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A B S T R A C T

Background and purpose: Risk-stratification at diagnosis of prostate cancer does not always predict risk of 
biochemical recurrence (BCR). Fully utilizing post-radiotherapy follow-up Prostate Specific Antigen (PSA) data 
could offer earlier and higher prognostic value than pre-treatment risk-stratification.
We investigate whether PSA dynamics in the first three-years of follow-up can re-stratify risk of treatment failure 
after radical radiotherapy, allowing for targeted intervention.
Materials and methods: Retrospective analysis of repeat follow-up PSA measurements from men with mixed-risk 
prostate cancer treated in two separate radical radiotherapy techniques (n = 446, 2005–2007). PSA trajectories 
were modelled between zero and three-years follow-up using Gaussian Process regression. Models were sampled 
and clustered using hierarchical clustering to define characteristic post-radiotherapy PSA trajectories.
Kaplan-Meier analysis compared dichotomising by pre-treatment risk-group and characteristic PSA trajectory. 
Cox proportional-hazard models with and without follow-up PSA information compared using Akaike Infor
mation Criterion (AIC).
Results: PSA trajectories were characterized as stable, steady-rise, and unstable. Kaplan-Meier analysis showed 
that pre-treatment risk-group was not prognostic of BCR (p > 0.05), however characteristic PSA trajectory was 
(p < 0.001). PSA trajectory improved multivariable model performance when added to baseline prognostic 
variables. Unstable PSA had highest BCR.
Results were validated across two cohorts and sensitivity analysis, suggesting results were robust. However, 
analysis excluded patients with BCR within three-years follow-up due to lack of data.
Conclusion: PSA dynamics within the first three-years of post-radiotherapy follow-up for prostate cancer were 
more prognostic of BCR than pre-treatment risk-groups, suggesting PSA dynamics could be used to re-stratify 
BCR risk during early follow-up.

1. Introduction

At diagnosis, prostate cancer patients are stratified into risk-groups 
according to National Comprehensive Cancer Network (NCCN) guide
lines [1], which consider baseline tumour characteristics. Although 
useful for initial management decisions, they do not always accurately 
predict the risk of treatment failure, or biochemical recurrence (BCR), 
after radiotherapy, and around 20 % of patients are misclassified [2].

Early identification that a patient may be at risk of treatment failure 
is important for disease control and survival. Current routine follow-up 
for prostate radiotherapy consists of six-monthly prostate specific anti
gen (PSA) monitoring, regardless of pre-treatment risk-group. Despite 
regular collection of data, BCR is detected via rises in PSA of ≥2 ng/ml 
above nadir, which is a patient-defined PSA threshold that can only be 
detected after the event [3]. Consequently, recurrence can go unde
tected between PSA tests, and intervention can be delayed by months.
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Fully utilizing routine longitudinal follow-up PSA data may offer 
additional prognostic value and help re-categorize risk of treatment 
failure earlier than current methods, allowing for more appropriate 
follow-up or intervention with salvage treatment. Studies are emerging 
suggesting that various follow-up PSA parameters, such as PSA doubling 
time, are associated with treatment outcome [4–8], and that PSA dy
namic prediction models offer improved prognostic performance 
compared to baseline clinical variables alone [4,5]. However, there re
mains a need for a universal and accessible mechanism that captures 
dynamic information without any restrictive or arbitrary thresholds to 
alert clinicians of higher or lower risk of treatment failure earlier than 
current methods.

We investigated whether short-term follow-up PSA dynamics can re- 
characterise risk of treatment failure for prostate cancer patients treated 
with radical radiotherapy.

2. Materials and methods

2.1. Study design

Patient and tumour characteristics, including repeat post- 
radiotherapy PSA, were collected for 446 mixed risk prostate cancer 
patients treated with radical radiotherapy at a single academic centre 
between 2005 and 2007 (research ethics committee reference: 17/NW/ 
0060).

Patients received either 3D-conformal hypo-fractionated radio
therapy (50 Gy in 16 fractions, n = 327), or Intensity Modulated 
Radiotherapy (IMRT) (37.5 Gy to the prostate in 15 fractions) plus a 15 
Gy single fraction High Dose Rate (HDR) brachytherapy boost (n = 119). 
All patients were treated to a small volume prostate and no prophylactic 
nodal radiotherapy was given. Treatment schedules and hormone 
therapy were assigned according to local practice.

To investigate whether BCR could be predicted during early follow- 
up, only patients who did not experience BCR within three-years follow- 
up were included. This was chosen as a pragmatic and appropriate 
balance between the small number of patients who are expected to recur 
within this period, and the number of patients with sufficient PSA data 
available[4,5]. All patients had at least two readings. Inclusion criteria is 
shown in the consort diagram in Supplementary Fig. S1.

Fractionation cohorts were analysed separately. End-point: BCR 
(PSA nadir + 2 ng/ml) [7].

2.2. PSA modelling and clustering

Log-transformed PSA trajectories were modelled using Gaussian 
Process regression (python v3.6.5, GPy). Hyper-parameter length-scale 
was set according to the average time between PSA readings for each 
patient, and variance reflected PSA measurement error (1 ng/ml)[8]. 
The model mean, 95 % confidence band, and log-likelihood were 
calculated, and models were visually inspected to assure a good fit.

To characterize PSA dynamics, mean-centered model means were 

sampled at regular intervals between zero and three-years (0.1 years) 
and compared pairwise using the root mean square of the Euclidian 
distance. The standard deviation (sd) of the Euclidian distance was used 
to characterize the trajectories by shape [9,10]. First follow-up PSA was 
included in analysis separately to account for absolute PSA value. Time 
between end of radiotherapy and first follow-up PSA, which depended 
on local practice, was also calculated and included in analysis to account 
for variation between patients.

Hierarchical agglomerative clustering with Ward linkage (python 
v3.6.5, scikit-learn) was then used to cluster PSA trajectories. Clustering 
was performed with no prior number of clusters or distance threshold 
defined, and the optimum number of clusters determined using visual 
inspection of dendrogram. This method is illustrated in Fig. 1.

2.3. Statistical analysis

Kaplan-Meier analysis was performed, dichotomizing by: (1) pre- 
treatment risk-group, (2) characteristic PSA trajectory within the first 
three-years of follow-up.

Multivariable Cox proportional-hazard models with baseline prog
nostic factors only (age, T-stage, Gleason Grade, ADT duration, baseline- 
PSA), and then including post-radiotherapy characteristic PSA trajec
tory, first follow-up PSA, and time between end of radiotherapy and first 
follow-up PSA, were produced and statistically significant model im
provements, defined by the Akaike-information-criterion (AIC), 
assessed.

To ensure analysis was robust against number of PSA readings during 
the first three-years of follow-up, analysis was repeated, where number 
of PSA readings was significantly associated with BCR, using a reduced 
number of time-points.

All statistical analysis was performed using R (version4.0.2) in 
RStudio (desktop version 1.3.1073).

3. Results

118/446 patients were excluded due to insufficient PSA follow-up 
(56/118) or BCR recorded within three-years of follow-up (62/118). 
Approximately 80 % (94/118) of these patients were high-risk 
(Supplementary Table 1S, Fig. 2S, p < 0.001).

Patient demographics (n = 328) are presented in Table 1. Despite 
similar BCR between cohorts (p = 0.47, Supplementary Fig. 3S), patients 
treated with brachytherapy boost were higher pre-treatment risk (p <
0.001, hypo-fractionated high-risk: 51 %, brachytherapy high-risk: 82 
%) and received ADT for approximately four-months longer than hypo- 
fractionated patients (p < 0.001, hypo-fractionated: four-months, 
brachytherapy: nine-months).

Patients treated with hypo-fractionated radiotherapy had a median 
of five [2–10] PSA measurements during the three-year period, and 
brachytherapy patients had a median of six [2–9] (Supplementary 
Fig. 4S, cohorts: p < 0.001, Chi-square).

First follow-up PSA was recorded an average of six-months earlier for 

Fig. 1. Flow diagram illustrating the method used to characterise PSA dynamic information. Gaussian Process model means are sampled at regular intervals (A), and 
compared pairwise using the standard deviation of the Euclidian distance (B). Each distance is entered into a distance matrix (C), which is then used to perform 
hierarchical clustering (D).
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brachytherapy patients (three-months vs nine-months, p < 0.001, Sup
plementary Fig. 4S). To account for this, time to first PSA was included 
as an adjustment variable in statistical models. Both cohorts had PSA 
readings that were, on average, approximately 13-months apart (p =
0.15).

Kaplan-Meier analysis in Fig. 2, dichotomized by pre-treatment risk- 
group, shows no significant difference in recurrence between high- and 
intermediate/low-risk patients (p ≥ 0.041).

3.1. PSA trajectories

Trajectories were successfully modelled (log-likelihood [− 4.7–5.6], 
mean: − 2.6, sd: 2.3) and clustered (Supplementary Fig. 5S). Three 
characteristic trajectories were observed: stable, steady-rise, and un
stable; Fig. 3, Supplementary Figs. 6-7S.

Unstable PSA fluctuated in both positive and negative directions, and 
varied the most both over time and between patients (Supplementary 
Figs. 6S-7S, mean (sd) (log(ng/ml)/year): hypo-fractionated: stable: 
3x10− 4(0.1), steady-rise: 0.2(0.1), unstable 0.2(0.3). Brachytherapy: 
stable − 1x10− 2(− 1x10− 2), steady-rise: − 8x10− 4(0.2), unstable: 0.1 
(0.01). This was significant for hypo-fractionated patients (p < 0.001).

Although higher Gleason grade and longer ADT was correlated with 
unstable PSA for hypo-fractionated patients (p ≤ 0.001, Supplementary 
Fig. 8S), there was no correlation between any baseline demographic 
and PSA trajectory for those treated with brachytherapy (p ≥ 0.047, 
Supplementary 9S). Results show no consistent correlation between any 
baseline demographic and PSA trajectory.

47/277 hypo-fractionated patients, and 32/51 brachytherapy pa
tients received ADT during some of PSA follow-up (Supplementary 
Figs. 10S-11S). The number of PSA measurements during ADT was 
similar across clusters for brachytherapy patients (p = 0.51, Supple
mentary Fig. 10S) (readings during ADT: 0 (n = 19), 1 (n = 16), 2 (n =
10), 3 (n = 3), 4 (n = 2), 5 (n = 1)). However, hypo-fractionated patients 
with unstable PSA had significantly more measurements during ADT 
than those with stable or steadily-rising PSA (p = 0.001, Supplementary 
Fig. 11S) (readings during ADT: 0 (n = 230), 1 (n = 31), 2 (n = 10), 3 (n 
= 4), 4 (n = 2)). All PSA measurements taken during ADT were taken 
within the first 18-months of follow-up.

Patient numbers and pre-treatment risk in each cluster are summa
rized in Fig. 3. 167/277 (hypo-fractionated) and 29/51 (brachytherapy) 
patients had a stable PSA. Of these, 60 (36 %, hypo-fractionated) and 25 
(86 %, brachytherapy) were high-risk. Two low-risk patients in each 

Table 1 
Demographics of patients included in analysis.

Hypo- 
fractionated

IMRT þ
Brachytherapy

P- 
value

(N ¼ 277) (N ¼ 51)

Risk ​ ​ ​ <0.001
High ​ 141 (50.9 %) 42 (82.4 %)
Intermediate or low ​ 136 (49.1 %) 9 (17.6 %)
Age (years) ​ ​ ​ ​
Mean (SD) ​ 68.1 (6.20) 68.8 (5.59) 0.401
T-Stage ​ ​ ​ <0.001
1 ​ 107 (38.6 %) 3 (5.9 %)
2 ​ 94 (33.9 %) 25 (49.0 %)
3 ​ 74 (26.7 %) 23 (45.1 %)
4 ​ 1 (0.4 %) 0 (0 %)
Missing ​ 1 (0.4 %) 0 (0 %)
Gleason grade ​ ​ ​ <0.001
6 ​ 96 (34.7 %) 4 (7.8 %)
7 ​ 135 (48.7 %) 27 (52.9 %)
8 ​ 29 (10.5 %) 9 (17.6 %)
9 ​ 15 (5.4 %) 11 (21.6 %)
10 ​ 1 (0.4 %) 0 (0 %)
Missing ​ 1 (0.4 %) 0 (0 %)
ADT duration 

(months)
​ ​ ​ ​

Median [Min, Max] ​ 5.00 [0, 27.0] 9.00 [3.00, 24.0] <0.001
Missing ​ 4 (1.4 %) 1 (2.0 %) ​
Base PSA (ng/ml) ​ ​ ​ ​
Mean (SD) ​ 18.3 (19.4) 22.4 (18.4) 0.143
BCR ​ 77 (28 %) 13 (25 %) 0.733
Time to Recurrence 

(years)
​ ​ ​ ​

Mean (SD) ​ 6.15 (1.46) 6.33 (2.03) 0.550
Followup time 

(years)
​ ​ ​ ​

Mean (SD) ​ 6.92 (1.68) 7.12 (2.29) 0.563

Fig. 2. Kaplan-Meier survival curves for patients treated with (A) conformal hypo-fractionated radiotherapy and (B) IMRT plus a single HDR brachytherapy boost, 
dichotomised on pre-treatment risk. There was borderline or no difference in recurrence between risk-groups.
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cohort had an unstable PSA, all of which recurred.
For both cohorts, Kaplan-Meier analysis showed significant differ

ence in BCR between PSA trajectories (p < 0.001, Fig. 4), with patients 
with unstable PSA having highest BCR risk regardless of pre-treatment 
risk. Risk of BCR at five-years was 34–55 % for those with unstable 
PSA; significantly higher than those with steadily-rising or stable PSA, 
who had 11–21 % and 2–6 % risk respectively (smaller percentages: 
brachytherapy cohort).

Hypo-fractionated patients with unstable PSA had more measure
ments (median: 5 [4 –8]) than patients with stable or steadily-rising 

PSA. All patients in this cluster had a minimum of four readings, 
compared to other clusters who had a minimum of two (p = 0.002, 
Supplementary Figs. 10-11S). Most patients in this cohort had at least an 
annual PSA measurement (Supplementary figure 12S A). To test 
robustness of results and reflect generalized practice within our dataset, 
PSA measurements at or closest to the zero-, one-, two-, and three-year 
time-points were selected for a reduced dataset (Supplementary figure 
12S B). Repeating analysis using a reduced data set showed no signifi
cant impact on results, indicating that our results are robust against 
number of PSA measurements (Supplementary Fig. 12S C).

Fig. 3. The average proto-typical PSA trajectory for patients treated with (A) conformal hypo-fractionated radiotherapy and (B) IMRT plus a single HDR brachy
therapy boost. A stable and flat, stead rise, and unstable trajectory was observed in both cohorts.

Fig. 4. Kaplan-Meier survival curves for patients treated with (A) conformal hypo-fractionated radiotherapy and (B) IMRT plus a single HDR brachytherapy boost, 
dichotomised by proto-typical PSA trajectory in the first three years of follow-up. There was significant difference in recurrence between trajectories for both cohorts.
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3.2. Predictive risk performance

Table 2 shows multivariable analysis, including baseline prognostic 
factors only (age, T-stage, Gleason grade, ADT duration, baseline-PSA), 
and then post-radiotherapy PSA information (first follow-up PSA, time 
to first follow-up PSA, PSA trajectory). For both cohorts, PSA trajectory 
was significantly associated with BCR, with a steadily-rising or unstable 
PSA resulting in worse outcome than stable PSA (p ≤ 0.002). Higher first 
follow-up PSA was also significantly associated with BCR for hypo- 
fractionated patients (HR: 3.44 [1.83, 6.47], p < 0.001). Time to first 
follow-up PSA was not significant for either cohort (p ≥ 0.3).

For both cohorts the AIC value reduced, indicating improved per
formance, when follow-up PSA information was included, compared 
with clinical baseline variables alone (ΔAIC ≥ 10, p < 0.001). Including 
first follow-up PSA information improved model performance the most 
for hypo-fractionated patients (clinical: AIC = 750, first PSA: AIC = 631, 
PSA trajectory: AIC = 639, all PSA information: AIC = 730, Table 2, 
Supplementary Table 2S). For brachytherapy patients, including PSA 
trajectory alone improved model performance the most (clinical: AIC =
77, first PSA: AIC = 80, PSA trajectory: AIC = 66, all PSA information: 
AIC = 69, Table 2, Supplementary Table 3S).

Univariable analysis, which shows significant association between 
PSA characteristic and BCR in both cohorts, is presented in Supple
mentary Table 2S and 3S (Hypo-fractionated: HR: 4.03, p < 0.001, IMRT 
+ brachytherapy: HR: 7.6, p = 0.003).

4. Discussion

Routine six-monthly PSA monitoring after prostate radiotherapy can 
miss early signs of failure. We show that short-term PSA dynamics can 
offer earlier and stronger prediction of long-term prognosis than base
line risk-groups. This is, to the best of our knowledge, the first time that 
PSA dynamics have been used to re-characterize risk-groups in this way.

Three characteristic PSA trajectories were consistently identified in 
two cohorts treated at a single center: stable, steady-rise, and unstable 
(Fig. 3). Rate of change and standard deviation of change was sub
stantially larger for those with unstable PSA, with large fluctuations in 
both positive and negative directions (Supplementary Fig. 6S and 7S). 
Regardless of pre-treatment risk, five-year BCR was almost ten-fold 
higher for these patients than it was for those with stable PSA (34–55 
% vs 2–6 %), and three-times higher than those with steadily-rising PSA 
(11–21 %). All intermediate/low-risk patients with unstable PSA 
recurred.

Our results suggest that dynamic short-term follow-up PSA could be 
used to redefine risk-groupings for patients after radiotherapy inde
pendently of baseline risk. Given the long timelines needed to assess 
prostate cancer treatment efficacy, early markers of success or failure 
are essential. Rather than proposing a PSA cut-off, our findings highlight 
how post-treatment PSA patterns could inform early physician man
agement decisions. If validated externally and across treatment types, 
unstable PSA in low/intermediate-risk patients could prompt earlier 
intervention (e.g. salvage radiotherapy), while stable PSA in high-risk 
patients may offer reassurance of low failure risk.

As our results were consistent across two cohorts, and robust against 
number of PSA measurements, which could be due to clinical or non- 
clinical reasons, we are confident the identified PSA characteristics 
provide prognostic information compared to current methods. Further 
validation in external datasets is needed, however, our approach shows 
promise as a clinical tool to re-stratify risk-groupings and alert clinicians 
earlier than current methods. This could be further paired with a 
mechanistic, patient specific, model to forecast the trajectory during 
early follow-up [4]. Additionally, this methodology could be applied 
across other treatment modalities (watchful waiting, surgery, chemo
therapy, hormone therapy).

Six patients (one hypo-fractionated, five brachytherapy) had two 
PSA readings. Although this is insufficient to distinguish between a 
stable and unstable PSA, the aim of this work is to demonstrate how all 
routinely collected post-radiotherapy PSA data could be utilized differ
ently for prognostic value. Although our results were robust when using 
a maximum of four readings in our reduced dataset (Supplementary 
Fig. 12S), less patients are assigned to the steady-rise cluster, and more 
to the stable or unstable clusters. This could suggest that, whilst the 
extreme differences are being captured with less readings, more read
ings are required to pick up on subtleties between trajectories.

We note that BCR risk for brachytherapy patients with steadily-rising 
PSA was not significant, compared to stable PSA in univariable or 
multivariable analysis (p ≥ 0.7, Table 2, Supplementary Table 3S), likely 
due to limited cohort size. Although all results strongly demonstrate the 
prognostic value of unstable PSA, the more subtle prognostic impact of a 
steadily-rising PSA, and the optimum number of PSA measurements 
required to accurately assign patients to proto-typical PSA trajectories, 
should be investigated in larger, more regular, cohorts.

We consider PSA over a three-year period. Perhaps a more prevalent 
question is how quickly a patient can be categorized into a PSA trajec
tory. Ideally a dynamic model that can be updated as PSA measurements 
become available, which would allow post-treatment risk to be 

Table 2 
Multivariable Cox proportional-hazards analysis for clinical prognostic covariates included in the study (age, T-stage, Gleason grade, ADT duration, baseline PSA), and 
with the addition of follow-up PSA information, for both fractionation cohorts. Characteristic PSA trajectory was significantly associated with BCR for both cohorts. 
Including dynamic PSA information improved model performance.

Hypo-fractionated IMRT þ HDR brachytherapy boost
Multivariable Clinical Multivariable Clinical þ

PSA Dynamics
Multivariable Clinical Multivariable Clinical þ

PSA Dynamics
HR (CI) p- 

value
HR (CI) p- 

value
HR (CI) p- 

value
HR (CI) p- 

value

Age (years) 0.96 (0.93, 1.00) 0.050 0.98 (0.94, 1.03) 0.400 1.00 (0.88, 1.14) >0.900 0.88 (0.73, 1.07) 0.200
T-stage (≥ T3 reference) ​ ​ ​ ​ ​ ​ ​ ​
< T3 0.90 (0.54, 1.50) >0.700 0.71 (0.42, 1.23) 0.200 0.22 (0.06, 0.83) 0.025 0.07 (0.01, 0.44) 0.004
Gleason grade (≥ 8 reference) ​ ​ ​ ​ ​ ​ ​ ​
< 8 0.69 (0.36, 1.30) 0.300 0.68 (0.33, 1.42) 0.300 0.94 (0.26, 3.47) >0.900 0.31 (0.05, 2.06) 0.200
ADT duration (months, (≥ 18 months reference)) ​ ​ ​ ​ ​ ​ ​ ​
< 18 months 1.53 (0.67, 3.49) 0.300 0.80 (0.33, 1.95) 0.600 0.90 (0.19, 4.32) 0.900 0.35 (0.04, 3.01) 0.300
Baseline PSA (log(ng/ml)) 3.73 (1.97, 7.10) <0.001 2.93 (1.49, 5.80) 0.002 1.22 (0.54, 2.80) 0.600 0.88 (0.31 2.55) 0.800
First post-RT PSA (log(ng/ml)) — — 3.44 (1.83, 6.47) <0.001 — — 0.44 (0.07, 2.78) 0.400
Time to first post-RT PSA (years) — — 0.75 (0.41, 1.37) 0.300 — — 1.39 (0.05, 41.4) 0.900
PSA characteristic (Stable reference) ​ ​ ​ ​ ​ ​ ​ ​
Steady rise — — 3.88 (1.94, 7.73) <0.001 — — 1.64 (0.10, 27.9) 0.700
Unstable — — 1.94 (0.74, 5.08) 0.200 — — 53.1 (4.54, 620) 0.002
1 HR = Hazard Ratio, CI = Confidence Interval AIC ¼ 749.7633 AIC ¼ 730.468 AIC ¼ 76.51752

AIC ¼ 69.40291
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dynamically updated and personalized follow-up schedules to be 
defined, should be developed. Parr et al. [6] and Roy et al. [5] both 
demonstrate that dynamic PSA information up to two- to three-years 
could be useful in predicting recurrence, overall survival and prostate 
cancer-related survival via dynamic prediction joint models. Although 
robust analysis, this method is complex to interpret and computationally 
expensive to effectively apply clinically. Our study uses clustering 
techniques to define sub-groups of patients, observing consistent results 
in two demographically different cohorts treated with different radio
therapy techniques, where PSA values and dynamics would be expected 
to differ [11]. Some thought should be given to the clinical accessibility 
of these models.

More holistically, and of potentially significant clinical impact, 
would be to determine the earliest timepoint of reliable prediction. Our 
results indicated that the first PSA after radiotherapy was prognostic. 
The largest impact on model performance was observed when first 
follow-up PSA and time to first follow-up PSA was included for hypo- 
fractionated patients (Table 2, Supplementary Table 2S). No correla
tions between time to first follow-up PSA and BCR (Table 2), any 
baseline variable, or risk-group, were observed, perhaps suggesting that 
follow-up PSA is more prognostic than pre-radiotherapy characteristics, 
regardless of time since treatment. A recent study reported that PSA six- 
months after radiotherapy offers prognostic value [12]. As only 64 (23 
%) of our patients began follow-up within six-months, we were unable to 
determine the optimum timepoint for this measurement. To answer this, 
larger data sets should be acquired, or a prospective study, where more 
regular PSA measurements are collected earlier during follow-up, should 
be implemented.

Due to irregular measurements, we could not apply our methodology 
with follow-up shorter than three-years, leading to the exclusion of 118 
patients with significantly higher risk and BCR (p < 0.001, Supple
mentary Table 4S, Fig. 13S). As over half (52 %) experienced BCR within 
three-years, our findings underscore the importance of routine PSA 
monitoring in early follow-up. A dynamic model providing prognostic 
insight within six months of radiotherapy and forecasting future PSA 
trends [4] would be highly beneficial.

It is important to determine the cause of unstable PSA, and the op
timum salvage treatment. Although hypo-fractionated patients with 
unstable PSA received ADT for longer, and were of higher Gleason 
grade, which could suggest a pathological connection, we did not 
observe any correlation between PSA dynamic and baseline character
istic in brachytherapy patients. Our results indicate that PSA dynamic 
was not acting as a surrogate for pre-treatment demographic or risk 
stratification, and could not have been predicted based on pre-treatment 
characteristics.

Unstable PSA was not representative of PSA bounce in our data 
(whose prognostic value is inconclusive) [13–15]. Tumor heterogeneity, 
where different regions respond differently to radiotherapy, and 
inflammation or infection (e.g. prostatitis), could be linked to unstable 
PSA [16]. We did not have access to toxicity data for the cohorts 
included in this study, and so could not determine whether radiation- 
induced side effects could be associated with PSA patterns. Both, how
ever, could be linked to response to radiotherapy dose–response 
relationship.

Recent studies suggest incidental dose outside of the prostate is 
related to outcome for some patients [17–19]. These studies employ a 
method called image-based data mining, or voxel-based analysis, 
whereby dose in each voxel is linked to an outcome. Risk maps showing 
the risk of treatment failure (e.g. hazard ratio maps) in different parts of 
the anatomy, and regions of significant association are determined [20]. 
We recommend that this method be applied to assess if an association 
exists between radiotherapy dose and PSA dynamic to identify 
anatomical regions where under-dosage is associated with unstable PSA, 
and should be given further consideration during radical or salvage 
radiotherapy.

Finally, there is strong evidence that hormone therapy affects PSA 

dynamics up to 12–18 months post-ADT [20]. Unlike other studies that 
exclude ADT patients or wait for PSA recovery [4–8], we included all 
PSA data regardless of ADT duration. We found no clear impact of 
concurrent ADT on PSA trends (Supplementary Figs. 6S–7S, 10S–11S) 
and ADT duration was not prognostic (Table 2). This suggests PSA 
during ADT may still be informative. However, without data from co
horts with controlled ADT duration, the impact remains uncertain. 
Further study across diverse cohorts is needed to clarify this 
relationship.

In conclusion, PSA dynamics within the first three-years of follow-up 
were prognostic of treatment failure for patients treated with curative 
intent radiotherapy treated with two independent fractionation sched
ules. Further, post radiotherapy PSA dynamics improved performance of 
predictive models compared with pre-treatment prognostic variables. 
These results demonstrate the value of short-term follow-up PSA infor
mation for re-stratifying risk of treatment failure and provide a mech
anism for better targeted follow-up.
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