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Abstract: Within the framework of hybrid metric-Palatini gravity, we incorporate non-

localities introduced via the inverse of the d’Alembert operators acting on the scalar curvature.

We analyze the dynamical structure of the theory and, adopting a scalar-tensor perspective,
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the resulting Einstein-frame multi-field scenario. We examine how the non-minimal kinetic
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1 Introduction

General Relativity (GR) represents our current best theoretical framework for describing and

understanding gravitational interactions. Since its introduction in 1915, it has consistently

demonstrated its ability to explain well-known phenomena, such as Mercury’s perihelion

precession, which could not be accounted for within the context of Newtonian gravity.

Moreover, it quickly became evident that GR predicted previously unforeseen phenomena,

all of which have been corroborated by direct observations, including (but not limited to)

the bending of light in gravitational fields [1], the existence of black holes (BHs) [2], and

the propagation of gravitational waves (GWs) [3].

Despite its remarkable success, GR faces several significant theoretical challenges. In

strong-field regimes, such as near black holes and the Big Bang, the theory predicts singularities

where physical quantities like curvature, temperature, or density diverge, causing physical

laws (as we know them) to break down. Furthermore, all attempts to reconcile GR with

quantum mechanics have so far been unsuccessful, limiting the theory’s predictivity, especially

in regimes where quantum gravitational effects — such as spacetime fluctuations at the Planck

scale — are expected to play a crucial role. At these scales (possibly relevant for early Universe

cosmology) GR struggles to provide a consistent framework, and quantum gravity effects are

anticipated to dominate. Finally, GR is non-renormalizable because the gravitational coupling

constant has dimensions, unlike the coupling constants in other fundamental forces, which are

dimensionless. This leads to divergences in quantum field theory at high energies, meaning

that quantum corrections produce infinite values that cannot be absorbed into a finite number

of parameters. Consequently, GR becomes somewhat inconsistent in the high-energy limit,

preventing it from being effectively integrated into quantum field theory frameworks.

– 1 –
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To compound the challenges, when it comes to cosmological scales, GR and the Standard

Model of particles (SM) on their own somehow fail to provide a coherent and satisfactory

description of several observed phenomena. At the top of the list, we might mention the fact

that the current accelerated expansion of the Universe sharply contrasts with GR’s predictions

when only the matter content expected from the SM is considered. This problem led to

re-introduce a cosmological constant term in the Einstein field equations (initially proposed by

the same Einstein in 1917 to achieve a static Universe, reflecting the prevailing consensus at

the time that the Universe was unchanging and stationary), which is not free from conceptual

problems [4–29] and seems challenged by recent observations [30–32]. Similarly, several

independent observations, including the Cosmic Microwave Background (CMB) radiation

and Large Scale Structure (LSS) of the Universe, contrast with what is expected in GR when

only the matter content predicted by the SM is taken into account, providing indirect yet

strong evidence for a missing mass in the universe commonly referred to as dark matter

(DM). Last but not least, another de Sitter phase of accelerated expansion — inflation [33–36]

— appears necessary to set appropriate initial conditions and explain key features of the

observable Universe, such as its remarkable flatness and the thermal equilibrium of the CMB

radiation. The microphysical interpretation of these features remains unclear within our

current understanding of fundamental interactions.1

Adopting a critical perspective, it is certainly worth pondering whether GR is the

ultimate theory of gravitation, or rather the low-energy limit of a more fundamental theory

capable of addressing both the theoretical challenges surrounding our current understanding

of gravitational interactions and the missing pieces in the Universe’s puzzle outlined above.

In fact, this possibility has motivated a significant portion of the high-energy physics and

gravity community to explore various extended theories of gravity beyond GR.

Among the many scenarios explored, f(R) theories of gravity stand out due to their

conceptual simplicity, relevance, and flexibility. These theories have been extensively studied

in various cosmological contexts [75], demonstrating remarkable versatility in providing

frameworks that can potentially account for a wide range of phenomena across energy scales

differing by several orders of magnitude. At the heart of f(R) gravity is the idea of replacing

the Ricci scalar R in the Einstein-Hilbert action of GR with a function f(R), which introduces

additional degrees of freedom. The central theme across different applications is the modified

dynamical evolution of the gravitational degrees of freedom, which is driven by the extra

scalar field embedded in the f(R) formalism [76, 77]. While not exhaustive, it is worth

noting that the inclusion of extra degrees of freedom in the effective gravitational action has

proven to be a promising framework for addressing the dynamics of gravitating systems in

the presence of DM [78–80]. These theories have also been proposed as viable alternatives

for triggering a phase of repulsive gravity responsible for the current accelerated expansion

of the Universe within dark energy (DE) models, as well as for inducing nearly de Sitter

dynamics in the early Universe in the context of inflationary cosmology. In fact, when it

1Many have argued that (part of) the tensions and anomalies emerging in recent years in cosmological and

astrophysical data (most notably the Hubble tension [37–49] and the weak lensing discrepancy [50–61]) may be

traced back to limitations of GR on cosmological scales, hindering its ability to fully capture the dynamics of

the Universe either at the background or perturbation level. Without claiming completeness, we refer readers

interested in works exploring the impact of modified gravity theories on cosmological tensions to refs. [62–74].

– 2 –
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comes to inflation, it is no exaggeration to say that the most widely accepted models favoured

by current observations — most notably the one proposed by Alexei Starobinsky [81] — are

grounded in f(R) gravity (see, e.g., [81–89] and references therein).

That said, f(R) gravity is not free from limitations. These theories are often inadequate

in the weak-field regime and require a screening mechanism [90–94]. To address this and

other limitations, alternative formulations to metric gravity have been proposed where the

connection is treated as an independent variable, encapsulating local invariance under GL(4)

gauge transformations [95]. A notable example pertains to the Palatini gravity formalism,

where the metric and the connection are varied independently in the action, resulting in

distinct properties for the scalar field in the context of f(R) gravity [76, 96]. While this

approach has been able to account for the late-time cosmic acceleration models, significant

limitations remains due to gradient instabilities in cosmological perturbations [97]. In the

spirit of hitting two targets with the same arrow — circumventing some of the shortcomings

of both the Palatini and metric f(R) approaches — hybrid metric-Palatini gravity has been

devised in recent years [98, 99] (see also [100]) where both types of formulations are considered

within a unique theoretical framework and a viable screening mechanism is already exhibited

at the level of the Jordan frame [101]. The implications in the cosmology of the extended

dynamical content have received some attention [102–104].

An alternative approach, inspired by a quantum field theory perspective, to address

the same limitations and challenges of GR involves considering non-local interaction terms

in the Einstein-Hilbert action. The resulting non-local gravity theories, explored over the

past decade, offer perspectives that are somewhat different from both f(R) models and

hybrid metric-Palatini gravity, see, e.g., ref. [105] and references therein for reviews. Long

story short, depending on the type of non-locality implemented, these non-local theories

can be distinguished in general terms in infinite derivative and integral kernel theories of

gravity, based respectively on analytic transcendental functions of the d’Alembert operator

□ or on the inverse operator □
−1. Infinite derivative models have demonstrated some

interesting hints in addressing the issue of renormalizability, unitary and UV completion

in gravitational theories beyond GR [106, 107], as well as in preventing the appearance of

singularities as byproduct of the non-local smearing mechanism [108, 109]. Integral kernel

theories were originally introduced in the seminal papers [110–112], where it is was discussed

the possibility of reproducing the late-time expansion of the Universe via the application of

the □
−1 operator to the scalar curvature R. However, some criticalities of such an approach

were outlined in ref. [113], and further extensions were proposed in ref. [114] by authors

in order to amend the original flaws.

Drawing inspiration from the distinct challenges and opportunities presented by non-local

gravity, f(R) models, and hybrid metric-Palatini gravity, this work takes a pioneering step

forward by exploring the implications of incorporating non-localities into the hybrid metric-

Palatini gravity framework, rigorously assessing the stability conditions of these combined

theories and their applicability, particularly in the context of early Universe cosmology. We

consider non-localities in the form of powers of the inverse of the d’Alembert operator, which

we assume to act on both the type of curvatures, i.e. on the metric R and the Palatini R
Ricci scalar. In doing so, we extend the analysis of the purely metric case of ref. [115] to

– 3 –
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embed also Palatini contributions, by following the hybrid formalism developed for f(R,R)

theories in refs. [98, 99, 101]. Furthermore, always in analogy with ref. [115], we adopt the

perspective of considering the non-local theory as equivalent to a local scalar-tensor model,

where non-localities are localized via a suitable procedure relying on a set of auxiliary fields.

That allows us to bypass the ambiguity of the retarded boundary conditions for the integral

operator □−1 (see discussion in ref. [115] and [116, 117] for recent applications in gravitational

wave phenomenology), as it was instead pursued in the original formulation2[110, 111] (see

also ref. [114]).

We thereby demonstrate that a naïve extension of ref. [115] to the hybrid metric-Palatini

case is not sufficient to remove the presence of ghost instabilities, whose number we show to

depend on the sum of the highest powers of the □
−k operators acting on the metric and the

Palatini curvature. We discuss how this is an unavoidable property of every non-degenerate

non-local F (R,R, . . . ,□−mR, . . . ,□−nR) action, even when a purely Palatini approach is

enforced, in contrast with the findings of standard f(R) gravity where no additional degrees

of freedom are excited. Following these considerations, we look then at specific configurations

where degeneracy is explicitly violated, consisting in metric (Palatini) f(R) (f(R)) models

supplemented by Palatini (metric) non-local terms, where non-localities are linearly coupled

to the curvature and introduce deformations to the Starobinsky-like potential, providing

a novel path to test the robustness of the model. We elucidate how such a hybridization

mechanism is capable of restoring dynamical stability, and we derive a set of algebraic

constraints assuring the absence of ghost modes in the corresponding three-dimensional scalar

field space. In the second part of the work we address the feasibility of slow-roll inflation

in such a theoretical framework, and as a preliminary step we assess the well-posedness of

the first-order slow-roll parameter, ultimately resulting in additional constraints among the

derivatives of the potential and the fields. We then numerically evaluate possible inflationary

scenarios at the level of background evolution, analyzing how both the trajectories of the

scalar fields over the potential and the e-fold number are affected by different choices of the

initial non-localities. We focus in particular on quadratic metric f(R) models accompanied

by Palatini non-local terms, which turn out to be the only viable scenario for a finite slow-roll

phase, being the quadratic Palatini f(R) case with metric non-localities plagued by an infinite

slow-rolling stage along one scalar field direction. Eventually, for every reliable scenario

exhibiting the adequate number of e-folds, we numerically check a posteriori the consistency

of the no-ghost and slow-roll conditions along the dynamical evolution of the scalar fields.

The paper is organized as follows. In section 2 we discuss the general framework,

elucidating how ghost instabilities are introduced at the level of the scalar-tensor representation

in the Einstein frame. In section 3 we analyse two special configurations where local and

non-local terms are carried by different types of curvature, which we proved to be dynamically

stable. In section 4 the general conditions for having a well-behaved slow-roll inflationary

2In this respect, it is important to highlight that the choice of a priori independent affine connection does

not invalidate the assumptions of [115]. As discussed in [118], the generalization of the D’Alembert operator to

curved spacetimes does not introduce additional non-Riemannian couplings for □ acting on scalar fields. This

implies that torsion and non-metricity do not enter the definition of the wave operator, which is ultimately

determined only by the metric. For a detailed and instructive analysis on the role of non-Riemannian geometry

in the generalization of quantum field theories from Minkowski to curved space-times see [118].

– 4 –
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phase are set, and we numerically determine the e-fold number and the trajectories of

the fields over the potential for different initial non-local terms, ultimately resulting in

distinct non-diagonal kinetic terms and potential contributions in the Einstein frame. Finally,

conclusions are drawn in section 5.

Conventions about the formalism adopted and the fundamental constants are established

as follows. The gravitational coupling is set as κ2 = 8πG, with c = 1, and the spacetime

signature is chosen mostly plus. The definition of the Riemann tensor we used is displayed

by Rρ
µσν = ∂σΓρµν − ∂νΓ

ρ
µσ + ΓρτσΓτµν − ΓρτνΓ

τ
µσ.

2 Non-localities for hybrid metric-Palatini gravity

The starting point of our analysis is the non-local model discussed in ref. [115], that here

we extend along the lines of the hybrid framework introduced in refs. [99, 101]. We consider

the action

S =
1

2κ2

∫

d4x
√−g F (R,R,□−1R, . . . ,□−mR,□−1R, . . . ,□−nR), (2.1)

where F is a function both of the Ricci curvature R, which is built from the Levi-Civita

connection for the metric gµν , and the Palatini Ricci curvature R depending instead on

the independent connection Γρµν , i.e.

R = gµνRµν(g) (2.2)

R = gµνRµν(Γ). (2.3)

In order to put the original action in a scalar-tensor form, we rewrite eq. (2.1) as

1

2κ2

∫

d4x
√−g

(

F (R,R, α⃗, β⃗) − λ1(□α1 −R) − ρ1(□β1 − R)+

−
m
∑

i=2

λi(□αi − αi−1) −
n
∑

j=2

ρj(□βj − βj−1)

)

,

(2.4)

where we introduced the n-tuple and m-tuple of real scalar fields αi, βj , denoted respectively

by α⃗ and β⃗, and the related Lagrange multipliers λi, ρj . Variation of eq. (2.1) with respect to

λi, ρj guarantees that the original formulation is consistently recovered, how it is showed by

δλ1S → α1 = □
−1R,

δλ2S → α2 = □
−1α1 = □

−2R,

. . .

δλi
S → αi = □

−1αi−1 = □
−iR,

and analogously for ρj and the Palatini contribution. Then, the F (R,R, α⃗, β⃗) part can

be further rearranged as

1

2κ2

∫

d4x
√−g



∂F

∂χ
(R− χ) +

∂F

∂η
(R − η) + F (χ, η, α⃗, β⃗)



, (2.5)

– 5 –
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so that by defining Fχ = ∂F
∂χ

≡ ϕ and Fη = ∂F
∂η

≡ ξ, we can rewrite the action as

1

2κ2

∫

d4x
√−g

(

(ϕ+ λ1)R+(ξ + ρ1)R −W
(

ϕ, ξ, α⃗, β⃗, λ⃗, ρ⃗


+

+
m
∑

j=1

(∇µαj∇µλj) +
n
∑

j=1

(∇µβj∇µρj)

)

,

(2.6)

where we assumed FχχFηη − F 2
χη ≠ 0 in order to have a well-defined inversion







χ = f(ϕ, ξ, α⃗, β⃗)

η = g(ϕ, ξ, α⃗, β⃗) .
(2.7)

We also introduced the potential term

W = ϕf(ϕ, ξ, α⃗, β⃗) + ξg(ϕ, ξ, α⃗, β⃗) − F (ϕ, ξ, α⃗, β⃗) −
m
∑

j=1

αj−1λj −
n
∑

j=1

βj−1ρj , (2.8)

provided the identification α0, β0 = 0. Now, by varying eq. (2.6) with respect to the connection

Γρµν , under the hypothesis of vanishing torsion (Γρµν − Γρνµ = 0) and metric compatibility

(∇ρgµν = 0), it is possible to show that the equation for the connection takes the form

∇ρ

(√−g Ξ gµν
)

= 0, (2.9)

where Ξ ≡ ξ + ρ1, which admits as solution the Levi-Civita connection for the conformal

metric hµν = Ξgµν , i.e.

Γρµν =
1

2
hρσ (∂µhνσ + ∂νhµσ − ∂σhµν) . (2.10)

In terms of the original metric gµν and the scalar field Ξ, this can be further rewritten as

Γρµν =
1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) +

1

2Ξ

(

δρν∂µΞ + δρµ∂νΞ − gµν∂
ρΞ


, (2.11)

so that it is possible to express the Palatini curvature as

R = R+
3∇µΞ∇µΞ

2Ξ2
− □Ξ

Ξ
. (2.12)

We note that assuming from the very beginning a torsionless and metric-compatible connection

is not mandatory, as a dynamical equivalent result can be obtained by solving the original

equation of the connection for the different components of torsion and non-metricity. In this

case, indeed, once the spurious degrees of freedom of the affine connection have been gauged

out by virtue of the projective symmetry of the model, the non-Riemannian parts of the

connection can be completely solved in terms of the derivatives of the scalar field Ξ, so that

the final expression of the Palatini curvature is still displayed by (2.12) (see refs. [76, 96, 119]

for technical details). It is then possible to rearrange the action (2.6) into the form

1

2κ2

∫

d4x
√−g

(

(ϕ+ λ1 + Ξ)R+
3∇µΞ∇µΞ

2Ξ
−W

(

ϕ, ξ, α⃗, β⃗, λ⃗, ρ⃗


+

+
m
∑

j=1

(∇µαj∇µλj) +
n
∑

j=1

(∇µβj∇µρj)

)

.

(2.13)

– 6 –
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At this stage, we observe that is always possible to perform a linear field redefinition of the form










































ϕ+ λ1 + Ξ = Φ

λi = a
(i)
11ψ

(i)
1 + a

(i)
12ψ

(i)
2

αi = a
(i)
21ψ

(i)
1 + a

(i)
22ψ

(i)
2

ρi = b
(i)
11ω

(i)
1 + b

(i)
12ω

(i)
2

βi = b
(i)
21ω

(i)
1 + b

(i)
22ω

(i)
2 ,

(2.14)

which is well-defined as long as the Jacobian of the transformation is non trivial. Such a

requirement leads in this case to the condition

♣J ♣ =
m
∏

i=1

detA(i)
n
∏

j=1

detB(j) ̸= 0, (2.15)

where we defined the submatrices

A(i) =

(

a
(i)
11 a

(i)
12

a
(i)
21 a

(i)
22

)

, B(i) =

(

b
(i)
11 b

(i)
12

b
(i)
21 b

(i)
22

)

, (2.16)

and it is easy to see that ♣J ♣ ≠ 0 simply amounts to require

detA(i), detB(j) ̸= 0 ∀ i, j. (2.17)

Under these conditions, the action can be rearranged as

1

2κ2

∫

d4x
√−g

(

ΦR+
3(∇Ξ)2

2Ξ
−W (Φ,Ξ, ψ⃗1, ψ⃗2, ω⃗1, ω⃗2)+

+
m
∑

i=1

Kkl
(i)∇µψ

(i)
k ∇µψ

(i)
l +

n
∑

j=1

Hkl
(j)∇µω

(j)
k ∇µω

(j)
l

)

,

(2.18)

with k, l = 1, 2 and

K(i) =





a
(i)
11a

(i)
21

a
(i)
11 a

(i)
22 +a

(i)
12 a

(i)
21

2
a

(i)
11 a

(i)
22 +a

(i)
12 a

(i)
21

2 a
(i)
12a

(i)
22



 , H(i) =





b
(i)
11 b

(i)
21

b
(i)
11 b

(i)
22 +b

(i)
12 b

(i)
21

2
b

(i)
11 b

(i)
22 +b

(i)
12 b

(i)
21

2 b
(i)
12 b

(i)
22



 . (2.19)

A simple realization for the matrices A(i), B(j) is displayed by

A(i) = B(j) =

(

1 1

1 −1

)

, (2.20)

which allows us to rewrite K(i), H(j) in the diagonal form

K(i) = H(j) =

(

1 0

0 −1

)

, ∀ i, j (2.21)

so that we obtain

S =
1

2κ2

∫

d4x
√−g

(

ΦR+
3(∇Ξ)2

2Ξ
+ (Ψ + Ω) −W (Φ,Ξ, ψ⃗1, ψ⃗2, ω⃗1, ω⃗2)

)

, (2.22)
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where we introduced the shortcut notation

Ψ ≡
m
∑

i=1

(

(∇ψ(i)
1 )2 − (∇ψ(i)

2 )2


, (2.23)

Ω ≡
n
∑

j=1

(

(∇ω(j)
1 )2 − (∇ω(j)

2 )2


. (2.24)

Eventually, we can rewrite the action in the Einstein frame defined by the conformal trans-

formation qµν = Φgµν , which results in

SE =
1

2κ2

∫

d4x
√−q

(

R(q) − 3(∇Φ)2

2Φ2
+

3(∇Ξ)2

2ΦΞ
+

(Ψ + Ω)

Φ
− W (Φ,Ξ, ψ⃗1, ψ⃗2, ω⃗1, ω⃗2)

Φ2

)

.

(2.25)

It is clear, then, that by fixing the order N = n+m of non-localities, the theory is always

endowed with at least N ghosts, irrespective of the sign of the field Φ and the form of the

function F . Moreover, if we require that Φ > 0 for the conformal transformation to be

well-defined, an additional ghost is present for Ξ > 0, which agrees with the results of [101].

In particular, by selecting the Φ > 0 branch we can re-define the fields as

Φ = e
√

2
3

ΦC , Ξ = σξ
Ξ2
C

6
, (2.26)

where σΞ = ±1 is the sign of the field Ξ, and rewrite the action in its final form

1

2κ2

∫

d4x
√−q

(

R(q) − (∇ΦC)2 +
σξ(∇ΞC)2 + Ψ + Ω

e
√

2
3

ΦC

− W (Φ,Ξ, ψ⃗1, ψ⃗2, ω⃗1, ω⃗2)

e2
√

2
3

ΦC

)

,

(2.27)

where all the kinetic terms have a canonical form up to a possible coupling with the field

ΦC . In appendix A we briefly discuss the peculiar case where only one type of curvature is

considered in the initial action, showing how this does not alter the main conclusion about

the structure and the number of ghost fields.

3 Ghost free configurations

In ref. [115] it was outlined that ghost instabilities can be removed by simply considering the

linear coupling between the metric Ricci curvature and the nonlocal part of the action. Here

we extend such a result, and we present two specific models where dynamics is stabilized by

supplementing f(R)-like theories with nonlocal terms retaining the same kind of coupling of

ref. [115]. In doing this, we follow the idea of ref. [98], and we pursue hybridization additively,

by endowing the f(R) term with a nonlocal part depending on the type of curvature not

contained in the original f function argument. That amounts to considering two possible

configurations, displayed by the following Lagrangians:

L1 = f(R) +RG(□−1R) − V (□−1R), L2 = f(R) + RG(□−1R) − V (□−1R). (3.1)

For the sake of completeness, we also included a function V which does not affect the stability

of the scalar modes (see discussion below) but plays the role of a potential term for the
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resulting scalar-tensor theory. We also note that configurations in eq. (3.1) fall outside the

discussion of section 2, in that condition FRRFRR −F 2
RR ̸= 0 is now evaded. The first case we

address is the Palatini f(R) theory in the presence of metric nonlocalities as in L1, which by

following the procedure illustrated in section 2 can be recast in the following scalar-tensor form

S1 =
1

2κ2

∫

d4x
√−g

(

f(R) +RG(□−1R) − V (□−1R)


=
1

2κ2

∫

d4x
√−g (ξR − U(ξ) + (λ+G(α))R+ ∇µα∇µλ− V (α))

=
1

2κ2

∫

d4x
√−g

(

(ξ + λ+G(α))R+
3(∇ξ)2

2ξ
+ ∇µα∇µλ− (V (α) + U(ξ))

)

=
1

2κ2

∫

d4x
√−g

(

ϕR+
3(∇ξ)2

2ξ
+ ∇µα∇µ(ϕ− ξ −G(α)) −W (α, ξ)

)

,

where between the third and the fourth line we introduced the field ϕ ≡ ξ+λ+G(α). Moving

to the Einstein frame the action can be further rearranged as

S1 =
1

2κ2

∫

d4x
√−q

(

R̃− 3(∇ϕ)2

2ϕ2
+

3(∇ξ)2

2ϕξ
+

∇µα∇µ(ϕ− ξ −G(α))

ϕ
− W (α, ξ)

ϕ2

)

,

(3.2)

with the kinetic matrix displayed by

K1 =
1

ϕ

















3
2φ 0 −1

2

0 − 3
2ξ

1
2

−1
2

1
2 G′(α)

















. (3.3)

We recall that the absence of ghosts is guaranteed if the kinetic matrix is positive definite,

which usually is understood, for symmetric matrices, as the positiveness of its eigenvalues.

Even if these can be found in principle by diagonalizing the kinetic matrix, due to the

unknown dependence of the function G on the scalar field α, it is in general not possible

to recover the functional relation between the old field base and the diagonal one, so that

the original action cannot be explicitly rewritten in the latter. Therefore, in looking for

equivalent definitions of positiveness which could ease the analysis, we resort to the so-called

Sylvester’s criterion, which for a symmetric real matrix allows us to consider the signs of

the determinants of the upper left k × k submatrices Mk, with 1 ≤ k ≤ n, where n is the

dimension of the original matrix. By applying this to K1 we then demand that the following

conditions hold simultaneously:

♣♣M1♣♣ =
3

2ϕ2
> 0,

♣♣M2♣♣ = − 9

4ϕ3ξ
> 0,

♣♣M3♣♣ =
3(ϕ− ξ) − 18G′(α)

8ϕ4ξ
> 0,
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and it is easy to check that the solution for the set of inequalities is given by ϕ > 0, ξ <

0, G′(α) > φ−ξ
6 (we disregard the configuration with ϕ < 0, ξ > 0, G′(α) < φ−ξ

6 , since in

this case the conformal transformation defining the Einstein frame is not well-behaved).

Eventually, we note that some of the kinetic terms of K1 can be put in their canonical form

by redefining the fields as in section 2, i.e.

ϕ = e
√

2
3

Φc , ξ = −Ξ2
c

6
, Ψc =

∫

√

G′(α)dα, (3.4)

with the definition of Ψc which has to be understood for an assigned G(α) function. That

allows us to rewrite eq. (3.2) as

S1 =
1

2κ2

∫

d4x
√−q

(

R̃− (∇Φc)
2 − (∇Ξc)

2 + (∇Ψc)
2

e
√

2
3

Φc

+

+
dα

dΨc
∇µΨc

(

√

2

3
∇µΦc +

Ξc

3e
√

2
3

Φc

∇µΞc

)

− W1(Ψc,Ξc)

e2
√

2
3

Φc

)

.

(3.5)

We stress that in this case the potential is separable in the fields Ψc,Ξc, up to a global

factor depending solely on the field Φc, i.e.

W1(Ψc,Ξc) = V (α(Ψc)) + U

(

−Ξ2
c

6

)

. (3.6)

We anticipate that this peculiar configuration forbids a clear implementation of an inflationary

scenario, in that it does not provide a clear mechanism for preventing the field Φc to slow

roll indefinitely (as we discuss in more detail in section 5).

For what concerns the model L2, it formally retains the same structure of L1, but with the

two curvature interchanged, so that we deal with an initial metric f(R) theory supplemented

by Palatini nonlocalities. In this case the procedure of localization results in

S2 =
1

2κ2

∫

d4x
√−g

(

f(R) + RG(□−1R) − V (□−1R)


=
1

2κ2

∫

d4x
√−g (ξR− U(ξ) + (ρ+G(β))R + ∇µβ∇µρ− V (β))

=
1

2κ2

∫

d4x
√−g

(

(ξ + ρ+G(β))R+
3(∇(ρ+G(β)))2

2(ρ+G(β))
+ ∇µβ∇µρ− (V (β) + U(ξ))

)

=
1

2κ2

∫

d4x
√−g

(

ϕR+
3(∇ψ)2

2ψ
+ ∇µβ∇µ(ψ −G(β)) −W2(β, ϕ− ψ)

)

,

where now we redefined the fields as ϕ = ξ+ ρ+G(β), ψ ≡ ρ+G(β), with β kept untouched.

In the Einstein frame, S2 can be rearranged as

S2 =
1

2κ2

∫

d4x
√−q

(

R̃− 3(∇ϕ)2

2ϕ2
+

3(∇ψ)2

2ϕψ
+

∇µβ∇µ(ψ −G(β))

ϕ
− W2(β, ϕ− ψ)

ϕ2

)

,

(3.7)
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and the kinetic matrix is now displayed by

K2 =
1

ϕ

















3
2φ 0 0

0 − 3
2ψ −1

2

0 −1
2 G′(β)

















. (3.8)

Following the discussion for K1, we see that in this case the Sylvester’s criterion gives us

the conditions

♣♣M1♣♣ =
3

2ϕ2
> 0,

♣♣M2♣♣ = − 9

4ϕ3ψ
> 0,

♣♣M3♣♣ = −3(ψ + 6G′(β))

8ϕ4ψ
> 0,

whose only feasible solution is now ϕ > 0, ψ < 0, G′(β) > −ψ
6 . Then, by redefining the

scalar fields as in the case of S1, by simply trading the roles of ξ, α with ψ, β, the action

S2 takes the form

S2 =
1

2κ2

∫

d4x
√−q

(

R̃−(∇Φc)
2 − (∇Ξc)

2 + (∇Ψc)
2

e
√

2
3

Φc

+

+
1

3

dβ

dΨc

Ξc

e
√

2
3

Φc

∇µΨc∇µΞc − W2(Φc,Ψc,Ξc)

e2
√

2
3

Φc

)

.

(3.9)

In this case the potential displays the nice property of a U component depending both on

the Ξc and the Φc fields,

W2(Φc,Ψc,Ξc) = V (β(Ψc)) + U

(

e
√

2
3

Φc +
Ξ2
c

6

)

, (3.10)

which can potentially prevent the latter from an endless slow rolling phase. The functional

dependence on Ψc is still separable, and in general, as discussed in section 5, it can be

conveniently neglected when interested into inflation. We conclude this section by noting that

eq. (3.9) can be further manipulated into a diagonal form, but since it does not contribute to

a significant improvement in the numerical analysis, we choose to report the corresponding

expression in appendix B in order to not overburden the mathematical exposition. Instead,

we consider an application of the theory to inflationary cosmology in the very early universe.

4 Friedmann-Lemaître-Robertson-Walker cosmology

In this section we perform a numerical analysis of the homogeneous and isotropic cosmological

background described by the flat Friedmann-Lemaître-Robertson-Walker line element

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), (4.1)
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with a(t) denoting the scale factor. In order to present the equations of motion in a more

compact way, it is useful to rewrite eq. (3.5) and eq. (3.9) in the concise form

Si =
1

2κ2

∫

d4x
√−q

(

R̃− (∇Φ)2 − (∇Ξ)2 + (∇Ψ)2

e
√

2
3

Φ
+

+
dχi
dΨ

∇µΨ

(

σi

√

2

3
∇µΦ +

Ξc

3e
√

2
3

Φ
∇µΞ

)

− Yi

)

,

(4.2)

where χi = α, β and σi = 1, 0 for i = 1, 2 respectively, and we dropped the c subscript for the

sake of clarity. We also introduced the generalized potential Yi = Wi

e
2
√

2
3 Φ

. Then, by varying

eq. (4.2) with respect to Φ,Ξ and Ψ we obtain

□Φ +
e−
√

2
3

Φ

√
6

(

(∇Ξ)2 + (∇Ψ)2


− 1

2

∂Yi
∂Φ

+

− σi√
6

∇µ



dχi
dΨ

∇µΨ



− Ξ

3
√

6
e−
√

2
3

Φdχi
dΨ

∇µΨ∇µΞ = 0, (4.3)

□Ξ −
√

2

3
∇µΞ∇µΦ − e

√

2
3

Φ

2

∂Yi
∂Ξ

+

− Ξ

6

(

d2χi
dΨ2

(∇Ψ)2 −
√

2

3

dχi
dΨ

∇µΦ∇µΨ +
dχi
dΨ

□Ψ

)

= 0, (4.4)

□Ψ −
√

2

3
∇µΨ∇µΦ − e

√

2
3

Φ

2

∂Yi
∂Ψ

+

− dχi
dΨ

(

σi√
6
e
√

2
3

Φ
□Φ +

Ξ

6
□Ξ +

(∇Ξ)2

6
− Ξ

3
√

6
∇µΦ∇µΞ

)

= 0. (4.5)

Now, turning our attention to the equation for the metric field

Gµν−∇µΦ∇νΦ− ∇µΞ∇νΞ+∇µΨ∇νΨ

e
√

2
3

Φ
+
dχi
dΨ

∇µΨ

(

σi

√

2

3
∇νΦ+

Ξc

3e
√

2
3

Φ
∇νΞ

)

+

+
1

2
gµν

(

(∇Φ)2+
(∇Ξ)2+(∇Ψ)2

e
√

2
3

Φ
− dχi
dΨ

∇ρΨ

(

σi

√

2

3
∇ρΦ+

Ξc

3e
√

2
3

Φ
∇ρΞ

)

+Yi

)

= 0,

(4.6)

it is easy to derive from the tt-component the well-known Friedmann equation

H2 =
1

6

(

Φ̇2 + e−
√

2
3

Φ(Ξ̇2 + Ψ̇2) − dχi
dΨ

Ψ̇

(

σi

√

2

3
Φ̇ + e−

√

2
3

Φ Ξ

3
Ξ̇

)

+ Yi

)

, (4.7)

whereas the ij-component results in

Ḣ = −1

2

(

Φ̇2 + e−
√

2
3

Φ(Ξ̇2 + Ψ̇2) − dχi
dΨ

Ψ̇

(

σi

√

2

3
Φ̇ + e−

√

2
3

Φ Ξ

3
Ξ̇

))

, (4.8)

with H ≡ ȧ/a. We require the leading order slow-roll parameter to be positive, i.e. ϵ0 ≡
− Ḣ
H2 > 0, usually corresponding in inflaton models with a single scalar field to neglect
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effective phantom dark energy scenarios (w < −1). Moreover, we can recast the no-ghost

condition in terms of the fields Φ,Ξ,Ψ as

1

6



dχi
dΨ

2
(

σie
√

2
3

Φ +
Ξ2

6

)

< 1 . (4.9)

In the following subsections, we present and discuss the numerical results obtained by

integrating the equations of motion outlined in this section, considering different case studies.

We distinguish between two cases: V (□−1R) = 0 and V (□−1R) ̸= 0. For each case, we

examine the impact of different functional forms of the kinetic coupling. The algorithm used

to integrate the equations of motion is based on previous work by some of us [120–123], with

modifications made to suit these particular cases.

4.1 The case V = 0

In this section we specialize the analysis to models with V (□−1R) = 0. As discussed in

section 3, such a condition does not affect the dynamical stability of the theory, but just

deprives the global potential of the dependence on the field Ψ. Furthermore, we consider

for the local f(R) (f(R)) part a simple quadratic correction to the standard GR term, with

hybrid non-localities given by the function G. That amounts to consider actions of the form

L1 = a1R + b1R2 +RG(□−1R), L2 = a2R+ b2R
2 + RG(□−1R), (4.10)

which by following the procedure described in section 3 result in the Einstein frame potential:

Yi(Φ,Ξ,Ψ) =



(1 − σi)e
√

2
3

Φ + (−1)σi Ξ2

6 − ai

2

4bie
2
√

2
3

Φ
. (4.11)

The existence of a global minimum is a necessary property we demand in broad terms the

potential to be endowed with, in order for the slow-rolling phase to terminate at some point

in the trajectories’ space for the scalar fields and the reheating stage to be possible to settle.

By inspection of eq. (4.11), we see then that for σ1 = 1 the potential Y1 is independent

of the field Φ, so that at least in the Φ-direction the fields are expected to keep to slow

roll, even if eventually they reach the minimum in the subspace spanned by Ψ and Ξ. In

this work, we are mainly interested in slow-rolling realizations of inflationary scenarios, and

we leave for a subsequent analysis the discussion of alternative mechanisms in multi-field

cosmology, e.g. ultra-slow roll, hybrid or rapid turn inflation. Our primary goal is indeed

to demonstrate that a hybrid non-local extension of standard f(R) gravity is theoretically

compatible with an inflationary paradigm at least at the level of background dynamics, so

that we look for the simplest realization of such a configuration, leaving aside for the moment

the issues related to the role of perturbations. For all these reasons, we consider from now

on only the case σ2 = 0, where the potential Y2 simplifies in

Y2(Φ,Ξ) =



e
√

2
3

Φ + Ξ2

6 − a2

2

4b2e
2
√

2
3

Φ
. (4.12)
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In general, we seek a well-shaped plateau potential with a minimum to enable inflation to

occur by choosing, in the numerical implementations, suitable values for a2 and b2. However,

the shape of the potential is not tightly constrained by these chosen values. Indeed, by

requiring the potential to be positive we obtain the constraints a2 > 0 and b2 > 0, with

a2 determining the location of the minimum and 1
b2

the height of the potential. For this

configuration the no-ghost condition can be rearranged as

0 <



dχ2

dΨ

Ξ

6

2

< 1, (4.13)

which according to the form of the function χ2(Ψ) determines the sub-region of plane ¶Ξ,Ψ♢
where the motion of the scalar fields must be confined. We remark that for σ2 = 0 the

field Φ does not enter the former inequality and motion is not a priori constrained in the

Φ-direction. The explicit dependence of χ2 on Ψ is established by the original choice of

the non-local coupling G, but since the Ψ-factor in eq. (4.13) is the same appearing in the

equations of motion (4.3)–(4.5), it is more reasonable for the sake of numerical computation

to deal directly with different possible choices of K(Ψ) ≡ dχ2

dΨ . Specifically, we will discuss

in the following the two configurations displayed by

K(Ψ) = kΨ1+n, K(Ψ) = kenΨ, (4.14)

that we dub respectively power-law and exponential kinetic coupling case, inasmuch as K(Ψ)

settles the non-diagonal kinetic terms in (4.2). The original function G can be obtained

by reversing the definition of Ψ, i.e.

G−G0 =

∫ 

dΨ

dχ2

2

dχ2, (4.15)

where Ψ = Ψ(χ2) is derived by the inversion of

χ2 − χ2,0 =

∫

K(Ψ) dΨ. (4.16)

Some attention must be paid to the integration constants G0, χ2,0,Ψ0 (with the latter

stemming out from the r.h.s. of eq. (4.16)), in that they can lead to some undesired features

in the original action (3.1). As an example, we note that a non-vanishing G0 introduces

at the level of the action a linear term in the type of scalar curvature not contained in the

original f(R) function, thereby evading the hypotheses of section 3. An analogous effect is

also expected to be triggered by some (non-trivial) combination of χ2,0 and Ψ0, and this

implies that the set of integration constants ¶G0, χ2,0,Ψ0♢ is in principle constrained and

some mutual conditions must be implemented not to violate dynamical stability. This can be

for instance appreciated by looking at the constant coupling case K = k, where we have

G(χ2) = G0 +
1

k2
(χ2 − χ2,0) , (4.17)

and the condition G0 =
χ2,0

k2 must be accordingly enforced. Therefore, working directly with

K(Ψ) allows us to avoid such subtleties and to look for safe configurations at the level of

the scalar-tensor reformulation.
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4.1.1 Case I: power-law kinetic coupling

The first case we analyse is the power-law kinetic coupling

K(Ψ) = kΨ1+n, (4.18)

whose corresponding G(χ2) function is displayed in appendix C. We begin by exploring the

case where n = −1, which leads to a constant non-local term. This simplification reduces the

complexity of the equations of motion, resulting in field trajectories that exhibit straight-

forward dependencies on the initial conditions. The kinetic terms introduce non-diagonal

contributions in the Einstein frame, influencing the background evolution. From now on, we

decide to consider the non-local contributions with k ≪ 1 in order to study these terms acting

as perturbations. In figure 1, we integrate the whole system of equations (4.3), (4.4), (4.5)

and it is carried up to the end of inflation which occurs for ϵ0 = 1. Numerical simulations

indicate that inflationary scenarios are viable, with the fields gradually rolling along the

potential (bottom right of figure 1). However, careful selection of specific parameter values is

essential to avoid ghost instabilities and to ensure a sufficient number of e-folds. Indeed, we

point out that in this case the no-ghost condition (4.13) takes the form

∣

∣

∣k Ξ Ψ1+n
∣

∣

∣ < 6. (4.19)

The central role of the inflaton field is underscored by the behavior of the Φ-field, while the

Ξ-field settles promptly to zero. Employing eq. (4.12), the potential lacks dependence on Ψ,

and the coupling between Ξ and Ψ primarily arises from the non-local term. This coupling

generates an initial kick to the Ψ field, after which it experiences drag due to the expansion

of the universe. It is worth noticing that when the dependence of Ψ is turned on in eq. (4.18),

the non-local coupling becomes significant in the dynamics of the fields. Indeed, increasing

the degree of eq. (4.18) the Ψ field stabilises at higher values becoming almost completely

frozen (see figure 1). This model can be treated in the same vein as single-field inflation

with a spectator field, given that its dynamical content is embedded in the Φ field only.

Additionally, the above will be compared to n = 0 considering V ̸= 0 in the following section.

4.1.2 Case II: exponential kinetic coupling

In this subsection we explore the following form

K(Ψ) = kenΨ, (4.20)

with the corresponding G(χ2) reported in appendix C. Dynamical stability is satisfied for

♣kΞ enΨ♣ < 6. (4.21)

The exponential coupling again plays a crucial role in this context. As n moves toward

positive values, the interaction between Ξ and Ψ becomes more pronounced, allowing Ψ to

stabilise at lower values following an initial drop, figure 2. Moreover, the field appears almost

frozen reducing the dynamics to a single field scenario with a spectator field.
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Figure 1. Power-law coupling case with V = 0: normalised fields trajectories and shaded potential

profile Y2(Φ,Ξ) with a2 = 2.3, b2 = 0.001, k = 0.1 for n = 0 (blue), n = −1 (orange) and n = 1 (green).

4.2 The case V ̸= 0

In this section, we enlarge our analysis to encompass the case where a non-vanishing V (□−1R)

function is considered in the initial action. This amounts to enriching the global potential Y2

with a dependence on the field Ψ, obtained via the definition (4.16). In particular, following

the discussion at the beginning of section 4, we select for V a simple quadratic expression, i.e.

V (χ2) = V0χ
2
2, where V0 is constant so that the Einstein frame global potential is given by

Y2(Φ,Ξ,Ψ) =
V0χ

2
2(Ψ) +



e
√

2
3

Φ + Ξ2

6 − a2

2

4b2e
2
√

2
3

Φ
. (4.22)

4.2.1 Case I: power-law kinetic coupling

For K(Ψ) as in eq. (4.18), we have

χ2 =
k

n+ 2
Ψn+2, (4.23)

where we set for the sake of simplicity the integration constants as χ2,0 =
kΨn+2

0
n+2 . For this

choice, the potential term V is displayed by

V (Ψ) =
k2V0

(n+ 2)2
Ψ2(n+2). (4.24)
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Figure 2. Exponential coupling case with V = 0: normalised fields trajectories and shaded potential

profile Y2(Φ,Ξ) with a2 = 2.3, b2 = 0.001, k = 0.1 for n = 2 (blue), n = −1 (orange), n = 1 (green).

Focusing on n = 0, where K(Ψ) ≈ Ψ, there are no main differences from the case described

in subsection 4.1.1. Additionally, the condition H2/YΨΨ ≫ 1 indicates that the field is light

during inflation and hence it is Hubble damped and not driven to zero by the potential;

instead, during inflation its kinetic energy drops and the field becomes constant. The change

in the strength of the coupling also results in a change in potential amplitude (see figure 3),

which, in turn, would lead to an increase or decrease in the scalar spectral amplitude As
of primordial perturbations.

4.2.2 Case II: exponential kinetic coupling

For K(Ψ) as in eq. (4.20), we have

χ2 =
k

n
enΨ, (4.25)

where this time we set the integration constants as χ2,0 = k
n
enΨ0 . In this case, the potential

term V is given by

V (Ψ) =
k2V0

n2
e2nΨ. (4.26)
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Figure 3. Power-law non-locality with V ̸= 0: normalised fields trajectories and shaded potential

profiles Y2(Φ, 0,Ψ) with a2 = 2.3, b2 = 0.001, k = 0.1 for n = 0 (blue) and n = −1 (orange).

The modification of the Starobinsky-like potential (4.22) by V (Ψ) for Φ → 0 allows inflation

to happen, for a given shape of V (Ψ), see figure 4. Also in this case, H2/YΨΨ ≫ 1 is satisfied.

The resulting field dynamics is very similar to the power-law case.

5 Conclusions

In this work, we explored non-local corrections in the form of powers of the inverse d’Alembert

operator within the framework of hybrid metric-Palatini gravity. Specifically, we considered

non-localities acting on both types of curvature: the metric Ricci scalar R and the Palatini

Ricci scalar R. We approached the non-local theory as equivalent to a local scalar-tensor

model, where the non-local terms are localized through a procedure involving auxiliary fields,

circumventing the ambiguity associated with imposing retarded boundary conditions for the

integral operator □
−1. The main findings of our analysis can be summarized as follows:

• We rigorously demonstrated that non-degenerate hybrid metric-Palatini models sup-

plemented by non-local terms built out of the inverse of the d’Alembert operators

are generically plagued by ghost instabilities. These can be conveniently displayed by

recasting the theory into a scalar-tensor framework, where the interplay between local

and non-local terms is made explicit. We show that the number of ghost instabilities

depends on the sum of the highest powers of the □
−k operators acting on the metric

– 18 –
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Figure 4. Exponential coupling with V ̸= 0: normalised fields trajectories and shaded potential

profiles Y2(Φ, 0,Ψ) with a2 = 2.3, b2 = 0.001, k = 0.1 for n = 1 (orange) and n = −1 (blue).

and the Palatini curvature. We discuss how this is an unavoidable property of every

non-degenerate non-local F (R,R, . . . ,□−mR, . . . ,□−nR) action, even when a purely

Palatini approach is enforced, in contrast with the findings of standard f(R) gravity

where no additional degrees of freedom are excited. This result extends the outcomes

of ref. [115] for the purely metric case and is in agreement with the doubling of the

degrees of freedom exhibited by generalized hybrid metric-Palatini gravity [99, 101]

with respect to the single curvature cases.

• We prove that Lagrangian densities characterized by the condition fRRfRR − f2
RR = 0

are sufficient for removing ghost instabilities, provided local and non-local terms are

associated to distinct types of curvature. In particular, we established that simple

modifications of well-known f(R) (f(R)) theories with Palatini (metric) non-local terms,

where curvature is linearly coupled to functions of the □
−1 operator, are fit for the

purpose and can contain the additional dynamical content of the model to three scalar

fields, where for comparison generalized hybrid models display two.

Building on these considerations, in the second part of the work, we focused on a specific

class of well-defined hybrid actions where local and non-local contributions were associated

with distinct types of curvature. We examined configurations consisting of metric (Palatini)

f(R) (f(R)) models supplemented by Palatini (metric) non-local terms, where degeneracy was
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explicitly violated and non-localities were linearly coupled to the curvature. We investigated

the applicability of these theories in the context of early Universe cosmology and studied the

feasibility of inflation within the resulting Einstein-frame multi-field scenario. We analyzed

both the role of non-localities and the influence of non-minimal kinetic couplings between the

fields, reflecting the non-local structure of the original frame, on the background dynamics,

the number of e-folds, and the field trajectories. As a preliminary step, we also assessed the

well-posedness of the first-order slow-roll parameter, which ultimately resulted in additional

constraints among the derivatives of the potential and the fields. Our analysis revealed that

non-localities introduced deformations to the Starobinsky-like potential, providing a novel

pathway to test the robustness of the model.

More quantitatively, we explored two key configurations motivated by the role played

by non-local interaction terms in the resulting potential, considering two different scenarios:

V (□−1R) = 0 and V (□−1R) ̸= 0. In the first case, the dynamics are dominated by the

coupling between the non-local terms and the scalar fields and we show that the behavior of

the scalar fields does not depend critically on the choice of kinetic coupling K(Ψ). Indeed,

in both cases of power-law and exponential form, the Ξ field promptly sets in the minimum

of the potential while Ψ freezes due to Hubble damping and Φ drives inflation, effectively

reducing the system to a single-field scenario with a spectator field. Moreover, the stability of

these trajectories hinges on satisfying the no-ghost condition. The inclusion of the potential

term V enriches the inflationary dynamics by allowing more intricate interactions between

the fields. The quadratic form of V introduces additional constraints that help terminate

inflation. It is evident that the effective mass of the Ψ field is light, implying that for general

initial conditions it is not driven to zero during inflation.

Overall, we demonstrated that non-local effects not only introduce an interplay between

the dynamics of the fields by inducing deformations in the Starobinsky-like potential, but also

have direct consequences on the background dynamics during the slow-roll phase of evolution.

These effects leave characteristic footprints, offering a novel avenue for testing the robustness

of the Starobinsky model and providing a significant first step toward characterizing a richer

phenomenology that could help clarify the presence of potential non-localities in gravitational

interactions at high energy scales characterizing the inflationary Universe. While a clear

limitation of our analysis lies in focusing exclusively on the background-level effects of non-

localities, our findings provide a solid foundation for further investigations into inflationary

perturbations and their associated observational signatures within the framework of non-local

hybrid metric-Palatini gravity.
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A Ghosts for the purely metric and Palatini case

Following the procedure described in section 2, it is easy to check that when the initial

function F solely depends on one type of curvature, the final action in the Einstein frame

can be recast as

1

2κ2

∫

d4x
√−q

(

R(q) − δi (∇Θ)2 +
Π

e
√

2
3

Θ
− W (Θ, π⃗1, π⃗2)

e2
√

2
3

Θ

)

, (A.1)

where δi = 0, 1 for the Palatini and metric configuration, respectively, and we denoted

with Θ and Π the generic field representation associated to each case. We observe that for

δi = 1 the results of [115] are reproduced, i.e. N ghost fields appear, while selecting δi = 0

deprives Θ of proper dynamics, and in this case, it can be completely expressed in terms

of the other fields, as in ordinary Palatini f(R) theories. Indeed, variation of (A.1) with

respect to Θ results in the equation

2W − ∂W

∂Θ
= e

√

2
3

ΘΠ, (A.2)

which once W is assigned, can be in principle solved for Θ = Θ(π⃗1, π⃗2). We remark that also

in this case N ghost show up in Π, so that the theory is still dynamically unstable.

B Diagonalization for σ2 = 0

In this appendix we report the diagonal form for (3.9), which is obtained by the field

redefinition Ψ = η + ω, Ξ = η − ω, leading to:

S2 =
1

2κ2

∫

d4x
√−q









R− (∇Φ)2 − K−(η, ω)(∇η)2 +K+(η, ω)(∇ω)2

e
√

2
3

Φ
+

−
V (β(η + ω)) + U



e
√

2
3

Φ + (η−ω)2

6



e2
√

2
3

Φ









,

(B.1)

where we introduced the kinetic coefficients

K∓(η, ω) ≡ 2 ∓ η − ω

3

dβ

dΨ

∣

∣

∣

∣

Ψ=η+ω
. (B.2)

C Expressions of the G function

Following the procedure outlined in section 5, the non-local G functions corresponding to

a power-law in the Einstein frame is given by:

G(χ2) = G0 +
1

nk

[

Ψ−n
0 −



Ψn+2
0 +

n+ 2

k
(χ2 − χ2,0)

− n
n+2

]

, n ̸= 2 (C.1)

G(χ2) = G0 +
Ψ2

0

2k



e
2(χ2−χ2,0)

k − 1



, n = 2 (C.2)

while an exponential coupling results in

G(χ2) = G0 +
χ2 − χ2,0

kenΨ0 (kenΨ0 + n (χ2 − χ2,0))
. (C.3)
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