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Musculoskeletal Model-Based Adaptive Variable

Impedance Control with Flexible Prescribed

Performance for Rehabilitation Robots

Yu Cao, Member, IEEE, Shuhao Ma, Mengshi Zhang, Zijian Li, Jindong Liu, Jian Huang, Senior Member, IEEE

and Zhiqiang Zhang, Senior Member, IEEE

Abstract—In rehabilitation robotics, both compliance and high-
precision motion are critical to effective rehabilitation training.
However, there is an inherent conflict between system compliance
and control accuracy, which presents significant challenges in
achieving optimal performance. To address this issue, this paper
proposes a surface electromyogram (sEMG)-driven musculoskele-
tal model-based adaptive variable impedance controller with
flexible prescribed performance, ensuring a balance between
compliance and precision motion in the human-robot interaction.
We begin by formulating a constrained human-robot system
and subsequently transform it into an unconstrained system
using prescribed performance techniques. A novel impedance
model is introduced to ensure system stability while maintaining
prescribed performance. Furthermore, the controller integrates
the Joint Strength Index (JSI), derived from an sEMG-driven
musculoskeletal model, and incorporates a flexible prescribed
performance function combined with adaptive stiffness and
damping. The method supports both robot-dominant and human-
dominant modes, and the seamless transition between them. Our
findings show that lower human involvement increases system
stiffness and narrows motion constraints, enabling high-precision
motion. In contrast, greater human participation improves system
compliance and broadens motion constraints, allowing for more
freedom of movement. Finally, experiments were conducted on an
upper-limb rehabilitation robot to validate the proposed method.

Index Terms—Rehabilitation robots, flexible prescribed per-
formance, adaptive variable impedance, musculoskeletal model.

I. INTRODUCTION

S
TROKE has emerged as one of the most significant causes

of disability worldwide [1], [2]. In recent years, the reha-

bilitation field has witnessed remarkable advances in robotic
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therapy [3]–[5], which can offer personalized approaches

based on the specific needs of patients and their recovery

stages. In this context, active robot-assisted rehabilitation

encourages patients to actively participate in rehabilitation

exercises, facilitating motor relearning and the regaining of

voluntary control [6]. The human active involvement implies

that the robot should dynamically adjust its behavior based on

the user’s intentions, providing assistance and complementing

the user’s motions. One effective approach is impedance con-

trol, which incorporates compliance into the robot’s response,

enabling it to adaptively regulate support levels across different

movement phases, thereby enhancing both adaptability and in-

teraction performance [7], [8]. However, traditional impedance

control methods, which rely on fixed stiffness and damping,

often struggle to adapt to changing patient conditions, leading

to low control accuracy.

Prescribed Performance Control (PPC) may be a remedial

approach, ensuring that the system consistently meets prede-

fined error convergence criteria and performance metrics by

introducing a prescribed performance function and an error

transformation [9]–[11]. This approach enables high-precision

control of the system by defining a narrowly constrained

range. Therefore, integrating the advantages of impedance

control and prescribed performance holds promise for sig-

nificantly enhancing control performance. Irawan et al. [12]

improved the performance of position-based impedance con-

trol on servo pneumatic system in rod-piston tracking. Gu

et al. [13] developed a predefined-time impedance controller

with prescribed performance for free-flying flexible-joint space

robots to facilitate compliant target capture. Meng et al.

[14] implemented a simple combination of prescribed per-

formance and admittance control to enhance the dynamic

response of the system. However, achieving high-precision

motion often requires sufficient stiffness, creating an inherent

conflict between system compliance and control accuracy. This

challenge persists in effectively integrating impedance control

with prescribed performance techniques.

Variable impedance could be an effective solution to the

aforementioned issue. But system impedance varies with tasks,

as seen in common rehabilitation applications. For instance,

assist-as-needed (AAN) strategies exemplify impedance mod-

ulation by ensuring that the robotic system intervenes only

when the subject cannot complete the movement indepen-

dently [15], [16]. Under this principle, AAN dynamically ad-
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justs the robot’s stiffness and damping to divide the movement

into two distinct components: a subject-driven part, where

the patient actively controls the motion, and a robot-driven

part, where the system provides assistance [17]. Duschau-

Wicke et al. [18] presented a path control strategy with

adjustable stiffness via virtual walls, enabling patients to

influence the timing of their leg movements along a phys-

iologically meaningful path. Agarwal et al. [19] and Asl

et al. [20] respectively proposed force field and velocity

field control strategies by integrating an offline-trained neural

network model to determine the required torques. Garcia-

Hernandez et al. [21] and Cao et al. [22] constructed weighted

functions by using interaction force or sEMG signals to reflect

subjects’ participation, and proposed position-based control

methods to achieve the assist-as-needed concept. However,

the above methods either neglect position constraints or only

consider fixed constraints, which still sacrifices the precision

performance. This raises an additional challenge in designing

the robot’s impedance variations to effectively address the

demands of ANN-based rehabilitation scenarios, while bal-

ancing prescribed performance requirements to achieve motion

control that ensures both compliance and precise motion in the

human-robot interactions.

Impedance learning is a promising approach [23], [24],

with Learning from Demonstration (LfD) [25], [26] and re-

inforcement learning [27]–[29] being two common methods.

However, these techniques often require large datasets and

extensive training times, making them challenging to be de-

ployed in real-world applications. Moreover, the training pro-

cess is computationally expensive and time-consuming, further

hindering their practical use. Alternatively, some approaches

focus on directly constructing the learning rate for impedance,

offering a potentially more efficient solution. Yang et al. [30]

introduced a model-based spatial repetitive impedance learning

method with variable iteration lengths in the time domain.

Similarly, Sharifi et al. [31] developed adaptive laws for robot

stiffness and damping to enable real-time impedance adjust-

ment based on human behaviors. However, these methods

primarily focus on ensuring system stability, and often over-

look the complexities of the human-robot interaction, limiting

the adaptability and responsiveness required for effective and

intuitive human-robot interaction systems.

To address the aforementioned issues, this paper proposes

a musculoskeletal model-based adaptive variable impedance

controller with flexible prescribed performance for rehabilita-

tion robots. The main contributions are as follows: 1) A novel

impedance model that integrates prescribed performance with

impedance control to maintain position transformation while

ensuring system stability; 2) The design of a JSI-based flexible

prescribed performance, along with adaptive variable stiffness

and damping, using an sEMG-driven musculoskeletal model

to balance tracking accuracy and compliance in the human-

robot interaction; 3) Various experimental tests confirming the

effectiveness of the proposed method.

II. PROBLEM FORMULATION

For an n-DOF robotic manipulator interacting with a human

at its end-effector, the dynamics in Cartesian space are:

Mxẍ+Cxẋ+ gx = Fτ + Fext (1)

where x = f(q) ∈ R
m is the coordinates of the configuration

of the end-effector. q ∈ R
n is the joint configurations. Fext ∈

R
m represent the human-robot interaction force applied to the

robot. Fτ ∈ R
m is the input vector related to the motor input

torques τ = J(q)TFτ with the Jacobian J(q) ∈ R
m×n. gx ∈

R
m is the gravity vector. Mx ∈ R

m×m and Cx ∈ R
m×m are

inertial matrix and centrifugal and Coriolis matrix.

Property 1. The inertia matrix Mx is symmetric and positive

definite: Mx = Mx
T > 0.

Property 2. The matrix Ṁx − 2Cx is skew-symmetric and

fulfills the condition:

pT
(

Ṁx − 2Cx

)

p = 0, ∀p ∈ R
m (2)

III. IMPEDANCE CONTROL WITH PRESCRIBED

PERFORMANCE

A. Error Transformation

Let xd ∈ R
m be the desired trajectory with the bounded

∥xd∥ , ∥ẋd∥ and ∥ẍd∥. The tracking error ex = x − xd is

constrained if each element exi(t) of ex satisfies the following:

ξ
i
(t) < exi(t) < ξ̄i(t), ∀t (3)

where ξ̄i(t) and ξ
i
(t) represent the upper and lower bounds,

respectively, defined as ξ̄i(t) = −ξ
i
(t) = µiρi(t), with µi

being a positive constant and ρi(t) = (ρi0−ρi∞) exp(−kit)+
ρi∞ (ρi0 > ρi∞). Given a transformation function −µi <
ϕ(zi) = µi tanh(zi) < µi, the constrained problem can be

converted into an unconstrained one with lim
zi→∞

ϕ(zi) = µi

and lim
zi→−∞

ϕ(zi) = −µi. Let ξi = ξ̄i, the transformed error

zi with respect to exi is expressed as:

zi = In
ξi + exi
ξi − exi

, żi =
1

ψi
ėxi + ωi (4)

where 0 < ψi =
ξ2i−e

2

xi

ξi
< ξi, ωi = − exi

ξ2
i
−e2

xi

ξ̇i. Hence, the

relationship between ėx and ż are denoted by:

ėx = Ψż − ωψ, ëx = Ψz̈ + Ψ̇ż − ω̇ψ (5)

where Ψ = diag{ψ1, ..., ψm} ∈ R
m×m,ω = [ω1, ..., ωm]T ∈

R
m,ωψ = Ψω = [− ξ̇1

ξ1
ex1, ...,−

ξ̇m
ξm
exm]T ∈ R

m. Substitut-

ing (5) into (1), the dynamics of the robotic manipulator with

prescribed performance is rewritten as:

Mzz̈ +Czż + gz = Fz + Fez + Fω (6)

where Mz = Ψ
TMxΨ ∈ R

m×m, Cz = Ψ
TMxΨ̇ +

Ψ
TCxΨ ∈ R

m×m and gz = Ψ
Tgx ∈ R

m, Fω = Mzω̇ +
Czω −Ψ

T (Mxẍd +Cxẋd) ∈ R
m. Fz = Ψ

TFτ ∈ R
m and

Fez = Ψ
TFext ∈ R

m are the transformed motor torque and

human-robot interaction torque.

Lemma 1. [22] The transformed dynamics (6) has the

following properties: 1) The inertia matrix of the transformed

dynamics is symmetric and positive definite: Mz = MT
z ; 2)

The matrix (Ṁz − 2Cz) is skew-symmetric and fulfills the

condition: pT
(

Ṁz − 2Cz

)

p = 0, ∀p ∈ R
m.
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B. Impedance Control with Prescribed Performance

To integrate impedance control with prescribed perfor-

mance, we propose a novel impedance model, given by:

Fez = Mzz̈ + (Dd +Cz) ż (7)

+ (Ddλz +Czλz −Mzλzλz +Kd) z

where λz ∈ R
m×m is a diagonal and positive definite matrix.

Kd ∈ R
m×m and Dd ∈ R

m×m are constant stiffness and

damping. The impedance model (7) aims to achieve two

objectives: 1) ensure ultimate boundedness at the position

level, thereby preserving position constraints (3); and 2) enable

the input command Fz to operate without requiring human-

robot interaction force sensing. Thus, the command Fz is

obtained by substituting (7) into (6), as given by:

Fz = −Ddσz − (−Mzλzλz +Czλz +Kd) z (8)

− Fω + gz

where σz = ż + λzz is the sliding manifold.

Remark 1. Traditional impedance models ensure passivity

between the velocity error and the interaction force [32],

which is insufficient to guarantee ultimate boundedness at

the position level. This limitation hinders the integration of

conventional impedance control with prescribed performance

for enforcing position constraints (3). In contrast, the model

(7) is specifically designed to maintain passivity between the

position error and the interaction force, thereby enabling the

preservation of the position constraints (3). Notably, when

λz = 0, our model reduces to the classical impedance

formulation, highlighting that (7) is a generalized extension.

Theorem 1. The closed-loop system, governed by (6)-(8),

exhibits passivity in the dynamics between the input Fez and

the output σz while preserving the constraints (3), given that

∥Fext∥ < Fm, λmin(Dd −Mzλz) > 0 (9)

where Fm is a positive constant.

Proof. A Lyapunov candidate is defined:

Vc =
1

2
σTz Mzσz +

1

2
zTKdz (10)

Its derivative is expressed by:

V̇c = σTz (Mzz̈ +Mzλzż) +
1

2
σTz Ṁzσz + zTKdż (11)

= σTz (Fez −Ddσz −Czσz −Kdz +Mzλzσz))

+
1

2
σTz Ṁzσz + zTKdż

= σTz Fez − σTz (Dd −Mzλz)σz − zTλzKdz

= −W + σTz Fez

where W = σTz (Dd −Mzλz)σz + zTλzKdz.

Thus, the passivity of the system is ensured by integrating

over the time interval [0, t] as follows:

t
∫

0

σTz Fezdς =

t
∫

0

Wdς + Vc(t)− Vc(0) (12)

Furthermore, given the relationship ∥Fez∥ =
∥

∥Ψ
TFext

∥

∥ ≤
∥Ψ∥ ∥Fext∥ ≤ Fm ∥Ψ∥, we have:

V̇c ≤ ∥Fez∥ ∥σz∥ − λmin (Dd −Mzλz) ∥σz∥
2

(13)

− zTλzKdz

≤ Fm ∥Ψ∥ ∥σz∥ − λmin (Dd −Mzλz) ∥σz∥
2

≤ −∥σz∥ (λmin (Dd −Mzλz) ∥σz∥ − Fm ∥Ψ∥)

Hence, ∥σz∥ is ultimately uniformly bounded by:

∥σz∥ ≤
∥Ψ∥

λmin (Dd −Mzλz)
Fm (14)

Defining another Lyapunov candidate Vz =
1
2z

Tz, yielding

its derivative:

V̇z = zT ż = zT (σz − λzz) (15)

≤ −λmin(λz)∥z∥
2
+ ∥z∥ ∥σz∥

∥z∥ is ultimately uniformly bounded by:

∥z∥ ≤
∥Ψ∥

λmin(λz)λmin (Dd −Mzλz)
Fm (16)

The system is globally bounded, and the position constraint

(3) is preserved within the defined range.

This completes the proof.

IV. ADAPTIVE VARIABLE IMPEDANCE CONTROL WITH

FLEXIBLE PRESCRIBED PERFORMANCE

This paper proposes a variable impedance controller with

flexible prescribed performance to balance tracking accuracy

and system compliance in the human-robot interaction.

A. Joint Strength Index

This section aims to define the JSI to represent human motor

capabilities. The objective utilizes sEMG to calculate joint

torques τhi through a musculoskeletal model that incorporates

an elastic tendon in series with the muscle fibers to determine

the muscle-tendon force Fmti (shown in Fig. 1), given by:

Fmti = (FCE,i + FPE,i) cosφi (17)

where φi denotes the pennation angle between the orientation

of the muscle fiber and tendon. FPE,i represents the passive

elastic element, typically modeled as a nonlinear spring. While

FCE,i denotes the active force generated by the CE and is

associated with muscle activation, as expressed as:

FCE,i = Fmo,ifa(l̄
m
i,a)f(ν̄i)αi(t) (18)

FPE,i = Fmo,ifp(l̄
m
i ) (19)

where Fmo,i is the maximum isometric force. fa(l̄
m
i,a) repre-

sents the active force-length relationship as a function of the

normalized muscle fiber length, l̄mi,a. This normalized length,

l̄mi,a, is obtained by scaling the muscle fiber length lmi relative

to muscle activation and the optimal muscle fiber length lmo,i.
f(ν̄i) represents the force-velocity relationship between the

muscle fibre length lmi and the normalized contraction velocity

ν̄i. l̄
m
i denotes the ratio of muscle-fiber length to the optimal
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muscle-fiber length. αi(t) is the muscle activation with respect

to the pre-processed sEMG signal [33], given by:

αi(t) =
eAIEMG,i(t) − 1

eA − 1
(20)

where non-linear shape factor A has the range of highly

nonlinearity (-3) to linearity (0.01).

Fig. 1. A musculoskeletal model with Hill-type muscle.

Thus, the torque τhi generated by each muscle can be

determined using Fmti and the moment arm ri for the joint

angle, and the torque at a single joint can be determined by :

τhi =
∑

i

Fmti ri, ϕi =
1

1 + exp(−βi(τhi − τmi))
(21)

where τmi is the median value of the torque. βi is a positive

constants. 0 < ϕi < 1 represents the JSI, quantifying the

degree of active torque exerted by the user.

B. Controller Adaption

1) Flexible Prescribed Performance: The prescribed per-

formance focuses on regulating the positional constraint range,

taking human participation into account, as detailed below:

ρi∞ = δi0 + (δi1 − δi0)ϕi (22)

where δi0 and δi1 are the minimum and maximum values of

the constraint range, respectively.

This flexible prescribed performance reflects that as the

degree of active human participation increases, the system’s

reliance on human behavior gradually strengthens, leading to

an expansion of the constraint range. This allows for greater

freedom to accommodate the needs of active human motion.

Conversely, when the level of active human participation is

low, the system needs to provide more guidance and support,

resulting in a reduction of the constraint range to ensure the

motion accuracy and safety.

2) Impedance Adaption: The stiffness and damping adap-

tation are designed to establish human-dominant and robot-

dominant modes while ensuring smooth transitions between

them, given by
{

K = Ka +Kd

K̇a = (I −Φ)ςKσzz
T −ΦυKKa

(23)

{

D = Da +Dd

Ḋa = (I −Φ)ςDσzż
T −ΦυDDa

(24)

where Φ = diag{ϕ1, ..., ϕm} ∈ R
m×m. ςK ∈ R

m×m,

υK ∈ R
m×m, ςD ∈ R

m×m, υD ∈ R
m×m are definite

constant matrices. Ka ∈ R
m×m and Da ∈ R

m×m are time-

varying terms of the stiffness and damping. Ka(0) = Ka0 and

Da(0) = Da0 are positive definite matrices. Kd ∈ R
m×m and

Dd ∈ R
m×m are positive definite constant matrices.

The analysis of the adaptation of stiffness and damping is

provided below:

• σzz
T and σzż

T are positive gain terms in Ka and Da,

when the converging rate zT ż > −zTλzz and żTλzz >
−żT ż. Meanwhile, −υKKa and −υDDa serve as decay

terms that prevent Ka and Da from growing unbounded.

• Φ acts as an indicator of human joint strength, primar-

ily building the human-dominated and robot-dominated

modes, and enabling smooth transitions between them.

Remark 2. Φ is crucial for building the human-dominated

and robot-dominated modes. When Φ approaches 0, K̇a

and Ḋa are predominantly influenced by the positive gain

terms, specifically ςKσzz
T and ςDσzż

T , resulting in an

increase in K and D. This increase enhances the system’s

ability to track the desired trajectory, representing the robot-

dominant mode. Conversely, as Φ approaches I , the decay

terms, specifically −υKKa and −υDDa, become the dom-

inant factors in K̇a and Ḋa, leading to a decrease in K

and D, which corresponds to the human-dominant mode.

Furthermore, as Φ is a continuous function, the system ensures

smooth and seamless transitions between human-dominant and

robot-dominant modes to ensure the stability of human-robot

interaction.

Lemma 2. If
[

zT , żT
]T

is ultimately uniformly bounded, Ka

and Da are positive definite, with ∥Ka∥ and ∥Da∥ bounded

by specified limits, given by

λKD =
∥Λ∥

min(λmin(ΦυK), λmin(ΦυD))
(25)

where Λ =
[

∥(I −Φ)ςK∥
∥

∥σzz
T
∥

∥ , ∥(I −Φ)ςD∥
∥

∥σzż
T
∥

∥

]T
.

Proof. Let be a Lyapunov candidate defined as VK =
1
2 ∥Ka∥

2
F + 1

2 ∥Da∥
2
F , yielding its derivative as follows:

V̇K = tr(KT
a K̇a) + tr(DT

a Ḋa) (26)

= tr(KT
a (I −Φ)ςKσzz

T )− tr(KT
a ΦυKKa)

+ tr(DT
a (I −Φ)ςDσzż

T )− tr(DT
aΦυDDa)

≤ ∥(I −Φ)ςK∥
∥

∥σzz
T
∥

∥∥Ka∥ − λmin(ΦυK) ∥Ka∥
2

+ ∥(I −Φ)ςD∥
∥

∥σzż
T
∥

∥∥Da∥ − λmin(ΦυD) ∥Da∥
2

= Λ
T
Θ−Θ

T

[

λmin(ΦυK) 0
0 λmin(ΦυD)

]

Θ

≤ ∥Λ∥ ∥Θ∥ −min(λmin(ΦυK), λmin(ΦυD))∥Θ∥
2

where Θ = [∥Ka∥ , ∥Da∥]
T

. If
[

zT , żT
]T

is ultimately

uniformly bounded. ∥Λ∥ and ∥σz∥ are bounded, indicating

that ∥Ka∥ and ∥Da∥ are bounded by λKD.

Given that Ka(0) and Da(0) are positive definite, when

∥Ka∥ or ∥Da∥ decreases, making ∥Ka∥ or ∥Da∥ less than

λKD, this results in V̇K > 0, thereby causing ∥Ka∥ or ∥Da∥
to increase. This response effectively prevents Ka and Da

from decreasing to become negative definite.

This completes the proof.
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Fig. 2. Control system diagram.

C. Tank-based Stability Guarantee

Variable stiffness signifies a departure from system passiv-

ity, as the variations in stiffness introduces additional energy

into the system. A solution is to create an energy tank that

retrieves the energy dissipated from żTDdż [32]. The energy

stored in the tank, represented by T (zt) = 1
2z

T
t zt with an

internal state vector zt ∈ R
m. The energy exchange between

the tank and the new impedance model is governed by:

Fez = Mzz̈ + (D +Cz) ż (27)

+ (Dλz +Czλz −Mzλzλz +Kd) z − κ(t)zt

żt = z−T
t σTz ΓDσz − κ(t)σz (28)

where Γ governs the charging rate of the tank. z−T
t denotes

the transpose of the pseudo-inverse of zt. κ(t) represents the

variable stiffness coefficient that regulates the energy exchange

between the impedance model and the tank, expressed as:

κ(t) =

{

0, T (zt) < T̄
−Kazz

−1
t , otherwise

(29)

When the energy level within the tank is insufficient, the

impedance model transitions from variable stiffness to fixed

stiffness. This prevents further energy injection into the sys-

tem, thereby avoiding the singularity described in (28).

Theorem 2. The closed-loop system with variable impedance

described by (6)-(8) exhibits the passivity of the dynamics

between the input torque Fez and the output σz , and preserves

the position constraints (3) given that

λmin ((I − Γ)D −Mzλz) > 0 (30)

Proof. A new Lyapunov candidate is defined, given by V tc =
Vc + T (zt). Its derivative can be expressed as:

V̇ tc = σTz (Mzz̈ +Mzλzż) +
1

2
σTz Ṁzσz (31)

+ zTKdż + zTt żt

= σTz Fez − σTz (D −Mzλz)σz − zTλzKdz

+ σTz κ(t)zt + σTz ΓDσz − zTt κ(t)σz

= σTz Fez − σTz ((I − Γ)D −Mzλz)σz − zTλzKdz

= −W t + σTz Fez

where W t = σTz ((I − Γ)D −Mzλz)σz + zTλzKdz. The

passivity of the system with variable impedance is ensured.

By using the similar techniques in Proof of Theorem 1,

∥σz∥ and ∥z∥ are ultimately uniformly bounded by:

∥σz∥ ≤
∥Ψ∥

λmin ((I − Γ)D −Mzλz)
Fm (32)

∥z∥ ≤
∥Ψ∥

λmin(λz)λmin ((I − Γ)D −Mzλz)
Fm (33)

This completes the proof.

Fig. 3. Upper limb rehabiliation robot.
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Fig. 4. System performance with fixed stiffness and damping under varying ρ∞: The first row displays the tracking performance under various ρ∞. The
second row illustrates the tracking error with position constraints. The third row presents the corresponding control signal.

Fig. 5. System performance with adaptive stiffness and damping under varying Φ. The first row represents the tracking performance, the second row shows
the stiffness variations, the third row illustrates the damping adjustments, and the fourth row depicts the control inputs.

V. EXPERIMENTAL STUDIES

A. Experimental Setup

This method has been implemented on a 3-DOF upper-limb

cable-driven rehabilitation robot named Burt, developed by

ESTUN Medical Robot Technology Co., Ltd., as shown in

Fig. 3. The human-robot interaction occurs at the end-effector,

without force sensing. In the experiments, we primarily focus

on the two DOF near the end-effector to evaluate the system’s

performance. The robot allows direct control via a network

interface for adjusting joint torques, operating at a sampling

interval of 0.002 seconds.

A healthy participant (age: 24, sex: male, height: 185 cm,

weight: 83 kg) took part in the experiments. The ethics

approval for experiments with healthy subjects was granted by

the Engineering and Physical Sciences Faculty Research Ethics

Committee of the University of Leeds (LTELEC-001). This

paper focuses on sEMG measurements at the elbow joint, col-

lecting two-channel signals from the biceps and triceps brachii

using Delsys TrignoTM system, with a sampling frequency

of 2148 Hz. The raw sEMG signals are first filtered with a

second-order Butterworth band-pass filter, set between 25 Hz
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and 450 Hz, to remove noise and artifacts. Next, a fourth-order

Butterworth low-pass filter with a corner frequency of 4 Hz is

applied to clarify the relationship between the sEMG signals

and muscle force. Finally, the filtered signals are normalized

by dividing by the peak value of the isometric maximum vol-

untary contraction (IMVC). Using the musculoskeletal model

from Section IV.A, optimized with the technique in [34], the

elbow joint torque τh is calculated and transmitted to the robot

control board over a network interface at 1058 Hz.

B. Experimental Results

1) Fixed Assistance Scenario: The objective is to establish

a passive rehabilitation scenario for the patient, utilizing

the approach described in Section III. In this scenario, the

volunteer simulates the patient’s muscle weakness, allowing

the robot to guide the movement of the arms. Five Exper-

imental trials were conducted with prescribed performance

parameter ρ0i = 2 and ki = 1 along with various ρ∞ =
{0.1, 0.25, 0.4, 0.55, 0.7}. The fixed stiffness and damping

parameters are set to Kd = diag{35, 10}(N ·m) and Dd =
diag{0.5, 0.5}(N · s/m). The experimental results are shown

in Fig. 4 to demonstrate system performance.

When ρ∞ = 0.1, the system demonstrates relatively high

tracking precision. The control signal exhibits significant

chattering, indicating increased sensitivity to error signals.

In contrast, when ρ∞ = 0.25 and ρ∞ = 0.4, the tracking

performance declines significantly, and the intensity of the

control signal’s chattering also decreases noticeably. Further-

more, at ρ∞ = 0.55 and ρ∞ = 0.7, tracking performance

further deteriorates, yet the intensity of the control vibrations

shows no significant change compared to the previous cases.

This indicates that a smaller ρ∞ leads to stronger vibrations

in the control signal, resulting in higher tracking accuracy.

However, a small ρ∞ enhances the system’s tracking accuracy

but reduces compliance, causing the algorithm to prioritize

position control over responding to external forces.

2) Assist-As-Needed Scenario: The goal of this section is to

create an assist-as-needed scenario using the techniques from

Section IV. This experiment is divided into two phases: 1) We

manually set the value of JSI to validate the design of K̇a and

Ḋa. 2) Through real-time computation of the JSI, we assess

the AAN strategy’s ability to balance compliance and motion

precision in the human-robot interaction. The experimental

parameters are set as follows: ςK = diag{400, 500},υK =
diag{0.5, 0.1}, ςD = diag{15, 5}, and υD = diag{0.8, 2}.

In the first phase, we manually selected Φ = {0.1, 0.5, 0.9},

corresponding to low, moderate, and high levels of human

involvement. The experimental results are shown in Fig. 5. It

can be observed that under a fixed Φ, the stiffness and damping

adaptively adjust and stabilize, with their values remaining

greater than zero, confirming the validity of Lemma 2. Also,

as Φ increases, the system’s stiffness and damping significantly

decrease, leading to a decline in tracking performance and a

noticeable reduction in the vibration intensity of the control

inputs. This indicates that high human involvement enhances

the system’s compliance, which reduces tracking precision but

enables the system to respond to external forces, representing

Fig. 6. Time evolution of human-robot interaction. The process consists of
three phases: 1) The human remains involuntary (6-48 seconds); 2) The human
actively applies force to guide the robot along its trajectory (48-90 seconds); 3)
The human muscles relax, returning to an involuntary state. (90-100 seconds).

a human-dominated mode. In contrast, low human involve-

ment increases the system’s stiffness, enabling high-precision

motion, but the system becomes unable to respond to ex-

ternal forces, typically representing a robot-dominated mode.

Furthermore, moderate human involvement strikes a balance

between high and low involvement, maintaining compliance

while ensuring a certain level of movement precision. Thus,

when the human involvement can be adjusted in real-time

based on Φ, the approach may effectively balance tracking

accuracy and system compliance.

In the second phase, the process involves the successive

transformation of human voluntary actions: from involuntary

effort to voluntary effort, and then back to involuntary effort.

Once the system begins operation, the human stays passive,

with the robot driving the movement for totally 48 seconds.

Immediately following, the human actively applies force,

attempting to guide the robot’s end effector along the original

trajectory for another 42 seconds. Finally, the human muscles

relax and return to a passive state. The experimental results

are shown in Fig. 6. After integrating sEMG signals (6-48

seconds), the human remains involuntary, resulting in low-

level human involvement, as reflected by JSI-related metrics.

Adaptive adjustments in K and D lead to increased stiffness,

ensuring high tracking accuracy while maintaining a narrower
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prescribed performance range (see ||x − xd|| and ||ρ||). The

pronounced chattering in the control input indicates that the

system is primarily focused on precise trajectory tracking.

This is typically a robot-dominated mode. In the subsequent

voluntary effort phase (48-90 seconds), the human applies

force to guide the robot along the original trajectory. This leads

to a significant increase in Φ, which consequently reduces K

and D. This adjustment makes the system more responsive to

external force. However, humans often struggle to guide robots

precisely along the original path, causing ∥x− xd∥ to in-

crease significantly, and the prescribed performance range ∥ρ∥
expands, allowing for greater freedom in human movement.

This indicates that the system prioritizes human dominance

according to Φ. Finally, when the human ceases exerting

muscle force (90-100 seconds), the system transitions back to

precise trajectory tracking. Note that the stiffness and damping

in this experiment are relatively small, mainly due to the

following reasons: 1) ex is nonlinearly transformed into z,

implying that K and D represent the equivalent stiffness and

damping rather than the physical stiffness and damping. 2)

The cable-driven rehabilitation robot, compared to industrial

robots, prioritizes compliance in human-robot interaction.

This dynamic process demonstrates an effective balance

between compliance and tracking accuracy by adapting to

the varying strength of human joints. This effectively en-

hances the overall performance of human-robot interactions,

improving rehabilitation outcomes and enabling more person-

alized, adaptive training. However, the current validation is

limited to healthy individuals. We recognize that significant

physiological and neuromuscular differences exist between

healthy subjects and rehabilitation patients. Key limitations

include: 1) The method assumes that subjects have at least

some residual muscle activity for force estimation and control

adaptation; 2) The musculoskeletal model is based on stan-

dard joint dynamics and may not accurately reflect severe

pathological conditions such as contractures, hypertonia, or

joint deformities; 3) Patients with unpredictable neuromuscular

responses (e.g., spasms) may not be accurately represented by

the current musculoskeletal model; 4) Although the control

approach offers a sound theoretical basis, further integration

with patient-specific clinical data is necessary to enable precise

individualization and improve clinical applicability.

VI. CONCLUSION

This paper presents an sEMG-driven musculoskeletal

model-based adaptive variable impedance control with flexible

prescribed performance for rehabilitation robots. First, we

introduce a novel impedance model that integrates prescribed

performance and impedance control techniques. Furthermore,

by real-time measurement of human involvement using an

sEMG-driven musculoskeletal model, this approach constructs

a flexible prescribed performance function and adaptive

stiffness-damping. A series of experiments were conducted on

an upper limb rehabilitation robot, and the results showed that

the method seamlessly transitions between human-dominated

and robot-dominated modes, effectively balancing the system’s

tracking accuracy and compliance. Future efforts will aim to

extend the applicability of the proposed method to rehabilita-

tion patients exhibiting a range of neuromuscular impairments.

This includes addressing reduced muscle activity, abnormal

joint conditions, and variable motor responses. A critical next

step will involve incorporating patient-specific clinical data to

improve personalization and clinical utility.
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