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Introduction

Since their discovery decades ago, ribosome-inactivating pro-
teins (RIPs) have been of great scientific interest due to their 
importance in human health, as both pathogenic agents and 
therapeutics, but also due to their potential use in biological war-
fare and bioterrorism. In the past few years, a number of compre-
hensive reviews have been written on a variety of these subjects.1-6 
RIPs form a family of well-characterized toxins, which specifi-
cally and irreversibly inhibit protein synthesis in eukaryotic cells 
by enzymatically altering the 28S rRNA of the large 60S ribo-
somal subunit. Most are produced by plants and are thought to 
represent a defense mechanism against viral or parasitic attack-
ers. Notable examples of plant-derived RIPs include ricin, abrin, 
and saporins.2,4 Other RIPs such as the Shiga toxins3,5 are instead 
produced as virulence factors by pathogenic bacteria in order to 
aid their survival and replication in host organisms. Injection, 
inhalation or ingestion of some of these toxins (e.g., ricin, abrin, 
and Shiga toxins) can be lethal even in small doses and triggers 

irreversible inhibition of host cellular protein synthesis accompa-
nied by acute necrosis of affected tissues and organs. Underlining 
their potency as pathogenic agents, ricin has been classified as a 
potential category B biological warfare agent and a likely source 
of bioterrorism.7

Over a hundred RIPs have been isolated from various plants 
and bacteria with varying degrees of toxicity. These RIPs have 
been subdivided into two or three broad categories, with the two-
category classification currently prevailing.1,8 In this classification 
type 1 RIPs are monomeric proteins of approximately 30 kDa 
which possess RNA N-glycosidase enzymatic activity. In contrast 
type 2 RIPs are composed of an A-chain with RNA N-glycosidase 
activity associated to one or several B-chain(s) of approximately 
35 kDa.5,8-10 The B-subunit is a lectin-like peptide that has strong 
affinity for sugar moieties displayed on the surface of cells and 
helps promote translocation through the plasma membrane. As 
a consequence, type 2 RIPs generally tend to be more toxic than 
their type 1 counterparts, though this is not always the case since 
a number of type 2 RIPs (RCA120, Cinnamonin, Ebulin1/r1/r2, 
Nigrin b, SNA I, SNLRP, IRA b/r) display little or no toxicity 
despite possessing a lectin-like domain.11

The RIP family of toxins was originally described as shar-
ing biochemical properties that lead to irreversible inactivation 
of eukaryotic protein synthesis by an enzymatic mechanism of 
action which leads to the abolition of the interaction between the 
large 60S ribosomal subunit and translation elongation factor 
2.12,13 Toxic RIPs act at low doses because their catalytic activities 
allow complete inactivation of ribosomes and protein synthesis at 
a less-than-equimolar ratio to their substrate. RIPs display rRNA 
N-glycosidase activity (EC 3.2.2.22) and depurinate 28S rRNA 
by cleaving the bond between adenine and ribose in the exposed 
ype loop of the molecule14,15 thus preventing recruitment of trans-
lation elongation factors and subsequent protein synthesis. Other 
factors, such as a group of endonucleases isolated from fungi 
termed ribotoxins also trigger an irreversible inactivation of pro-
tein synthesis but through direct cleavage of the 28S rRNA rather 
than specific depurination. On this basis, they fit the criteria for 
being RIP family members, but there is controversy as to whether 
they should be considered true RIPs under the current classifica-
tion system.16 In addition to the classification challenges presented 
by the fungal ribotoxins, a recently characterized bacterial toxin 
known as Burkholderia lethal factor 1 (BLF1) also shares many 
of the biological properties of RIPs but does not possess RNA 
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Ribosome-inactivating proteins (RIPs) were first isolated 

over a century ago and have been shown to be catalytic tox-

ins that irreversibly inactivate protein synthesis. Elucidation 

of atomic structures and molecular mechanism has revealed 

these proteins to be a diverse group subdivided into two 

classes. RIPs have been shown to exhibit RNA N-glycosidase 

activity and depurinate the 28S rRNA of the eukaryotic 60S 

ribosomal subunit. In this review, we compare archetypal RIP 

family members with other potent toxins that abolish protein 

synthesis: the fungal ribotoxins which directly cleave the 28S 

rRNA and the newly discovered Burkholderia lethal factor 1 

(BLF1). BLF1 presents additional challenges to the current clas-

sification system since, like the ribotoxins, it does not possess 

RNA N-glycosidase activity but does irreversibly inactivate 

ribosomes. We further discuss whether the RIP classification 

should be broadened to include toxins achieving irrevers-

ible ribosome inactivation with similar turnovers to RIPs, but 

through different enzymatic mechanisms.



www.landesbioscience.com Virulence 775

 SPECIAL FOCUS REVIEW SPECIAL FOCUS REVIEW

N-glycosidase activity. This factor triggers accumulation of 80S 
initiating-ribosome species by a different enzymatic mechanism 
causing a drastic reduction in actively translating polysomes, and 
an irreversible stalling of translation prior to elongation.17,18

In this review, we compare the properties and potential appli-
cations of several well-characterized RIPs (ricin/abrin, Shiga 
toxins, and saporins) with those of the fungal ribotoxins and 
the bacterial toxin BLF1. In addition, we review the standing of 
non-RNA N-glycosidase ribosome inactivators within the cur-
rent classification system, and ask whether the definition of a 
RIP should revert to a broader description which would take into 
account all enzymatic activities that irreversibly prevent transla-
tion elongation from occurring.

Ricin and Abrin (Plant Type 2 RIPs)

Ricin and abrin are among the best-characterized RIP family 
members and can be extracted from the seeds of Ricinus communis 
(castor bean plant) and Abrus precatorius (jequirity pea) respec-
tively.19 Typical pathological symptoms of exposure to plant type 
2 RIPs include abdominal pain, vomiting, diarrhea leading to 
fluid loss, electrolyte imbalance, and dehydration. Postmortem 
features include characteristic hemorrhagic intestinal lesions and 
histology which is consistent with localized cellular apoptosis and 
tissue necrosis.20

There have been other highly toxic type 2 RIP isolated from 
plants, including Modeccin, Pulchellin, Mistletoe lectin I, and 
Volkensin, but these will not be covered in this review, which 
focuses on comparing archetypal members of the RIP family 
with other potent inhibitors of cellular protein synthesis such 
as the α-sarcin and BLF1 toxins. The first recorded isolation of 
ricin was by the German scientist H Stillmark in 1888 during 
his doctoral work. The same research group, headed by the pio-
neering toxicologist R Kobert, also identified abrin as being a 
toxic protein. Early experiments in which the two purified pro-
teins were tested on blood led to their classification as agglutina-
tion factors (aka agglutinins) since they induced the clumping 
of erythrocytes and the precipitation of serum-soluble proteins. 
Originally this agglutination was thought to be the cause of 
their toxicity but later work by P Ehrlich in 1891 hinted that this 
might not be the case. Ehrlich suggested that to be able to work 
the toxins needed to be fixed in tissue and hypothesized that the 
protein might consist of a binding region, named “haptophore”, 
and a toxin part, termed “toxophore”. When the crystal struc-
tures of both proteins were solved his hypothesis was shown to 
be remarkably close to the truth.21,22 Both proteins are heterodi-
mers consisting of two disulfide-linked polypeptides, known as 
the A-chain and B-chain, which have distinct functions.8-10 The 
catalytic A-chain resembles Ehrlich’s toxophore while the lectin-
like B-chain neatly fits the requirements of his haptophore.

Prior to the solving of its structure, ricin was shown to be a 
potent inhibitor of protein synthesis in intact metazoan cells23 
as well as in cell-free systems.24,25 Since this inhibition was 
achieved with concentrations which were sub-stoichiometric to 
the number of ribosomes present, the mechanism of toxicity was 
assumed to be enzymatic in nature.25 Here, the significance of 

the A-chain becomes apparent since it possesses enzymatic abil-
ity in the form of RNA N-glycosidase activity. Investigation of 
this activity revealed that the enzyme specifically acted on an 
extended loop near the 3′ end of 28S rRNA in the eukaryotic 
ribosome14,15 providing a direct link between the function and 
the observed cellular effects. The glycosidase enzyme depurinates 
rRNA cleaving the glycosidic bond of a single adenine residue 
in the exposed loop (A

4324
 in rat liver). This leads to loss of the 

adenine base but not direct cleavage of the RNA chain. Instead it 
is thought that the RNA is left susceptible to hydrolysis and may 
be cleaved by cellular lyases.26 Subsequently, this mechanism has 
been found to be the same or very similar in many other RIPs 
with the shared site of action becoming known as the sarcin–ricin 
loop. Significantly, this loop is required for recruitment of fac-
tors needed for translation elongation,12 meaning even small dis-
ruptions to its structure have severe effects on protein synthesis. 
Remarkably a single molecule of either ricin or abrin is able to 
inactivate over a thousand ribosomes per minute,27,28 effectively 
leaving cells unable to assemble new ribosomes quickly enough 
to remain viable. However, as potent as it may be, the presence of 
an RNA N-glycosidase domain alone is not enough to explain the 
extreme toxicity of ricin and abrin, with LD

50
 = 8.0 µg/kg and 

LD
50

 = 2.8 µg/kg respectively in mice.1 To have that level of tox-
icity they must also have an effective way of crossing the plasma 
membrane and entering host cells to mediate their harmful effects. 
For this to occur an RNA N-glycosidase domain is not sufficient, 
a second functional domain is required. This second domain is 
the B-chain and is the defining feature of plant-derived type 2 
RIPs. The B-chain belongs to a family of carbohydrate-binding 
proteins called lectins.9,10 These proteins exhibit highly specific 
binding to sugar moieties within a larger carbohydrate or as part 
of glycoprotein/glycolipid molecules. In the case of ricin/abrin 
their lectin-domains exhibit binding specificity for galactose and/
or N-acetyl-galactosamine or less frequently N-acetyl-neuramic 
acid.29 It is this property of lectins that confers their haemagglu-
tinating ability, allowing them to recognize carbohydrate groups 
displayed on the surface of erythrocytes, bind to them, and cause 
clumping of the blood cells. Most cells are covered in millions 
of potential binding sites for ricin/abrin in the form of terminal 
galactose residues on glycoproteins/glycolipids. Once bound, the 
toxins are absorbed into the cell by endocytosis either via clath-
rin-dependent30 or clathrin-independent31 mechanisms and are 
directed to early endosomal vesicles. The majority of the toxin 
molecules are then either transported to lysosomes for proteolytic 
degradation or recycled to the cell surface.4 However, around 5% 
of the toxin is able to find its way into the trans-Golgi network 
(TGN)32 and it is from this pool that the active toxin is eventually 
produced. The importance of this transport to the TGN is under-
lined by the observation that cells resistant to ricin show impaired 
endosome-to-Golgi transport at low temperature.33 Exactly what 
happens to ricin when it reaches the TGN is not fully understood 
but it is known that it is moved via retrograde transport through 
the Golgi stack and into the endoplasmic reticulum (ER). It has 
been hypothesized that this may be achieved through a number 
of routes34 and may be mediated by interactions between the 
B-chain and galactosylated substrates.35 Once in the ER lumen 
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the remaining toxin, or at least the A-chain portion, is then trans-
located to the cytoplasm.36,37 It has been suggested that the A 
and B chains are separated in the ER through reduction of their 
disulphide bonds38 and that this in turn allows the A-chain to 
be retro-translocated to the cytoplasm through a pathway usu-
ally reserved for disposal of misfolded cellular proteins.39 While a 
large proportion of toxin directed down this route (known as the 
ER-associated protein degradation or ERAD pathway) is ubiqui-
tinated and degraded by the proteasome upon arrival in the cyto-
plasm, a small fraction is able to escape this surveillance and bind 
to its ribosomal target. It is thought that the differences in toxicity 
of type 2 RIPs can at least in part be explained by their varying 
success in avoiding ERAD degradation. A diagram summarizing 
toxin uptake and action is presented in Figure 1.

While the defining feature of both ricin and abrin is their 
ability to inhibit de novo protein synthesis they also display other 
properties that contribute to cytotoxicity. For over 20 years there 
have been reports of RIP-induced apoptosis in affected cells.40 It 
was initially assumed that ricin/abrin-induced apoptosis would 

be exclusively mediated by the ribotoxic stress response, however 
in the intervening years a number of different pathways have 
been implicated.41 The most prominent examples are the induc-
tion of DNA damage through removal of adenine from DNA42 
and activation of the mitochondrial pathway of cell death.43 
Furthermore, it has been demonstrated that both ricin and the 
Shiga toxins inhibit resolution of H

2
O

2
-induced DNA lesions, 

potentially through direct interaction with the repair machin-
ery.44 Interestingly there have also been reports of an apoptotic 
pathway that is A-chain independent and therefore not connected 
to the inhibition of protein synthesis.45 It has been hypothesized 
that this may involve the B-chain bringing together pro-apop-
totic receptors at the cell surface.

Shiga and Shiga-Like Toxins (Bacterial Type 2 RIPs)

While almost all type 2 RIPs have so far been isolated from 
plant species, the Shiga and Shiga-like toxins are instead pro-
duced by gram-negative bacterial species. In the late 19th century 

Figure 1. Mechanisms of cellular entry and actions of RIPs. Shiga toxins are delivered into the cell after the B-chain binds globotriaosylceramide (Gb3) 

to stimulate clathrin-dependent/independent endocytosis. Upon reaching the Golgi the A-chain is cleaved by the protease Furin. Ricin is delivered 

into the cell after the binding of the lectin-like B chain to glycoproteins/glycolipids and clathrin-dependent/independent endocytosis. After retrograde 

translocation from the Golgi to the ER the A- and B-chains of ricin and Shiga toxins are separated. Saporin is delivered into the cytoplasm via a clathrin-

dependent mechanism of uptake aided by saponins. Shiga toxins, ricin and saporin all inhibit translation using RNA N-glycosidase to depurinate 28S 

rRNA at the same adenine residue (A
4324

). Alpha-sarcin enters the cell via pinocytosis and cleaves the phosphodiester bond between G
4325

 and A
4326

. BLF1 

is delivered into the cytoplasm via an intra-cellular pathogenic bacterium and deamidates the translation initiation factor eIF4A inactivating its RNA-

helicase activity leading to inactivation of initiating ribosomes.
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Kiyoshi Shiga, a Japanese physician and bacteriologist, was inves-
tigating the cause of dysentery during a large epidemic in which 
over 90 000 cases were recorded and the mortality rate was as high 
as 30%.46 During this epidemic Shiga isolated a gram-negative 
bacillus bacterium from the stool of patients, which he termed 
Bacillus dysenteriae. This bacterium when fed to dogs led to the 
onset of diarrhea and toxic factors were found in autolysates of 
the bacterial cultures. This bacterium and the virulence factor 
it produces were later confirmed to be one of the major causes 
of bacillary dysentery and were renamed Shigella dysenteriae and 
Shiga toxin in honor of his discovery. While early work suggested 
Shiga toxin to be a neurotoxin since it caused limb paralysis when 
injected into animal models, by the 1970s a relevant gastroin-
testinal effect of the protein had been established.47 Soon after 
it was found that isolates from certain strains of Escherichia coli 
contained a factor that was able to kill Vero cells in vitro.48 These 
factors were referred to as verotoxins and the bacteria that pro-
duced them were termed Verotoxin-producing E. coli (VTEC). 
However, this definition was subsequently altered a few years 
later when O’Brien and colleagues identified strains of E. coli 
with isolates that contained a toxin related to Shiga49 that caused 
hemorrhagic colitis and infantile diarrhea.50 When it was shown 
that the verotoxin and Shiga-like toxins could both be neutral-
ized by antibodies to the original Shiga toxin, researchers soon 
realized they were working with the same strains51 and led to 
the strains being reclassified as Shiga-like toxin-producing E. coli 
(STEC). The fact that remarkably similar toxins were present in 
two unrelated bacterial species strongly suggested the horizontal 
transfer of a mobile genetic element. This was proven to be the 
case when it was found that the Shiga toxins (Stxs) were encoded 
by genes within the genomes of working or non-functional lam-
boid bacteriophages.50 These Stx-phages are able to integrate into 
the host chromosome and are defined by the presence of the Stx-
operon, comprised of the genes necessary for toxin production. 
Apart from this element, the Stx-phages display a high degree 
of heterogeneity and mosaicism52,53 most likely due to recombi-
nation events caused by the presence of multiple phages within 
the same bacterium.54 Significantly, it has been shown that Stx-
phages infect other commensal bacteria in the gut, effectively 
recruiting them to aid in toxin production.55,56 This poses prob-
lems during outbreaks of Shiga-related illness as symptoms and 
severity can vary between cases infected with the same strain.

As revealed by X-ray crystallography, all Shiga toxins are of 
the AB

5
 protein family57,58 and are composed of subunits with 

functions analogous to those of the classic type 2 RIPs identi-
fied in plants. A catalytic monomer, termed StxA, is non-cova-
lently associated with 5 surrounding B-fragments that form the 
B-subunit StxB. Both peptides are synthesized and secreted into 
the bacterial periplasm where they are assembled into a holo-
toxin59 with StxB resembling a doughnut-shaped pentamer into 
which the carboxyl terminus of StxA sits. In terms of protein 
sequence there is remarkable similarity between the prototype 
Shiga toxin (Stx) from S. dysenteriae and the major Shiga-like 
toxins found in STECs (Stx1 and Stx2). Stx and Stx1 are the 
most similar, sharing identical B-fragments and differing by a 
single amino acid in the A-subunit.60,61 Interestingly, Stx2 only 

shares 56% protein homology with Stx/Stx1 despite having an 
identical mechanism of action.62

As mentioned, the Stx proteins can be thought of as analogous 
to the plant toxins ricin and abrin and this is reflected in both 
their function and mechanism of action. As with ricin/abrin the 
A-subunit provides the RNA N-glycosidase activity while the 
B-subunit displays high affinity for specific cell surface sugar 
moieties. Remarkably, the RNA N-glycosidase activity is iden-
tical to that found in ricin/abrin with depurination of the 28S 
rRNA sarcin–ricin loop occurring at exactly the same adenine 
residue (A

4324
).63,64 Again, removal of this adenine prevents bind-

ing of elongation factors and associated amino-acyl tRNAs and 
results in stalling of protein synthesis at the elongation stage.65,66 
Like all classic type 2 RIPs, the Shiga toxins are also able to gain 
entry into intact cells, and this is mediated by the StxB portion of 
the assembled protein. Each B-fragment contains three distinc-
tive binding sites for the trisaccharide side chain of glycosphingo-
lipid globotriaosylceramide (Gb3), a glycolipid displayed on the 
surface of many mammalian cells,67,68 and binding to this group 
leads to the internalisation of the toxin by endocytosis. The reli-
ance on Gb3 for Stx protein entry was emphasized by elegant 
experiments in which Stx resistant cells were made susceptible to 
the toxin by incorporation of Gb3 into the plasma membrane69 or 
where previously susceptible cells were rendered immune through 
deletion of the Gb3 synthase gene.70 The only known exception 
to this Gb3-dependence occurs in porcine models where the Stx2 
variant Stx2e exhibits specific affinity for globotetraosylceramide 
(Gb4).71,72 In general terms the mechanisms of endocytosis of the 
Shiga toxins and their transport through the Golgi and ER are 
very similar to those previously described for ricin/abrin and 
therefore will not be discussed in detail.73,74 In common with the 
diphtheria and Pseudomonas toxins75 Shiga toxins must be cleaved 
by the membrane-associated protease furin in order to become 
functional as toxins in the cytoplasm.76 Furin cleaves StxA at a 
protease-sensitive loop toward the C-terminus at an alanine moi-
ety between Arg-251 and Met-253 to produce a large catalytic 
A1 fragment (~27.5 kDa) and a small StxB-associated A2 frag-
ment (~4.5 kDa).76 The A1 and A2 fragments remain associ-
ated with each other through a disulphide link which must be 
reduced after retrograde transportation to the ER lumen in order 
to free the catalytic A1 fragment for transfer to the cytoplasm.77,78 
Again, like other type 2 RIPs, it is thought that transport to the 
cytoplasm is achieved through ERAD since Shiga toxins have 
been successfully co-immunoprecipitated with chaperone and 
translocon factors associated with this pathway.79,80 Significantly, 
approximately only 4% of molecules make it through all the 
transportation processing events that allow them to become 
mature toxins capable of RIP activity in the cytoplasm81 (Fig. 1).

Outside of their RIP function the Shiga toxins activate various 
signaling pathways within host cells which lead to apoptosis by 
mechanisms similar to those affected by ricin/abrin82,83 includ-
ing those related to DNA damage.42,44 Activation of the ribotoxic 
stress response via one of the three major cellular MAPK cascades 
represents the most commonly activated pathway and happens 
as a direct consequence of ribosome inactivation.84 Significantly, 
activation of this response has also been linked to release of 
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cytokines that cause upregulation of the Gb3 receptor protein 
in neighboring cell types, thereby potentially sensitizing them to 
infection by the toxin.85 An additional way in which Shiga toxins 
are thought to induce programmed cell death is through an ER 
quality control measure known as the unfolded protein response 
(UPR). This is proposed to be triggered by transient unfolding 
of the A1 fragment prior to cytoplasmic translocation leading to 
stimulation of ER stress receptors with a subsequent release of 
Ca2+ ions and activation of cellular caspases.86 There is also evi-
dence that the purified B-domain of Stx1 is able to stimulate ER 
stress-independent apoptosis in Burkitt’s lymphoma cells, poten-
tially by cross-linking of Gb3 receptors at the cell surface.87,88

Saporins (Plant Type 1 RIPs)

So far this review has considered the type 2 RIPs, which, 
despite being the most extensively studied class only account 
for a small proportion of all known RIPs.8 The majority of RIPs 
discovered so far actually belong to type 1 and are mostly pro-
duced in plant species, with preferential distribution within 
particular families such as Caryophyllaceae, Cucurbitaceae, and 
Euphorbiaceae.8 While type 2 RIPs can be extremely toxic due to 
the presence of lectin-like B-chains and their ability to promote 
entry into target cells, the type 1 RIPs by comparison are much 
less harmful. This lack of toxicity is not due to them being poor 
ribosome inactivators, since they are potent inhibitors of transla-
tion in cell free systems.89 It is instead because they lack an effi-
cient means of entering host cells.1 In fact type 1 RIPs in plants 
such as spinach90 and tomato2 can be consumed raw without pos-
ing any threat to health.

Many type 1 RIPs have been studied extensively, includ-
ing gelonin, PAP, momordin, and trichosanthin. However, the 
best characterized and most widely utilized type 1 RIPs are the 
saporins which can be extracted from roots, leaves and seeds of 
Saponaria officinalis, commonly known as soapwort.91 In total, 
nine related RIPs with alkaline pI values have been isolated from 
soapwort. Saporin-6 is the most abundant and the form most 
commonly considered the archetypal saporin. The structure of 
saporin-6 is very similar to that of the A-chain of type 2 RIPs92 
and it displays the universally conserved RNA N-glycosidase 
activity specific for A

4324
 of 28S rRNA.93,94 In addition saporins 

are extremely stable when exposed to a number of denaturing 
conditions.95 While the lack of a B-chain moiety means that 
saporins generally show low toxicity in most cells this is not 
always the case. There is conflicting evidence as to whether sapo-
rins can stimulate endocytosis by binding to the surface recep-
tor α

2
-macroglobulin94,96 while a clathrin-dependent mechanism 

of uptake involving the detergent-like saponins (also produced 
in soapwort) has been proposed.97 Once internalized, saporin 
is trafficked to the cytoplasm through a different route to that 
of the ricin A-chain utilizing a Golgi-independent mechanism 
which does not require low pH for membrane translocation98 
(Fig. 1). Because of the relative safety in handling saporins and 
their extreme stability they are extensively used as a therapeutic/
research tool when conjugated to other biological molecules that 
target specific cell types.

Fungal Ribotoxins

Though plant-derived proteins make up the vast majority of 
proteins that inhibit protein synthesis, a handful have been iso-
lated from fungal species, of which α-sarcin (henceforth referred 
to as sarcin) is the most famous.99 Sarcin is a monomeric protein 
secreted by the fungus Aspergillus giganteus that has been shown 
to inhibit protein synthesis in cell-free systems.100 More precisely, 
sarcin belongs to a family of fungal ribotoxins16,101 with specific 
RNA endonuclease activity centring on the sarcin–ricin loop of 
28S rRNA.102 Despite targeting the same rRNA structure as the 
RNA N-glycosidase RIPs, sarcin and related ribotoxins destroy 
the function of ribosomes by a wholly unique mechanism. 
Instead of depurinating the rRNA through removal of A

4324
, the 

phosphodiester bond between G
4325

 and A
4326

 is cleaved.103 Just 
like depurination, this alteration disrupts the structure of the sar-
cin–ricin loop preventing recruitment of elongation factors essen-
tial for protein synthesis (Fig. 1). Structural studies on multiple 
ribotoxins revealed that sarcin, RNase T1, and RNase A shared 
a common catalytic mechanism and belong to the cycling class 
of ribonucleases.104 It was later shown that Arg-121 is essential 
for the RIP activity and cytotoxicity of sarcin since when this 
residue was replaced (while retaining protein conformation) both 
were abolished.105 Because of the disparity in enzymatic function 
between the ribotoxins and the classic N-glycosidase activity of 
RIPs, there is controversy in the field as to whether ribotoxins 
should be considered as true RIPs.16

Burkholderia Lethal Factor 1 (BLF1)

As described above, sarcin and the other fungal ribotoxins 
inactivate ribosomes using a mechanism that does not require 
depurination of the 28S rRNA. The recent discovery of the BLF1 
toxin, which like the Shiga toxins before it, originates in patho-
genic bacteria, represents a new addition to this group of RNA 
N-glycosidase independent ribosome inactivators.

The intracellular pathogen Burkholderia pseudomallei is the 
causative agent of melioidosis, a chronic and often fatal infec-
tious disease which affects millions people across the world.106 
The bacterium was isolated a century ago107 but the mechanisms 
by which it kills and/or remains dormant for decades within 
infected hosts still remain largely unknown. A breakthrough 
against melioidosis was made in 2011 when an international 
team of researchers lead by the Wilson and Rice groups from 
the University of Sheffield characterized the first lethal cytotoxic 
factor from B. pseudomallei which irreversibly inactivates host 
protein synthesis.17 This protein is thought to be the major cause 
of B. pseudomallei pathogenesis, though it is possible that other 
toxins also contribute to cell death/tissue necrosis given that the 
bacterium has a well-stocked arsenal of virulence factors.108

This lethal toxin was found to be encoded by a gene of unknown 
function systematically named BPSL1549 after sequencing of the 
B. pseudomallei genome in 2004.108 BPSL1549 toxin was subse-
quently renamed BLF1 for Burkholderia lethal factor 1.17,18,109 
Comparison of the proteomes of B. pseudomallei and the non-
pathogenic but related strain Burkholderia thailandensis revealed 
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that 14 uncharacterized protein biomarkers were expressed in the 
extracts of the pathogenic strain.110 A structural program aimed at 
investigating some of these proteins led to the determination of the 
crystal structure of BPSL1549/BLF1 by the Rice group.17 Injection 
of the recombinant protein intramuscularly or through the intra-
peritoneal route kills exposed mice with 10 µg BLF1 plus adju-
vant, or 100 µg BLF1 alone while transfection of BLF1 also kills 
mammalian cells lines, as well as macrophages. Potent cytotoxic 
effects are achieved with a concentration as low as 2.5 × 10−7 M.17 
This is similar to concentrations described for RNA depurination 
by ricin which has a K

M
 of 1–2 × 10−7 M.28 BLF1 was shown to 

be a deamidase enzyme which specifically deamidates Gln-339 of 
the eukaryotic translation initiation factor eIF4A inactivating its 
RNA-helicase activity.17 This RNA-helicase activity is thought to 
be required for unwinding secondary structures in the 5′ untrans-
lated regions of circularized mRNA prior to the assembly of the 
large and small ribosome subunits and initiation of translation. 
The eIF4a factor has been shown to be essential for the recruit-
ment of the 40S ribosomal subunit (and other initiation factors) 
to capped mRNA and remains associated to initiating ribosomal 
complexes during scanning prior to translation elongation.111-114 
Significantly, while the action of BLF1 does not directly dam-
age the ribosome, it is important to note that the BLF1-modified 
eIF4A factor cannot be recycled for new rounds of translation ini-
tiation as pre-initiating 80S ribosomal complexes are irreversibly 
stalled on mRNA molecules rendering them lost. This leads to 
a pronounced accumulation of stalled 80S ribosomes and a con-
comitant decrease in the number of polysomes measured in sucrose 
sedimentation experiments. Indeed, in cell-free systems affected 
by BLF1 exogenous recombinant eIF4A cannot be incorporated 
into the stalled ribosomes, further emphasizing the irreversible 
nature of the ribosome inactivation and the dominant negative 
effect of the BLF1-modified eIF4A on ribosome function.17

The catalytic turnover of BLF1 was determined to be around 
700 substrate molecules per minute,17 a rate similar to the rRNA 
depurination catalyzed by ricin,27,28 suggesting that the high 
turnover of BLF1-dependant inhibition of protein synthesis leads 
to cell death when all functioning ribosomes in a cell are inacti-
vated by modified eIF4A18,109 (Fig. 1).

RIPs as Potential Biological Weapons 
and Criminal Agents

In 1997, the US government designated several RIPs as “select 
agents” with the “potential to pose a severe threat to public 
health and safety”. Since then, Burkholderia pseudomallei, the 
related bacterium Burkholderia mallei, and several toxins, includ-
ing ricin, were classified as category B biological warfare agents.7 
Category B weapons are described as “agents with some potential 
for large-scale dissemination with resultant illness, but” which 
“generally cause less illness and death” than category A agents 
such as anthrax and botulinum.

Ricin was reported to be investigated by the US biologi-
cal weapon program during World War I and II115,116 as well as 
Canada during World War II116 for utilization as weaponized toxic 
dust or coated onto bullets and anti-personnel mines, though it 

was never used in combat. This seems in part due to the fact that 
disease-producing spores of other biological agents such as Bacillus 
anthracis or Clostridium botulinum persist much longer in the envi-
ronment than a purified protein such as ricin. Furthermore, it was 
assessed that several tons of ricin powder would be required to 
target urban populations making ricin unsuitable as a biological 
weapon of mass destruction.117 However, ricin continues to remain 
in the public consciousness mainly because of its potential for 
usage by terrorists/criminals in assassination plots or acts of terror, 
with this fear coming from the fact that it is relatively simple to iso-
late from an easily accessible source (castor bean plant). Famously, 
in 1978, ricin was used in the murder of a London-based Bulgarian 
dissident, Georgi Markov. Markov was a critic of the communist 
regime in Bulgaria and it is commonly accepted that the Bulgarian 
secret service assassinated him using a ricin capsule fired from the 
tip of an umbrella using compressed gas.117 Since then, ricin has 
continued to be used or attempted to be used for murder/intimi-
dation in a number of plots, the latest high-profile incident being 
a ricin-laced letter sent to US president Barack Obama in April 
2013. Because of these continuing concerns regarding the poten-
tial for ricin attacks significant efforts have been made to prepare 
for such events and contingencies have been put in place.118 This 
includes the development of effective vaccines such as RiVax™ 
from the biopharmaceutical company Soligenix Inc., which can 
immunize mice, rabbits, and humans against ricin exposure.119

The BLF1-producing pathogen, B. pseudomallei, easily grows 
outside a laboratory in most climates making it a prime candidate 
for utilization by terrorists.120 It can survive in distilled water for a 
number of years121 and infects almost all mammals122 and tomato 
plants123 raising concerns about its ease of storage/dissemination 
and the potential for long-term environmental contamination if 
used in an attack. No vaccine has yet been formulated despite 
many attempts.124 Precedence for the use of B. pseudomallei as a 
bio-weapon comes from the historical use of the closely related 
bacterium B. mallei. This bacteria is the causative agent of “glan-
ders”, an equine disease contagious to humans that is very similar 
to melioidosis.125,126 It was the first biological weapon used dur-
ing the American Civil War,127 and was utilized in World War I 
by the German army to deliberately contaminate livestock and 
humans.128,129 It has also been reported that the Soviet biologi-
cal weapons program conducted field tests with B. mallei which 
inadvertently killed some of the researchers, and that the bac-
terium may have been used against the Mujahideen during the 
Afghanistan War in the late 1970s.130

Research and Therapeutic Applications

RIP family members have several practical applications 
ranging from benefits to agriculture to biomedical therapies as 
described recently in a review by F Stirpe.6 RIPs not only consti-
tute potent molecular tools for studying translation but also have 
potential applications in the treatment of human disease since sev-
eral inhibitors of protein synthesis have been used as anti-cancer 
agents including inhibitors of eIF4A.131,132 Since BLF1 is a potent 
inhibitor of eIF4A and exhibits high levels of cytotoxicity, it also 
represents a suitable candidate for investigation of anti-cancer 
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properties.18,109 Immunotoxins built by conjugating an antibody 
recognizing a cancer cell-specific epitope to the A-chain of ricin 
seemed to be promising therapeutics following in vitro studies in 
tumor cell lines133 but have unfortunately shown less efficacy in 
vivo in mice or humans.134 In contrast, saporin-based immuno-
toxins have shown potent in vitro and in vivo anti-cancer activ-
ity against prostate cancer.135 Substance-P-conjugated saporins 
(SP-SAP) have also been developed as selective destroyers of neu-
rons involved in pain transmission and may provide a method 
of treating pain in patients with chronic illnesses.136 Other type 
I and II RIPs from plants have shown antitumor activity both 
in vivo and in vitro on cancers from various tissues.4 However, 
current challenges involve finding specific and efficient methods 
of drug delivery as well as overcoming the instability of RIPs 
in circulating plasma. Chemical conjugation of RIPs to water-
soluble polyethylene glycol polymers, which protect against pro-
teolytic cleavage, significantly improves their half-lives while also 
reducing their immunogenicity.137 Another issue with the use of 
RIP-containing immunotoxins is the high immune response they 
trigger in treated subjects due to them being recognized as for-
eign proteins. Repeat doses lead to development of immunologi-
cal memory which severely decreases the half-life, and therefore 
effectiveness, of the immunotoxins over time.6

RIPs have also served as molecular tools to selectively kill 
specific cell types in order to study their physiological or behav-
ioral relevance. For example, a saporin-based immunotoxin was 
generated to target and kill rat cholinergic neurons in the basal 
forebrain to study their function in cognition and behavioral 
comportment.138 This in turn led to the discovery of an ani-
mal model mimicking Alzheimer disease for drug screening.138 
The potential biotechnological and medical uses of saporin can 
be attributed to its unusually high resistance to proteolysis and 
denaturation in solutions containing up to 4 M urea or guanidin-
e95as well as its relative safety in its unmodified form.

Concluding Remarks

RIPs can traditionally be sub-divided into two distinct classes 
based on their structure. Type 2 RIPs, which include the most 
potent toxins in the RIP family, are heterodimers comprising 
a catalytic RNA N-glycosidase A-domain linked by disulphide 
bonds to a lectin-like B-domain that promotes entry into tar-
get cells. Type 1 RIPs on the other hand consist only of the 
A-domain and are generally less toxic as a result. Both classes 
inactivate ribosomes using a common mechanism in which the 
RNA N-glycosidase domain depurinates a specific adenine (A

4324
) 

within the sarcin–ricin loop of the 28S rRNA molecule leading 
to structural disruption and subsequent failure to recruit transla-
tion elongation factors. However, there are other proteins that 
can achieve the same end result as classical RIPs without utiliz-
ing an RNA N-glycosidase-based mechanism. The fungal ribo-
toxins, including prominent members such as sarcin, RNase T1, 
and RNase A, are able to irreversibly inactivate protein synthesis 
by directly cleaving the phosphodiester bond between G

4325
 and 

A
4326

 of the sarcin–ricin loop. Just like depurination this alters 
the secondary structure and prevents translation elongation from 

occurring. In common with the ribotoxins, the newly identified 
bacterial toxin BLF1 is also able to affect an irreversible inactiva-
tion of protein synthesis using an enzymatic mechanism which 
does not rely on RNA N-glycosidase activity. Instead of modify-
ing rRNA, BLF1 functions as a deamidase enzyme, specifically 
acting on the translation initiation factor eIF4A and causing a 
Gln to Glu deamidation which abolishes its RNA helicase activ-
ity. Ablation of this activity prevents eIF4A functioning correctly 
and causes the modified eIF4A to act as a non-recyclable domi-
nant negative factor when associated with 80S-initiating ribo-
somes. This leads to accumulation of 80S initiating-ribosome 
species and prevention of translation elongation, leading to an 
eventual inactivation of cellular protein synthesis when all active 
ribosomes have been stalled.

Given their disparate catalytic functions the ribotoxins and 
BLF1 unsurprisingly show no sequence or structural similarity 
to classical type 1 or 2 RIPs (Fig. 2). However, the cytotoxicity 
of BLF1 is comparable to that conferred by the highly toxic type 
2 RIPs such as ricin or abrin despite being only composed of a 
single catalytic polypeptide chain. BLF1 also lacks the lectin-like 
domain required for efficient target cell entry. However, it does 
not need to be able to provide its passage into host cytoplasm to 
achieve its high toxicity as the bacterium that produces BLF1, 
B. pseudomallei, is an intracellular pathogen.

As noted earlier, ribotoxins and BLF1 are able to impose an 
irreversible inhibition of protein synthesis where active elon-
gation no longer occurs. This would place them within early 
definitions of RIPs which were described as proteins that could 
irreversibly inactivate eukaryotic ribosomes in a catalytic fash-
ion preventing recruitment of elongation factor(s).12,13 More 
recently, the description of RIPs has become restricted to proteins 
which exhibit the aforementioned properties but also have RNA 
N-glycosidase activity and has led to inconsistencies regarding 
the status of proteins such as the ribotoxins and now BLF1. With 
this in mind we ask whether a return to more inclusive descrip-
tion of RIPs would be beneficial. It is clear that the ribotoxins 
and BLF1 do not belong within the classical RIP family, but 
because the cellular consequences of their activities are identi-
cal to those of bona fide RIPs (i.e., a block of protein synthesis), 
it seems appropriate that they be more formally recognized as 
unconventional members of the RIP family. It is also very likely 
that more members of both the ribotoxin and deamidase classes 
of ribosome inactivators will be identified in the future. This is 
particularly relevant to the deamidase class since B. pseudomallei 
has been shown to have a remarkably fluid genome,108 suggesting 
that BLF1 and a number of its other virulence factors may have 
been acquired horizontally through conjugation and/or trans-
duction meaning there are likely to be similar toxins waiting be 
discovered in other bacterial species.

In conclusion, RIPs could be described as any protein factor 
which irreversibly inactivates protein synthesis in an enzymatic 
manner thereby preventing translation elongation from occur-
ring. This would encompass all the proteins described in this 
review and be broad enough to accommodate novel toxins and/
or enzymatic mechanisms which achieve a similar cellular out-
come. The two-division system for classical RNA N-glycosidase 
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RIPs could remain while an extra provision could be created for 
unconventional RIPs which catalyze ribosome inactivation in an 
RNA N-glycosidase-independent manner.
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Figure 2. Ribbon representations of the X-ray crystallography structures of type 1/2 RIPs and BLF1. Ricin, saporin, and Shiga toxin Stx2 have N-glycosidase 

activity that cleaves the 28S rRNA while BLF1 catalyzes the deamidation of the eIF4A initiation translation factor. (A) Structure of Ricin A-chain in com-

plex with the cyclic tetranucleotide inhibitor; PDB ID code 3HIO.139 (B) Structure of saporin in complex with the cyclic tetranucleotide inhibitor; PDB ID 

code 3HIW.139 (C) Structure of Shiga-like Stx2 A-chain from Escherichia coli in complex with adenine; PDB ID code 2GA4.140 Red-labeled residues Tyr-80, 

Tyr-123, and Arg-180 in the active site of ricin A-chain are equivalent in saporin and Stx2 (Tyr-73, Tyr-123, Arg-177 and Tyr-77, Tyr-114, Arg-170, respec-

tively).92,139-141 The catalytic water molecule and crystallized inhibitors within the active sites are not represented for improving clarity. In contrast, Glu-177 

of Stx2 is not conserved with the Glu-177/174 in the active sites of ricin and saporin respectively. Glutamate residues are labeled in blue. (D) Structure of 

BLF1, PDB ID code 3TU8.17 The primary sequence Leu-91 Ser-92 Gly-93 is (cyan) is conserved in the carboxyl-terminal domain of CNF1 along with Cys-94. 

Residues forming the catalytic triad of BLF1 (Thr-88, Cys-94, and His-106) are shown in red. Both the tertiary structure and catalytic site of BLF1 are dif-

ferent from type 1 and 2 RIPs represented in (A–C).
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