent, we estimate flare coordinates on the solar disk
by cross-referencing each event with 171Å brightenings from
SDO/AIA. Subtracting an image at the flare’s onset from one
at its peak isolates the dynamic intensity enhancement, which is
then located via the Trackpy algorithm (J. C. Crocker &
D. G. Grier 1996). This approach yields the event position for
each flare above the C-class threshold, covering the period
from 2020 January 1 onward.
Magnetograms. LOS magnetograms come from the HMI’s

45 s SDO/HMI series archived by JSOC.7 Each image is
downsampled to 1024 × 1024 resolution (linear interpolation)
and reduced from 16 bit to 8 bit depth. To retain a wide
dynamic range without excessive saturation, we apply a
symmetric log transform (i.e., ( ) ( ∣ ∣)x x xsign ln 1 + ), then
clamp pixel values above and below the 99.9th percentile of the
magnetic-flux computed over the whole CV period (leading to
a saturation value of ±4644 G). Finally, we linearly remap
these values so that 0 and 255 correspond to negative and
positive saturation, with the original zero field centered at 127.
EUV images. For coronal observations, we use the JSOC

AIA synoptic data set8 of 2 minute cadence, level 1.5 AIA
images, already scaled and oriented so that solar north is up and
aligned with the image’s Y-axis. They are already downscaled
from AIA images’ native resolution to 1024 × 1024. Analo-
gously to the magnetograms, we:

1. Reduce each image from 16 bit to 8 bit.
2. Normalize by exposure time and correct for CCD

degradation over time using aiapy (W. T. Barnes
et al. 2020).

3. Apply a log transform to preserve typical coronal signal
(low and medium pixel values) and extreme flare
brightenings (extreme pixel values) in a compressed
range of values.

4. Saturate at the 99.9th percentile computed over the whole
CV period and linearly rescale the data into [0, 255].

We merge the 94 Å, 193 Å, and 211 Å channels into a single
8-bit three-channel image for use with standard pretrained

7
JSOC series: hmi.M_45s.

8
JSOC AIA synoptic data set http://jsoc.stanford.edu/data/aia/synoptic/
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CNN architectures. Additionally, single-wavelength 1600 Å,
304Å, and 171Å images are processed in a similar fashion,
although not used in this work. All resulting 1024 × 1024
images of magnetograms and EUV channels are made publicly
available as the SDO-2H-ML data set on Zenodo.9

Corrupted samples. After degradation correction, we

identify corrupted images by locating observations whose

mean pixel value lies outside an 8σ interval centered around a
48 hr running average. This strategy reveals 20–65 suspicious
samples, depending on the channel, mostly caused by partial
disk coverage (e.g., satellite maneuvers or eclipses). A few of
these are valid but extreme events, especially in the 94Å
channel (very bright flares). We exclude problematic images
(e.g., incomplete disks) from training and validation to avoid
corrupted inputs, but leave them in the published data set with
associated documentation.

3.2. Model: Patch-distributed CNN

To produce full-disk flare forecasts while still providing
regional probability estimates, we segment full-disk inputs into
non-overlapping patches. A unique CNN is distributed over each
patch, outputting a sigmoid probability for the corresponding
region. The final full-disk prediction is the maximum of the
resulting patch’s flare probabilities: ({ })P max Pfulldisk patch i

= .
We refer to this architecture as a patch-distributed CNN (P-CNN).
The P-CNN model follows a weakly supervised deep learning
approach, specifically employing inexact supervision, where full-
disk labels are used to guide learning while the model internally
generates patch-level predictions. This method enables the model
to provide regional probability estimates despite the absence of
patch-specific labels during training. The full-disk prediction is
obtained through multiple instance learning aggregation, where
the highest patch-level probability determines the final forecast.
This strategy ensures that if any patch exhibits a high probability
of flare occurrence, the full-disk prediction reflects this likelihood.
Since flares predominantly occur at low solar latitudes, we crop
poles above ±614″ to reduce input size by half and accelerate
training. In our experiments, each cropped image is further
downsampled to 224 × 448. We use 112 × 112 patches, yielding
eight patches per image (Figure 2).
For the core (or inner-patch) CNN, we employ an

EfficientNetV2-S (M. Tan & Q. V. Le 2021) initialized with
ImageNet (J. Deng et al. 2009) pretrained weights. This model
is then fully retrained (fine-tuned) to learn full-disk labels while
internally generating patch-level predictions. We denote the
magnetogram-based model variants as C+ magnetogram and
M+ magnetogram; similarly, the EUV-based models are
labeled C+ coronal and M+ coronal models, depending on
whether they forecast flares above the C-class or M-class
threshold.

3.3. Training and Evaluation

3.3.1. Full-disk CV Method

Following T. Cinto et al. (2020), we perform a chronological
test split and keep all samples from 2020 January onward as an
“operational” test set—free of any artificial sampling—while
building a k-fold CV (where k= 5) on data from 2010 May to
2019 December.
Temporal chunking. Unlike AR-based modeling, where CV

splits can be formed by separating unique AR numbers, full-
disk forecasting presents strong temporal autocorrelations. We
adopt a chunking strategy similar to E. J. E. Brown et al.
(2022), grouping data into 81 day chunks separated by 27 day
buffers (a full Carrington rotation), ensuring that each chunk is
independent of others. Roughly 25% of the data is discarded by
these buffer zones to maintain strong independence among CV
folds. We allocate the resulting chunks across five folds in a
balanced way, aiming for similar distributions of quiet, B, C,

Figure 2. Architecture of the P-CNN. The input is segmented into patches,
each processed by a CNN that applies identical weights and outputs sigmoids
representing the flaring probabilities for the corresponding regions. The patch
probabilities are max-aggregated to produce the model’s final output
representing the flaring probability at the whole disk level, which is the target

directly learned during training. In this figure, the input combines 193 Å,
211 Å, and 94 Å EUV SDO/AIA images cropped at ±614″ downsampled at
224 × 448 pixels. The patches’ size is set to 112 × 112 pixels, resulting in
eight patches. In this work, an EfficientNetV2-S is used as the inner-
patch-CNN.

9
SDO-2H-ML data set doi:10.5281/zenodo.10465436 (G. Francisco et al. 2024).
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M, and X flare classes, to foster optimal representation on each
sub-case of positive and negative and mitigate the model’s
sensitivity to a specific climatology, as similarly suggested by
(Z. Sun et al. 2022).

Balancing algorithm. Because chunks are large and some
flare classes are rare, a perfect class match across folds is
typically impossible without undersampling. To maximize
balance before resorting to such undersampling, we employ an
iterative algorithm that assigns each chunk to the fold that
yields the greatest reduction in a “balance score” that we define
with Equation (2):

( )
{ }

b
n

1 , 2k

k

N

K
cls quiet,B,C,M,X

cls
cls

cls
å d= -

Î

where δcls is the importance weight given to the balance of

the class cls. Such a quantity is introduced to account for the

impossibility of achieving a perfect balance. We set δcls to 4

for X, and for quiet-labeled time windows, we set it to 2 for

M-labeled time windows, and we set it to 1 for B- and

C-labeled time windows. In particular, it enables prioritizing

achieving equal representation of the rarest classes before

considering undersampling, as we aim to prevent further

scarcity or the rarest events. n kcls is the number of time

windows labeled as cls in the fold k.
N

K

cls is the targeted

number of samples of class cls for every fold, i.e., the ratio of

Ncls, the whole number of time windows labeled as cls within

the data set, with K the number of folds to be built.
Figure 3 illustrates the chunk allocation procedure, whereas

Figure 4 depicts the post-balancing class counts.
Finally, we apply limited undersampling to produce:

1. Training folds with an approximately even composition
of quiet, B, C, and M time windows, retaining all X-class
samples.

2. Validation folds whose composition replicates the natural
climatology of the whole CV period (roughly solar
cycle 24).

By training on more balanced subsets, the model gains robust
coverage of each subclass, while the validation sets will reflect
realistic operational proportions (Figure 5).

3.3.2. Model’s Hyperparameters

We implement our models with TensorFlow (M. Abadi et al.
2015), training on an NVIDIA V100 GPU with the following
settings:

1. Optimizer: Adam (D. P. Kingma & J. Ba 2014) with
decoupled weight decay (I. Loshchilov & F. Hutter 2017).

2. Learning rate: 10−5; weight decay: 10−4.
3. Batch size: 16 images.
4. Epochs: 15.

We save each fold’s best model (selected by TSS on the
validation set) and average them into an ensemble (average
probability output) for final testing.

Loss function. We use weighted binary cross-entropy with
the following training weights:

1. For C+ models, positives and negatives are equally
weighted.

2. For M+ models, we upweight positive events to improve
recall, accepting a higher FAR as a trade-off. This
approach highlights the limitations of TSS in imbalanced
settings while aligning with the common objective of
TSS maximization in the literature. Specifically, we
assign weights of 2 to quiet and B-class time windows, 1
to C-class, and 8 to M- and X-class events. This
weighting strategy encourages the optimizer to prioritize
recall on rarer flares, illustrating how some metrics may
fail to penalize models prone to high false alarm rates.

4. Results

This section presents and discusses the predictive performance
of our models from different perspectives. Section 4.1 focuses on

Figure 3. Temporal 81 day chunks separated by 27 day buffers (gray) form
independent data segments for building training (blue) and validation (green)
CV folds from 2010 May to 2019 December. All samples from 2020 January to
2023 April (orange) remain untouched as a fully chronological test set.

Figure 4. Folds' composition resulting from the pre-undersampling balancing
algorithm (Section 3.3.1, paragraph—Balancing Algorithm) for 24 hr time
windows.

6
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full-disk results, noting both promising performances as well as
the limiting aspects of conventional evaluations. Section 4.2
compares predictions at the regional (patch) level. Section 4.3
offers a brief visual explanation of model predictions, and
Section 4.4 demonstrates how our method can retrieve sub-
regional forecasts with a precise estimate of flare positions, thus
providing an efficient weakly supervised learning framework.

4.1. Full-disk Performances

4.1.1. State-of-the-art Performances versus Low Persistence Relative

Scores

Figures 6 and 7 display the distribution of TSS and HSS for
the C+ and M+ models across validation and test sets, where
the red dots indicate average single-fold performance, and the
stars mark ensemble outcomes. Additional metrics, such as
MCC and F1 score, appear in Table 1 for the test set. Overall,
validation and test results align closely, indicating that our CV
strategy successfully ensures independency between training
and validation samples, thus avoiding the artificial increase of
validation results through such dependencies coupled with
overfitting. In fact, standard deviations of the fold-averaged
metrics tend to be lower on the test set than on validation,
suggesting that at least some observed variability during
validation stems from residual data set biases in the folds.

Coronal overperformance over magnetogram. For C+
forecasting, the magnetogram-based P-CNN achieves an
average validation TSS of 0.62, while the coronal model

attains 0.69. For M+ forecasting, the magnetogram and coronal
models reach TSS values of 0.53 and 0.57, respectively. On the
operational test set (2020 January–2023 April), we ensemble

the five CV-fold models by averaging their predicted
probabilities. These ensemble models outperform each indivi-
dual fold’s performance; in particular, the C+ coronal model

reaches a TSS of 0.74, and the M+ coronal model 0.61.
The overperformance of models with coronal inputs appears

to be systematic and verified across the several operational

metrics listed in Table 1.
Comparisons to persistence and other works. Despite these

apparently strong results, a closer look reveals two crucial

caveats:

1. Low persistence relative skill. As Table 1 shows, a simple
persistence approach—predicting that each time window
will continue the same flare activity (or inactivity) as the

previous window—achieves TSS scores exceeding 0.70
for C+ and around 0.45 for M+. More critically, metrics
that incorporate precision, such as MCC, HSS, or F1

score, do not indicate a significant advantage for our
models over the persistence model. In fact, the persis-
tence relative F1 (PR-F1) column in Table 1 is always

near zero, implying that, in terms of compromising
between detection and false alarms, the deep learning

models offer little improvement over the persistence
model. For M+ in particular, boosting TSS comes largely
from overcasting (a high recall but low precision), a

known pitfall allowed by imbalanced data.
2. Challenges in cross-study comparisons. Because TSS,

HSS, and even MCC are highly sensitive to data set

composition (Section 2.1 and Appendix A.2.1), it is
difficult to make direct comparisons with previous flare
forecasting literature. Nonetheless, the HSS values of our

Figure 5. Final CV folds from undersampling of the balancing results in
Figure 4. Validation replicates the CV period’s climatology for better
assessment of operational performance. Training’s class even composition
fosters balanced performances on each subclass and resilience to climatological
variations.

Figure 6. C+ models’ performance. The box plots show TSS and HSS for each
of the five CV-fold models. Red points denote fold-averaged results; the values
beneath each red point indicate 1 standard deviation. The star symbols and
labeled values above them represent the ensemble model’s performance on the
test set.
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models compare favorably to other reports, indicating
competitive or superior performance under this compre-
hensive metric.

4.1.2. Performance Deficiency on ACs

To isolate cases where the flare label differs from that of the
previous time window, we use the AC metrics defined in
Section 2.2. This consists of evaluating time windows
transitioning from inactive to active, and those moving from
active to inactive (first column examples in Figure 1). Figure 8
and Table 1 reveal notably low AC-HSS, AC-TSS, and AC-
MCC, implying that models barely outperform random
guessing on the subset of events where the activity is changing
(first flare or first quiet period).

4.2. Regional Performances

Table 2 presents results at the patch (regional) level. These
scores tend to be lower than their full-disk counterparts,

Figure 7. M+ models’ performance. The box plots summarize TSS (top) and
HSS (bottom) across the five CV-fold models. Red points and the numeric
labels above each set represent average fold performance, with standard
deviations beneath in smaller text. Star markers (with labels above) show the
ensemble performance on the test set.

Table 1

Full-disk Performance Summary of the Operational Test Set

Models TSS HSS MCC F1 Recall FAR f χ PR-F1 AC-MCC NC-MCC NC-f

C+ persistence 0.73 0.73 0.73 0.86 0.86 0.14 0.48 0.14 0 −1 1 0.48

C+ coronal 0.74 0.74 0.74 0.86 0.82 0.10 0.48 0.14 −0.00 0.13 0.84 0.48

C+ magnetogram 0.67 0.67 0.68 0.82 0.77 0.11 0.51 0.14 −0.04 0.03 0.78 0.50

M+ persistence 0.45 0.45 0.45 0.53 0.53 0.47 0.14 0.13 0 −1 1 0.08

M+ coronal 0.61 0.42 0.46 0.53 0.82 0.61 0.14 0.13 −0.00 0.08 0.47 0.09

M+ magnetogram 0.58 0.37 0.43 0.50 0.84 0.65 0.14 0.14 −0.06 0.06 0.43 0.09

Note. Final ensemble models’ results on the test set for both the C+ and M+ models.
P

P N
f =

+
is the positive event ratio;

C

P N
c =

+
is the AC rate (the fraction of

windows where the label differs from the previous window). PR-F1 is the F1-based persistence relative skill (Equation (1)). AC-MCC and NC-MCC are MCC

restricted to AC and NC windows, respectively. NC-f is the positive event ratio specifically among NC windows.

Figure 8. Models’ operational metrics restricted to windows in which the
activity label changes (AC windows). Box plots summarize each fold, red
points indicate the average fold value, and star markers give the ensemble
performance. All three metrics drop significantly compared to the full-disk
results in Figures 6 and 7.
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reflecting less favorable data set composition. For instance, in

the M+ case, the AC rate and positive event ratio fall below

3% at the regional level, leading to even lower skill scores for

both the P-CNN and the baseline persistence models.

4.3. Explainability

Figures 9 and 10 illustrate an example explainability analysis

for the C+ coronal model on 2023 February 17, at 10:00 UT,

about 9 hr before a powerful X2.3 flare. Within the subsequent

24 hr, four regions (including the limb that produced the X2.3

flare) indeed hosted C-class or larger flares.
Grad-CAM analysis. To identify which regions most

influenced each patch prediction, we apply Grad-CAM

(R. R. Selvaraju et al. 2016). Grad-CAM heatmaps (Figure 9)

show that the model focuses on the ARs that actually flare

within the next 24 hr, implying that it successfully exploits

relevant bright coronal features in each patch.
Guided Grad-CAM. Figure 10 further refines these maps by

combining guided backpropagation (J. T. Springenberg et al.

2014) with Grad-CAM, yielding fine-grained feature localiza-

tion. Bright coronal structures dominate the network’s focus,

consistent with the finding that the model essentially recognizes

features that correlate with already ongoing high-energy rather

than anticipating major changes in the near future.

4.4. Positions Predictions

Finally, we estimate potential flare locations by computing
the centroid of the Grad-CAM intensities within each positively
classified patch. Such approach could then be used to cross-
referenced eventually known ARs or to label new ARs not yet
present in available databases. Figure 11 demonstrates how the
inferred positions (blue dots) align closely with the actual

Figure 9. Grad-CAM explanation maps for the C+ coronal model’s patch
outputs. The ground truth (largest flare in the next 24 hr) appears in the first line
of each patch title, while the second line shows the model’s predicted class.
Red-to-blue contours highlight key regions used by the CNN. Red crosses
show the upcoming flare location (with solar rotation accounted for). The
model’s most discriminative patch areas coincide with ARs set to flare.

Table 2

Regional Performance Summary of the Operational Test Set

Models TSS HSS MCC F1 Recall FAR f χ PR-F1 AC-MCC NC-MCC NC-f

C+ persistence 0.57 0.57 0.57 0.65 0.65 0.35 0.18 0.13 0 −1 1 0.14

C+ Coronal 0.50 0.57 0.58 0.63 0.54 0.22 0.18 0.13 −0.02 0.04 0.73 0.14

C+ magnetogram 0.39 0.48 0.51 0.55 0.41 0.19 0.19 0.14 −0.16 0.04 0.66 0.14

M+ persistence 0.32 0.33 0.33 0.34 0.34 0.67 0.02 0.03 0 −1 1 0.01

M+ coronal 0.52 0.28 0.32 0.30 0.56 0.80 0.02 0.03 −0.12 0.06 0.29 0.01

M+ magnetogram 0.43 0.22 0.26 0.25 0.48 0.83 0.02 0.03 −0.27 0.09 0.20 0.01

Note. Columns follow the same definitions as Table 1. The patch-level data set is more imbalanced, causing a further drop in metrics.

Figure 10. Guided Grad-CAM highlights the fine-scale pixels most influential
for the patch-level classification. The “hot” color scale shows that intense
coronal loops or bright emission dominate the model’s reasoning.

Figure 11. Example of patch-level probabilities and position estimates for the
C+ coronal P-CNN models. The red cross denotes the true flare location after
rotation correction, and the blue dot is the centroid of the Grad-CAM heatmap.
All four patches hosting a future flare are correctly labeled as positive, with
position estimates matching the associated ARs.

9

The Astrophysical Journal, 985:108 (17pp), 2025 May 20 Francisco et al.



emerging flares (red crosses) for the four events, each
accurately predicted.

In summary, this approach offers promising operational
value: identifying position estimates within disk regions most
likely to produce a flare and overcoming potential errors from
AR misidentification from an external system.

5. Discussion

5.1. P-CNN: An Efficient Weakly Supervised Approach to
Operational Models

Greater information retrieval with P-CNNs. The P-CNN
introduced here reconciles the simplicity of end-to-end full-disk
training with the fine-grained regional insight typically
associated with AR-based methods. While each sample is
labeled only at the full-disk level, the patchwise approach
enables per-region flare probability outputs and position
estimations through Grad-CAM analyses. Operationally, this
design can inform users not just of an upcoming flare but also
of where to look on the solar disk. A potential caveat arises for
AR spanning multiple patches. Although these cases are
generally detected, the model may partially misattribute the
flare signal to one patch over another. This is, however, partly
mitigated with Grad-CAM centroids, which allow a more
precise localization.

Potential regularization from P-CNNs. In practice, our best-
performing EUV-based models trained with the P-CNN archi-
tecture proved simpler to tune and delivered stronger performance
than a conventional full-disk CNN. We hypothesize that P-CNN
enforces a form of regularization: each patch CNN must focus on
local features (spatial scales that are naturally comparable to AR),
potentially smoothing optimization and reducing overfitting to
large-scale image artifacts. Additionally, because the model shares
the CNN weights across all patches, each training sample
effectively multiplies the number of relevant “sub-instances” by
the number of patches, further increasing regularization. While we
observed such advantages of P-CNN on EUV images, improve-
ments were less pronounced for magnetogram inputs, which may

stem from either reduced discriminative magnetogram features or
suboptimal use of ImageNet pretrained weights for non-RGB
data. A more exhaustive hyperparameter search would be needed
to confirm these conclusions. Finally, to also benefit from global
context (e.g., extended coronal loops or multi-AR interactions),
one could augment a P-CNN with a global CNN branch, yielding
a “pyramidal” or multi-scale feature approach.

5.2. Evaluating Model Performance with PR-F1

In this work, we introduce the PRSS metrics to provide a
more informative assessment of model performance in solar
flare forecasting. While traditional skill metrics such as TSS
and HSS are widely used, they are also highly sensitive to data
set composition and can hide strong operational limitations
when evaluated on imbalanced data sets. In contrast, PRSS
metrics normalize the model performance relative to a
persistence-based baseline, offering a complementary reference
point for comparison. Among the proposed PRSS metrics, we
emphasize PR-F1 as the most practical and reliable for
performance evaluation. PR-F1 integrates both precision and
recall for the positive class, making it particularly suited for
imbalanced classification tasks, where TSS alone may be
misleading. PR-F1 exhibits greater stability across different
data set compositions, maintaining consistency even when the
test set is sampled at different phases of the solar cycle. As
shown in Annex A, Figure 12, metrics like the TSS are very
sensitive to dataset compositions biases as the positive event
ratio and the AC rate. Empirically however, the PR-F1 stands
out as the most robust to variations of those biases, as displayed
by Figures 13 and 14 in Annex B. As such, the PR-F1 can offer
better consistency to evaluate on test sets sampled at different
phases of the Solar Cycle. While PR-TSS and PR-HSS can still
offer useful insights by quantifying the improvement over
persistence-based models in relative terms, their double
normalization introduces interpretability challenges, making
them less suitable as primary evaluation metrics.

Figure 12. Figure (a) displays the plot of a persistence model’s TSS, HSS, and MCC as a function of f and χ. Figure (b) displays the variations of the TSS, HSS, and

MCC with f for two different constant χ.
P

P N
f =

+
is the positive event ratio.

C

P N
c =

+
is the AC rate.
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5.3. Current Models’ Weaknesses

Our analysis reveals that even state-of-the-art TSS and HSS

values may hide significant weaknesses. The PR-F1 scores near

zero indicate that the models' precision and recall collectively

do not surpass those of the persistence model, translating into

limited abilities for a relevant alert system. The weak AC-MCC

values confirm the models' struggle to predict genuine changes

in flaring behavior better than random guesses. These findings

suggest that the features currently learned from photospheric

magnetograms and coronal EUV emissions primarily help to

recognize and classify ongoing activity and ongoing quiet

configurations, rather than anticipating changes between these

two states.
Potential directions to address this limitation include:

1. Incorporating time series models: Z. Sun et al. (2022)

reported a 5%–11% gain by ensembling CNN (image-

based) with LSTM (time series features). Evaluating AC

performance of such hybrid methods might determine

whether they can indeed capture dynamical changes

significantly better than random chance.
2. Exploring alternative flare labels: Instead of classifying

flares strictly by maximum flux (MPF), one could forecast

the integrated flux (SXR fluence) over a time window. This

could align more closely with magnetogram-based proxies

(e.g., C. J. Schrijver (2009)’s R-index) that correlate with

unstable stored magnetic energy.
3. Investigating additional multimodal temporal features.

Our preliminary attempts (e.g., including flare history or

SXR flux time series with LSTM) did not outperform the

persistence baseline, suggesting that a Markov-like

memory is possibly already embedded in the magneto-

gram/EUV representations at a given instant.

Finally, we note that the resolution and compression of our

images (JPEG 224 × 448 downsampled crops) had a negligible

impact on performance over doubled spatial resolution and

lossless compression, suggesting that small-scale nontemporal

features—lost through downsampling and JPEG compression

Figure 13. EUV models' operational performances against variations of the positive event ratio and the AC rate. The sub-test sets with varying compositions are
obtained by sliding the start of the test set from 2020 January 1 to 2023 January 1. The left Y-axis represents the metrics score. The X-axis is the varying positive event
ratios. The right Y-axis represents the AC rates, which are plotted as black dashed lines.

Figure 14. EUV models' persistence relative performances against variations of the positive event ratio and the AC rate. The axis and sub-test sets are the same as in
Figure 13.
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—may offer limited further predictive information for 24 hr
forecasts.

5.4. AC Definition Limit

Although distinguishing time windows with AC from those
with NC elucidates important limitations, this definition has
inherent constraints. For instance, if an AR emerges from the
farside of the Sun, the visible full-disk could transition from
“inactive” to “active” and be labeled as AC even though the
corresponding AR could have been already flaring on the
farside, thus corresponding to a constantly flaring region which
corresponds to an NC window. Similarly, AR movement from
one patch to another can mimic an AC at the patch level, when
physically it is the same AR with continuous activity.
Additionally, the 24 hr window can artificially label time
windows with flares spaced 23 hr apart as “constantly active
(NC)” but flares spaced 25 hr apart as consecutive windows
presenting “change of activity (AC)” These artifacts generally
inflate the apparent AC performance since some “AC
windows” physically correspond to near-constant activity.
More refined temporal metrics, such as those proposed by
S. Guastavino et al. (2022), could mitigate these issues by
weighting errors according to their temporal offset. None-
theless, the core finding stands: models using point-in-time (or
one time step) features and displaying state-of-the-art perfor-
mances (in HSS and TSS), do not reliably forecast first flares
and first quiet periods, a crucial challenge for future research.

6. Conclusion

Our study introduces a novel method to facilitate the
construction of balanced and independent CV folds for full-
disk flare forecasting with minimal undersampling. Introducing
P-CNNs trained with such a method, our models achieve state-
of-the-art performances at full-disk levels on the rising phase of
solar cycle 25, with a TSS of 0.74 for C+ forecasts and 0.62 for
M+ forecasts using EUV coronal images as inputs, demon-
strating a consistent advantage over magnetogram-based
predictions. The P-CNN requires only full-disk labels yet
provides subregional (patch-level) forecasts with position
estimates, and no reliance on external AR-detection or labeling.
This results in a weakly supervised learning framework that
mitigates common issues of misattributed or missing flares
from AR-level flare catalogs, thereby simplifying training and
evaluation. Our findings also underscore shortcomings of
common metrics in flare forecasting, given their high
sensitivity to data set composition and inability to highlight
critical model weaknesses, particularly in predicting ACs. To
address these concerns, we introduce (1) PRSSs (e.g., PR-F1)
to benchmark models against a competitive no-skill persis-
tence, and (2) restricted evaluations on time windows with and
without changes of activity with respect to the previous period
(AC and NC windows). These additional metrics, tailored to
account for the imbalanced and dynamic nature of flare events,
help identify and assess forecasting strengths and weaknesses.
In particular, PR-F1 suggests that our models' performances
barely exceed the persistence ability to accurately predict an
event with a low FAR, and the AC-MCC highlights the
models’ low skill in forecasting changes in flaring behavior—
performing marginally better than random classifiers on such
periods (AC windows). Finally, both the PR-F1 and MCC
exhibit greater stability and reliability than the HSS, the latter

having already been shown to be more reliable and informative
than the TSS in imbalanced scenarios. Overall, our results
motivate future research toward multimodal temporal features
and architectures specifically aimed at capturing AR emergent
and changing activity.
Additionally, we plan to explore optimizations to the P-CNN

model architecture by incorporating region-specific CNNs to
account for varying projection effects across different areas of
the solar disk. Currently, the P-CNN model shares weights
across all patches, requiring a single model to generalize across
different regions of the solar disk despite significant differences
in viewing angles and projection effects. This uniform weight-
sharing scheme does not leverage the unique spatial properties
of each patch, which may put unnecessary constraints on the
model’s learning capabilities. One promising avenue for
improvement is adopting a mixture-of-experts approach
(N. Shazeer et al. 2017), where separate CNNs specialize in
different regions of the solar disk, allowing each model to
better capture region-specific features. For instance, patches
closer to the solar center provide an unobstructed view of ARs,
whereas patches at the limb suffer from foreshortening and
projection effects. A dedicated CNN for limb patches could
learn projection-invariant representations, while central patches
could focus on extracting fine-grained spatial details. This
specialization could enhance predictive performance by redu-
cing the burden on a single CNN to generalize across all
regions. To mitigate the computational challenges of region-
specific CNNs, future work will explore parameter-efficient
strategies that enable specialization while maintaining effi-
ciency. Approaches such as adaptive fine-tuning, shared
representations, or multi-task learning could enhance model
adaptability without significantly increasing complexity
(I. Kokkinos 2017; S. Ruder 2017; A. Aghajanyan et al.
2020; E. J. Hu et al. 2021). Evaluating these techniques will
help balance performance improvements with practical con-
straints in operational forecasting.

7. Software and Third-party Data Repository Citations

The data prepared for this study offers a compact and
machine learning ready data set that can be used for other
applications and is available as the SDO-2H-ML data set on
Zenodo.10 It is derived from the AIA synoptic data set11 and
JSOC’s level 1.545 s series HMI LOS magnetograms. The time
window labels are derived from an extension (N. Plutino et al.
2024) of the Plutino flare event catalog (N. Plutino et al. 2023).
The code based on TensorFlow (M. Abadi et al. 2015)

was developed to analyze and train the models of this work,
and notebooks to replicate the results presented in this study are
available on the Zenodo repository12 (G. Francisco 2025).
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Appendix A
Metrics Complements

A.1. Formulas

A.1.1. Confusion Matrix

Evaluation metrics for binary classification are defined as a
function of the confusion matrix (CM):

( ) ( )CM
TP FN
FP TN

, A1=

where TP and TN denote the number of positive and negative

events correctly classified, while FP and FN are the number of

misclassified ones.

A.1.2. Basic CM Rates

The following rates summarize the information contained in
the CM:

1. Class accuracy rates

( )recall TPR
TP

TP FN
A2= =

+

( )sensitivity TNR
TN

TN FP
A3= =

+
2. Class precision rates:

( )NPV
TN

TN FN
, A4=

+

( )precision PPV
TP

TP FP
. A5= =

+

Equivalently to the precision, practitioners alterna-
tively look at the FAR, which is the complementary of
the former and gives the rate at which positive predictions
give a false alarm.

A.1.3. F1 Score

The F1 score, defined in Equation (A6), is the harmonic
mean of the precision and the recall.

( )F1 2
precision recall

precision recall

2TP

2TP FP FN
A6= *

*
+

=
+ +

It offers a consolidated assessment of an alarm system skill
when the emphasis lies on achieving high recall (TPR) to detect
maximum events, along with high precision (PPV) to ensure
confidence in positive predictions.

A.1.4. TSS/Informedness

The TSS was introduced to evaluate weather forecasts by
(A. Hanssen & W. Kuipers 1965). In other fields, it is also
known as the (bookmaker) informedness, Peirce’s index, or
Younden’s J index. It can be dated back to 1884
(C. S. Peirce 1884). It is equal to the difference between the
TPR and the false positive rate but also to the balanced
accuracy re-scaled between −1 and 1, i.e., the average of the
class accuracy rates (TPR and TNR) normalized in [−1,1]:

( )TSS
TP

TP FN

FP

FP TN
TPR TNR 1. A7=

+
-

+
= + -

Random and constant models produce a TSS of 0.

A.1.5. Markedness

The markedness (MK) is the precision equivalent of the TSS;
it is the average of the class precision rates (PPV and NPV)

normalized in [−1,1].

( )MK PPV NPV 1. A8= + -

A.1.6. Negative Frequency Bias

( )NFB
TN FN

TN FP

predicted negatives

observed negatives
. A9=

+
+

=

A.1.7. HSS/Cohen’s Kappa Index

The HSS, defined in Equation (A10), was introduced to
evaluate weather forecasts by P. Heidke (1926). In other fields,
it can be known as Cohen’s kappa index. It is commonly used
in flare forecasting to compare a model's skill relatively to a
random guess model (E. Camporeale 2019).

( ) ( )
( )HSS 2

TP TN FN FP

P TN FN N TP FP
A10= *

* - *
+ + +

The HSS varies between −1 and 1, with 1 denoting the
performance of a perfect classifier and 0 indicating the one of
random guesses. It can then be noted that the HSS is the

harmonic mean between
TSS

NFB
and MK ∗ NFB (see (R. Delgado

& X.-A. Tibau 2019 for mathematical proof). The HSS is,
therefore, a weighted harmonic average between the TSS and
the MK, with a model-dependent importance given to each.
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A.1.8. MCC

The MCC was introduced by B. Matthews (1975) to address
class imbalances in performance evaluation. It is the Pearson
correlation coefficient between binary predictions and labels:

( ) ( )
( )MCC

TP TN FN FP

P TN FN N TP FP
. A11=

* - *
+ * * +

The MCC ranges between −1 and 1. Similar to the TSS and
HSS, both random and constant models produce an MCC score
of 0. The MCC is the geometric average between the TSS and
the markedness (see R. Delgado & X.-A. Tibau 2019;
D. Chicco et al. 2021a). It thus summarizes the four basic
confusion matrix rates with equal weights given to each.

A.2. Metrics’ Notable Properties

A.2.1. The TSS Sensitivity to the Data Set Composition

D. S. Bloomfield et al. (2012) proposed the TSS for flare
forecasting, as in simplified cases, it is found to be insensitive
to the class balance. This has been argued to make it a suitable
metric for comparing models among different data sets with
varying class balances (D. S. Bloomfield et al. 2012; D. Chicco
et al. 2021a). However, in the case of flare forecasting, we
prove that usual models will have a TSS that is strongly
sensitive to the positive events ratio. Indeed, the mathematical
independence between the TSS and the class balance only
holds for models that perform equally in every possible case of
negative and positive events. For flare forecasting models, the
weak performance on samples exhibiting changes in activity
results in a direct nonlinear dependency of the TSS on the
positive event ratio, and thereby, the class balance.

Let us consider the limit case of a model that perfectly
identifies time windows without AC but consistently fails when
ACs occur. Such a model can be known as a persistence model.
On a given time period, if evaluated on every time window, the
persistence model’s number of FPs will be equal to the number

of FNs, which will be equal to half the number of AC
C

2
. The

number of TPs will be P
C

2
- , and the number of TNs will be

N
C

2
- , where P and N are, respectively, the number of positive

and negative events. If we denote
P

P N
f =

+
the positive event

ratio, and
C

P N
c =

+
the AC rate, the TSS, HSS, and the MCC

from Equations (A7), (A10), and (A11) simplify to

( )
( )

A12TSS HSS MCC 1
1

2 1
.persistence persistence persistence

c
f f

= = = -
-

We may also note that C is at the maximum, equal to twice
the minimum between P and N. Therefore, Equation (A12) is
defined only when

( )
[ ] ( )

2 if 0.5

2 1 if 0.5
with 0, 1 . A13c

f f
f f

f
-

Î 


⎧⎨⎩
Figure 12 shows the plot of a persistence model’s TSS, HSS,

and MCC, according to Equations (A12) and (A13). The metric
linearly increases with the decrease of the AC rate χ, which is
typically low in flare forecasting. The performance is
nonlinearly dependent on the positive event ratio f, with a
stronger sensitivity in most imbalanced cases. For a variation of
f from 6% to 12%, the TSS increases from −0.06 to 0.44 with
a standard AC rate of 0.12. The model is therefore deemed
unskilled in the first case, whereas it can be estimated as mildly

proficient in the second case, only because of a doubling of the
positive event ratio.
In practice, flare forecasting models can be expected to have

a similar TSS, HSS, and MCC sensitivity to f and χ as they
have good performance on time windows with the same
activity as the previous one, whereas they struggle on time
windows with changing activity with respect to the pre-
vious one.
The AC rate χ and the positive event ratio f thus emerge as

fundamental data set biases in flare forecasting. Our experiment
in Appendix B shows that empirically, the sensitivity of the
models’ metrics to these biases is actually stronger than that of
the persistence models. In particular, the TSS seems to exhibit
heightened sensitivity to data set biases compared to the HSS,
and the MCC appears as the most stable of the three. This is
likely due to the positive influence of overcasting on TSS, as
well as additional model flaws, such as the low accuracy on
C-class negative events in M+ forecasts. These factors further
complicate the sensitivity of the models’ performance to
various data set biases.

A.2.2. TSS’s Incomplete Information for Operational Model Purposes

The TSS is inadequately informative in highly imbalanced
scenarios, where a good TSS might obscure strong over- or
undercasting tendencies, as highlighted by K. D. Leka et al.
(2019). While a high TSS ensures accurate classification for
most positive and negative events, it does not always translate
into a practical model intended for an alarm system if the
evaluation is made on an imbalanced set. In cases of substantial
imbalance, a high TSS can be reached with a precision close to
0, resulting in a FAR close to 1, rendering the model unfit for
an alert system. To illustrate, let us compare the two following
models using the same synthetic data set with a positive event
ratio of 0.001.
Model 1: TP= 99, FN= 1, FP= 5000, and TN= 94,900.

Then, TSS= 0.94, recall= 0.99, precision= 0.02, and
F1= 0.04. A case similar to this one might arise with X+
flare binary classifiers. A comparative example can be found
with the X+ flares binary classifier of X. Huang et al. (2018),
achieving a TSS of 0.714 for a FAR of 0.98.
Model 2. TP= 90, FN= 10, FP= 50 and TN= 94 851.

Then, TSS= 0.90, recall= 0.90 precision= 0.64, and
F1= 0.75. This model, while having a lower TSS, maintains
a reasonably good recall with significantly higher precision,
making it arguably preferable over Model 1 for operational
purposes. The TSS contains no information about a model’s
precision and is, therefore, not a well-suited indicator to select a
model for an alarm system in imbalanced cases. Without
preferences defined between recall and precision, the F1 score
proves more informative in discriminating between a useful
and an impractical model in operation. Specific recall and
precision preferences can also be considered using the Fβ
score, which extends the F1 score by giving β times more
importance to the recall than the precision.

A.2.3. HSS Interpretations

The HSS is a weighted harmonic average between the TSS
and the MK, with model-dependent importance given to each.
The HSS thus synthesizes information about both a model’s
accuracy and its precision in the different classes, making it
arguably a more suitable metric for assessing a model’s
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suitability as an alarm system than the TSS. However, the
model-dependent weight importance between the markedness
and the TSS makes it complex to interpret and compare
models. The harmonic mean mathematically gives more
importance to smaller values. Consequently, for a model
tending to undercast the negative class, i.e., negative frequency
bias (NFB) smaller than 1, the contribution of the markedness
to the HSS is increased. For a model tending to overcast the
negative class, i.e., NFB larger than 1, the importance of the
TSS contribution to the HSS is conversely increased.

A.2.4. MCC Advantages Over Other Metrics

While the MCC is still uncommon in space weather, it is
argued, for general cases, to be a more informative and reliable
metric compared to the accuracy and the F1 score (D. Chicco &
G. Jurman 2020), the TSS (D. Chicco et al. 2021a), and the
HSS (R. Delgado & X.-A. Tibau 2019; D. Chicco et al. 2021b).
The MCC is also to be favored over other metrics, such as the
area under the curve (AUC) of the receiver operating
characteristic (ROC; D. Chicco & G. Jurman 2023) and the
Brier score (D. Chicco et al. 2021b), two other metrics of
interest in flare forecasts. Empirically, we showed (see
Appendix B) the MCC scores to be more resilient to data set
composition changes compared to the HSS, which, in turn, is
more stable than the TSS. Consequently, the MCC might be
preferable for both model selection and comparison across
different data sets. It is often a better choice compared to the
HSS, as it shares similar information but demonstrates higher
stability in extreme cases and is a consistent synthesis of
models’ class accuracies and precisions. The MCC also allows
measuring models' explanatory power agnostically of users'
preferences. Despite the MCC’s comprehensive assessment of
a model’s overall quality, the F1 score remains relevant due to
its straightforward interpretability for operational alarm system
applications. The choice of one metric among the others should
ultimately be decided by the importance given to each class and
their accuracy and precision. D. Chicco et al. (2021a) surmise
that F1 might still be preferred over the MCC when the
accurate and confident classification of positive elements holds
greater importance than for negative ones. The TSS, on the
other end, is still relevant to the balanced problem, or to the
imbalanced problem if no importance is given to the model's
precision.

Appendix B
Empirical Variability of Standard Metrics to the

Evaluation Set Composition

B.1. Standard Metrics

Metrics can be linked with the positive event ratio and the
AC rate in a nonlinear way. For instance, the recall and the F1
score of a persistence model are proportional to their ratio:
F1 1persistence 2

= - c
f
. In Appendix A.2.1 and Figure 12, we

exposed the more complex relationship of the TSS and HSS of
a persistence model with these ratios. Similar bias sensitivity
should be expected for every model with significant skills
deficiency on ACs. To empirically observe the impact of the
two ratios on the metrics evaluated on our models, we display
the model’s performance variation for different combinations
of those ratios in Figure 13. The sub-test samples with varying
compositions are obtained by varying the start of the test set

from 2020 January 1 to 2023 January 1, while maintaining
2023 April 18 as the end date.
All the metrics appear strongly sensitive to the data set

composition. The TSS appears to be the most affected,
especially in the imbalanced case of the M+ models, while
the F1 score and the MCC are the most stable ones. It is worth
noting that the F1 score is defined in the range of [0, 1], while
the MCC is defined in the range of [−1, 1]. This implies that a
unit change in the F1 score corresponds to a double change in
magnitude compared to the MCC relative to their respective
definition intervals.

B.2. PRSSs

Using the same data set composition variations as presented
in the previous section (Appendix B), the variabilities of the
PRSSs are displayed in Figure 14.
The PRSSs appear to vary less than their standard metric

equivalent. The most resilient ones appear to be the PR-F1
followed by the PR-MCC. The PR-F1 in particular appears
remarkably stable except with the C+ model in the most
extreme class imbalances, where it becomes slightly positive.
With the exception of the PR-TSS, the PRSSs indicate a

consistent lack of performance in the M+ case and null to
slightly positive for the C+ model. This suggests that despite
the strong impact of the data set biases on the performance
evaluation, models reaching state-of-the-art performance could
be expected to consistently struggle to outperform persistence
models over varying subsets of the solar cycle.

ORCID iDs

G. Francisco https://orcid.org/0000-0003-3694-7813
M. Berretti https://orcid.org/0009-0007-2465-1931
S. Chierichini https://orcid.org/0009-0005-6746-2917
R. Mugatwala https://orcid.org/0000-0003-4443-9966
J. Fernandes https://orcid.org/0000-0002-1663-3334
T. Barata https://orcid.org/0000-0001-6106-8285
D. Del Moro https://orcid.org/0000-0003-2500-5054

References

Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, https://www.
tensorflow.org/

Aghajanyan, A., Zettlemoyer, L., & Gupta, S. 2020, arXiv:2012.13255
Athiray, P. S., & Winebarger, A. R. 2024, ApJ, 961, 181
Barnes, G., Leka, K. D., Schrijver, C. J., et al. 2016, ApJ, 829, 89
Barnes, W. T., Cheung, M. C. M., Bobra, M. G., et al. 2020, JOSS, 5, 2801
Bloomfield, D. S., Higgins, P. A., McAteer, R. T. J., & Gallagher, P. T. 2012,

ApJL, 747, L41
Brown, E. J. E., Svoboda, F., Meredith, N. P., Lane, N., & Horne, R. B. 2022,

SpWea, 20, 3
Camporeale, E. 2019, SpWea, 17, 1166
Chicco, D., & Jurman, G. 2020, BMCG, 21, 6
Chicco, D., & Jurman, G. 2023, Biomed. Data Min., 16, 4
Chicco, D., Tötsch, N., & Jurman, G. 2021a, Biomed. Data Min., 14, 13
Chicco, D., Warrens, M., & Jurman, G. 2021b, IEEA, 9, 78368
Cinto, T., Gradvohl, A. L. S., Coelho, G. P., & da Silva, A. E. A. 2020,

MNRAS, 495, 3332
Crocker, J. C., & Grier, D. G. 1996, JCIS, 179, 298
Delgado, R., & Tibau, X.-A. 2019, PLoSO, 14, e0222916
Deng, J., Dong, W., Socher, R., et al. 2009, in 2009 IEEE Conf. on Computer

Vision and Pattern Recognition (Piscataway, NJ: IEEE), 248
Deng, Z., Wang, F., Deng, H., et al. 2021, ApJ, 922, 232
Deshmukh, V., Flyer, N., van der Sande, K., & Berger, T. 2022, ApJS, 260, 9
Francisco, G. 2025, Patch-CNN for Weakly-supervised Flare Forecasting, v1,

Zenodo, doi:10.5281/zenodo.14790146

16

The Astrophysical Journal, 985:108 (17pp), 2025 May 20 Francisco et al.



Francisco, G., Del Moro, D., Barata, T., & Fernandes, J. 2024, SDO 2H
Machine Learning Dataset v2, Zenodo, doi:10.5281/zenodo.10465436

Garcia, H. A. 1994, SoPh, 154, 275
Guastavino, S., Marchetti, F., Benvenuto, F., Campi, C., & Piana, M. 2022a,

A&A, 662, A105
Guastavino, S., Marchetti, F., Benvenuto, F., Campi, C., & Piana, M. 2022b,

FrASS, 9, 399
Guastavino, S., Piana, M., & Benvenuto, F. 2022, in IEEE Transactions on

Neural Networks and Learning Systems, 35 (Piscataway, NJ: IEEE), 1993
Hanssen, A., & Kuipers, W. 1965, On the Relationship between the Frequency

of Rain and Various Meteorological Parameters 58 (Koninklijk Nederlands
Meteorologisch Instituut)

Heidke, P. 1926, GeAn, 8, 301
Hu, E. J., Shen, Y., Wallis, P., et al. 2021, arXiv:2106.09685
Huang, X., Wang, H., Xu, L., et al. 2018, ApJ, 856, 7
Kingma, D. P., & Ba, J. 2014, arXiv:1412.6980
Kokkinos, I. 2017, in 2017 IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR) (Piscataway, NJ: IEEE), 5454
Leka, K. D., Park, S.-H., Kusano, K., et al. 2019, ApJS, 243, 36
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, SoPh, 275, 17
Li, X., Zheng, Y., Wang, X., & Wang, L. 2020, ApJ, 891, 10
Loshchilov, I., & Hutter, F. 2017, arXiv:1711.05101
Matthews, B. 1975, BBAcB, 405, 442

Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., & Ishii, M. 2018, ApJ,
858, 113

Pandey, C., Angryk, R. A., & Aydin, B. 2023, in Machine Learning and
Knowledge Discovery in Databases: Applied Data Science and Demo
Track. ECML PKDD 2023, Vol. 14175 ed. G. De Francisci Morales
(Cham: Springer), 72

Park, E., Moon, Y.-J., Shin, S., et al. 2018, ApJ, 869, 91
Peirce, C. S. 1884, Sci, 4, 453
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, SoPh, 275, 3
Plutino, N., Berrilli, F., Del Moro, D., & Giovannelli, L. 2023, AdSpR,

71, 2048
Plutino, N., Michele, B., Grégoire, F., et al. 2024, Solar Flare Catalog: Plutino

Extension, v2, Zenodo, doi:10.5281/zenodo.11150339
Ruder, S. 2017, arXiv:1706.05098
Schrijver, C. J. 2009, AdSpR, 43, 739
Selvaraju, R. R., Cogswell, M., Das, A., et al. 2016, arXiv:1610.02391
Shazeer, N., Mirhoseini, A., Maziarz, K., et al. 2017, arXiv:1701.06538
Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. 2014,

arXiv:1412.6806
Sun, Z., Bobra2, M. G., Wang, X., et al. 2022, ApJ, 931, 23
Tan, M., & Le, Q. V. 2021, arXiv:2104.00298
Van der Sande, K., Flyer, N., Berger, T. E., & Gagnon, R. 2022, FrASS, 9, 354
Yi, K., Moon, Y.-J., Lim, D., Park, E., & Lee, H. 2021, ApJ, 910, 8

17

The Astrophysical Journal, 985:108 (17pp), 2025 May 20 Francisco et al.


	1. Introduction
	1.1. Background and Related Works
	1.1.1. Current Limitations
	1.1.2. Present Work’s Contributions


	2. Metrics
	2.1. Standard Binary Evaluation Methods
	2.2. Identifying Flare Forecasting Models’ Weaknesses
	2.2.1. Activity-change and No-change Performances
	2.2.2. Persistence Relative Skill Scores


	3. Method
	3.1. Data
	3.2. Model: Patch-distributed CNN
	3.3. Training and Evaluation
	3.3.1. Full-disk CV Method
	3.3.2. Model’s Hyperparameters


	4. Results
	4.1. Full-disk Performances
	4.1.1. State-of-the-art Performances versus Low Persistence Relative Scores
	4.1.2. Performance Deficiency on ACs

	4.2. Regional Performances
	4.3. Explainability
	4.4. Positions Predictions

	5. Discussion
	5.1. P-CNN: An Efficient Weakly Supervised Approach to Operational Models
	5.2. Evaluating Model Performance with PR-F1
	5.3. Current Models’ Weaknesses
	5.4. AC Definition Limit

	6. Conclusion
	7. Software and Third-party Data Repository Citations
	List of Acronyms
	Appendix AMetrics Complements
	A.1. Formulas
	A.1.1. Confusion Matrix
	A.1.2. Basic CM Rates
	A.1.3. F1 Score
	A.1.4. TSS/Informedness
	A.1.5. Markedness
	A.1.6. Negative Frequency Bias
	A.1.7. HSS/Cohen’s Kappa Index
	A.1.8. MCC

	A.2. Metrics’ Notable Properties
	A.2.1. The TSS Sensitivity to the Data Set Composition
	A.2.2. TSS’s Incomplete Information for Operational Model Purposes
	A.2.3. HSS Interpretations
	A.2.4. MCC Advantages Over Other Metrics


	Appendix BEmpirical Variability of Standard Metrics to the Evaluation Set Composition
	B.1. Standard Metrics
	B.2. PRSSs

	References

