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Abstract 

A common bane of artificial reverberation algorithms is spectral coloration in the synthesized sound, typically mani-

festing as metallic ringing, leading to a degradation in the perceived sound quality. In delay network methods, colora-

tion is more pronounced when fewer delay lines are used. This paper presents an optimization framework in which 

a tiny differentiable feedback delay network, with as few as four delay lines, is used to learn a set of parameters 

to iteratively reduce coloration. The parameters under optimization include the feedback matrix, as well as the input 

and output gains. The optimization objective is twofold: to maximize spectral flatness through a spectral loss 

while maintaining temporal density by penalizing sparseness in the parameter values. A favorable narrow distribution 

of modal excitation is achieved while maintaining the desired impulse response density. In a subjective assessment, 

the new method proves effective in reducing perceptual coloration of late reverberation. Compared to the author’s 

previous work, which serves as the baseline and utilizes a sparsity loss in the time domain, the proposed method 

achieves computational savings while maintaining performance. The effectiveness of this work is demonstrated 

through two application scenarios where smooth-sounding synthetic room impulse responses are obtained 

via the introduction of attenuation filters and an optimizable scattering feedback matrix.

Keywords Audio systems, Gradient methods, Optimization, Psychoacoustics, Reverberation

1 Introduction

Delay-based recursive structures are common for gen-

erating artificial reverberation [1]. The initial approach 

incorporating delay lines and feedback loops was intro-

duced by Schroeder and Logan in the early 1960s [2]. 

Over time, this structure underwent various modifica-

tions, eventually evolving into the feedback delay net-

work (FDN) [3], which has since the 1990s become a 

widely adopted algorithm for digital reverberation syn-

thesis [1, 4–6].

An issue commonly encountered in delay-based artifi-

cial reverberation is coloration, often manifesting as audi-

ble metallic ringing in the resulting sound [2]. Coloration 

is detrimental to perceived sound quality, deviating from 

the ideal smooth reverb by introducing fluctuations and 

prominent resonances in the spectrum, particularly in 

the tail. In the early days of digital artificial reverberation, 

Schroeder and Logan [2] sought to achieve colorless-

ness by concatenating delay-line-based allpass filters. Jot 

and Chaigne [3] introduced a two-stage design process 

involving the creation of a lossless system followed by the 

introduction of delay-proportional attenuation. However, 

these efforts proved insufficient, necessitating additional 

considerations regarding the selection of parameters to 

effectively reduce or eliminate the coloration [2, 7–9].

Recently, the perceived coloration was attributed to 

the modal properties of synthesized reverbs, with a wide 

distribution of modal excitations linked to increased col-

oration [10]. Therefore, modal decomposition of artificial 
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reverberation architectures, such as FDNs [11], can aid 

in identifying phenomena that are related to perceptual 

artifacts. In FDNs, the values of the modal excitations 

depend on all system parameters [11].

Another key factor in achieving natural-sounding 

reverb is the number and distribution of reflections over 

time, commonly referred to as echo density [9]. With 

fewer delay lines, typically fewer than 16, achieving a 

rapid build-up of reflections becomes more challenging. 

The feedback matrix, which governs energy distribution 

among delay lines, plays a crucial role in this process. 

When the feedback matrix is small, the energy distri-

bution is less smooth due to less flexibility for adjusting 

spectral and temporal properties, resulting in noticeable 

periodicities or resonances that can sound unnatural.

In this paper, the objective is to optimize the gain 

parameters and feedback matrix of tiny FDNs, incorpo-

rating as few as four delay lines. Similarly to our previous 

work [12], the goal is to minimize the perceptual colora-

tion observed in the impulse response (IR) by adjusting 

the parameters using stochastic gradient descent. In [12], 

we targeted the flatness of the magnitude response and 

temporal density by incorporating two loss functions 

in the frequency and time domains, respectively. For 

the time domain, the inverse discrete Fourier transform 

(DFT) operation was needed, which presented a bottle-

neck that we address in this paper.

The current work also demonstrates practical appli-

cations of the proposed approach in synthesizing nat-

ural-sounding late reverberation by optimizing the 

scattering feedback matrix and including in the FDN 

structure attenuation filters that benefit from the opti-

mization. As we now concentrate solely on the frequency 

domain, the computational requirements are streamlined 

by analyzing the frequency response sparsely using batch 

processing over subsets of frequency samples. We attain 

control over temporal density by utilizing its correlation 

with the density of the feedback matrix entries instead 

of computing the system’s IR. Evaluation is conducted by 

analyzing the modal excitation distribution. A perceptual 

evaluation against the FDN design before optimization 

shows that the proposed method successfully decreased 

perceived coloration.

This work distinguishes itself from recent studies pre-

sented in [13, 14], and their extension to the multiple-

input and multiple-output case [15], by addressing issues 

underlying reverb synthesis using FDNs with few delay 

lines and by validating our approach on both objec-

tive and subjective tests. While Mezza et  al. propose a 

fully optimizable FDN aimed to fit a target IR [13], our 

approach focuses exclusively on optimizing the gain and 

feedback matrix of an FDN, targeting the coloration of its 

IR. Delay lines can have a strong impact on the coloration 

and echo density. To mitigate their impact, we follow 

the studies in [4, 9, 16] to produce non-degenerating 

delay patterns. Furthermore, while [13–15] rely solely 

on objective validation of the results, our method is sup-

ported by formal listening tests to demonstrate its per-

ceptual fidelity.

The proposed optimization aims to reduce the remain-

ing audible artifacts present in an FDN, given a fixed set 

of delay lines, making the resulting sound more natural. 

At the same time, our method can be extended to IR 

synthesis tasks by incorporating a filter design of choice. 

Nonetheless, the optimization does not depend on the 

filter used, unlike [14], thereby opening a wider range of 

applications. Another key distinction is that our optimi-

zation method operates in the frequency domain, unlike 

the time-domain approach by Mezza et al. [13, 14], which 

entails higher computational complexity and longer 

training times.

The paper is structured as follows. In Sect. 2, we pro-

vide background information on FDNs, including their 

modal decomposition, and discuss coloration in the IR 

of FDNs. Section 3 introduces our proposed method for 

designing colorless FDNs, highlighting the improvements 

made compared to our previous work. Practical applica-

tions of this approach are demonstrated in Sect.  4. The 

results of both objective and perceptual evaluations are 

presented in Sects. 5 and 6, respectively. Finally, Sect. 7 

offers concluding remarks.

2  Background

In the following, we provide background information on 

the FDN and its fundamental properties. This includes an 

explanation of its modal decomposition and a discussion 

on coloration in FDNs, which are central concepts in the 

proposed method.

2.1  Feedback delay network

An FDN is a recursive system consisting of delay lines, 

a set of gains, and a feedback matrix through which the 

delay outputs are coupled to the delay inputs. Figure  1 

presents an example of a single-input, single-output 

(SISO) FDN architecture. The transfer function of the 

FDN can be written as

where A is the N × N  feedback matrix when N is the 

number of delay lines, Dm(z) is the N × N  delay matrix, 

vectors b and c are N × 1 column vectors of input and 

output gains, respectively, the scalar coefficient d is the 

direct gain, and the operator (·)⊤ denotes the trans-

pose. The frequency-domain input and output sig-

nals are represented by X(z) and Y(z), respectively. The 

(1)H(z) =
Y (z)

X(z)
= c

⊤
Dm(z)−1

− A
−1

b + d ,
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vector m = [m1, . . . ,mN ] defines the lengths of delays 

in samples. Its corresponding delay matrix Dm(z) is cre-

ated by taking a diagonal matrix with entries given by 

[z−m1 , . . . , z−mN ] . The sum of the delays gives the order of 

the system, i.e., M =

∑
N

i=1
mi [7].

The poles �i of the system in (1) are the roots of its 

generalized characteristic polynomial (GCP) p(z), and 

are fully characterized by m and A:

With (2), the transfer function (1) can be expressed as 

a rational polynomial

where adj(·) indicates the matrix adjugate operator. This 

expression of the FDN transfer function can be used to 

compute the modal decomposition of the system directly. 

Moreover, the GCP provides explicit information regard-

ing the stability of the system, which will subsequently be 

utilized for parameter-tuning purposes.

2.2  Modal decomposition

The IR of the FDN can be expressed as the sum of com-

plex one-pole modes, also known as resonators, each 

defined by its pole �i and its residue ρi [11]:

where | · | denotes the magnitude, ∠ represents the argu-

ment of a complex number in radians,  =
√

−1 , and n 

indicates the discrete time index.

The transfer function of the FDN (1) can be repre-

sented by its poles and residues through the partial 

fraction decomposition as

(2)p(z) = det(Dm(z)−1
− A) .

(3)H(z) = d +
c
⊤adj(Dm(z)−1 − A)b

p(z)
,

h(n) =

M∑

i=1

|ρi||�i|
n
e
 (n∠�i+∠ρi) ,

commonly referred to as the modal decomposition of the 

FDN [11]. The excitation and initial phase of the ith mode 

are determined by the magnitude |ρi| and phase ∠ρi , 

respectively, of its corresponding residue. The magnitude 

and phase of the ith pole, |�i| and ∠�i , respectively, dic-

tate its decay rate and frequency. A common approach to 

calculate the modal decomposition (4) from the rational 

polynomial form of the transfer function (3) involves 

determining the system poles �i from the eigenvalues of 

the linearized feedback matrix [11].

An important aspect for the remainder of this paper is 

the distribution of the modal excitation values |ρi| . While 

the decay of the modes |�i| is typically governed entirely 

by the target reverberation time T60 , the modal excitation 

remains largely unconstrained by design. The connection 

between the distribution of modal excitation with per-

ceived coloration [10] is a key finding underlying the pro-

posed optimization method.

2.3  Homogeneous decay in FDN

Designing an artificial reverberator with FDN often 

starts by creating a lossless prototype, having an energy-

preserving feedback loop [17, 18]. The FDN is said to be 

lossless if the roots of the GCP (2) have magnitude equal 

to one, i.e., |�i| = 1 for all i s [19]. The advantage of ini-

tially designing a lossless FDN lies in the straightforward 

implementation of frequency-dependent decay that 

equally influences all system poles. This is achieved by 

extending every delay with a frequency-dependent atten-

uation filter to meet the specified reverberation time [3].

In this study, we mainly focus on the specific case 

of frequency-independent homogeneous decay. This 

refers to the case where all modes experience the same 

decay rate, i.e., |�i| = γ for all i s. In Sect. 4.1, we demon-

strate how an FDN optimized as such can be employed 

as a lossless prototype for synthesizing reverb with fre-

quency-dependent decay.

Homogeneous decay is achieved with a feedback 

matrix A being the product of a unilossless matrix U  and 

a diagonal matrix Ŵ , whose entries are delay-proportional 

absorption coefficients, Ŵ = diag(γm) , where the vec-

tor γm represents the γ value raised to the power of each 

corresponding delay in m . The feedback matrix can be 

expressed as

A matrix U  is unilossless if, regardless of the choice of 

delays m , its eigenvalues are unimodular and its eigenvec-

tors are linearly independent. A matrix U  satisfying the 

(4)H(z) = d +

M∑

i=1

ρi

1 − �iz
−1

,

(5)A = UŴ .

Fig. 1 FDN with a single input, a single output, and an N-by-N 

feedback matrix A . The thick lines indicate N-channel signal paths. 

The circled multiplication symbols indicate a vector multiplication. 

The parameters under optimization are highlighted in blue
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unitary condition, UU
H

= I , is also unilossless [9, 20]. 

As U  is unilossless, the modal decay is controlled entirely 

by the gain-per-sample parameter γ , where 0 ≤ γ ≤ 1 . 

The gain-per-sample in dB is

where fs is the sampling rate in Hz.

2.4  Coloration in FDN

Natural late reverberation can be modeled as white noise 

with exponential decay, providing perceptually ideal 

smooth diffuse reverberation [21]. In artificial reverbera-

tion, achieving a white noise generator involves ensuring 

the allpass property is maintained. Various perceptual 

artifacts of recursive reverberators can be attributed, 

though not exclusively, to deviations from this ideal, 

which then result in unwanted coloration.

Schroeder and Logan [2] made the initial attempt to 

produce colorless artificial reverberation by establish-

ing specific requirements for the reverberators in addi-

tion to a flat frequency response. Overlapping normal 

modes across all frequencies, equal T60 values for each 

mode, sufficient echo density, lack of periodicity in the 

time domain, and no periodic or comb-like frequency 

responses were deemed necessary to achieve colorless-

ness [2]. Despite fulfilling the aforementioned conditions, 

however, the Schroeder series allpass did not attain com-

plete colorlessness.

A recent study was conducted to understand further 

the role of modal excitation in late reverberation colora-

tion [10]. Listening test results suggest that a narrow dis-

tribution of the modal excitation values |ρi| tends to result 

in a perceptually white spectrum [10]. However, when a 

subset of modes exhibits high |ρi| values relative to the 

mean of the system’s modal excitation distribution, color-

ation starts to become noticeable [10]. We also observed 

this outcome in our earlier study, where we conducted 

a listening test focusing on the coloration of an FDN-

based reverb [12]. In this test, we compared the reverb 

before and after applying an optimization method, which 

resulted in a narrower modal excitation distribution.

The literature indicates that more than 6000 modes 

are needed for an IR to be perceived as rather colorless 

[16]. Additionally, it was shown that for large values of 

M , the modes of the FDNs are uniformly distributed 

[11], preventing additional coloration that usually results 

from clusters of modes. Nonetheless, a flat magnitude 

response and a uniform modal frequency distribution are 

insufficient to achieve colorlessness.

To comprehend the complexities associated with color-

ation in FDN, we can examine the comb-filter structure 

(6)γdB =

−60

fsT60

,

as a special case. Specifically, when the feedback matrix 

A is diagonal, the FDN adopts the configuration of a par-

allel comb-filter structure. In the case of a homogeneous 

FDN with a diagonal feedback matrix, the transfer func-

tion in (1) is analogous to a superposition of comb filters 

with the delay line in the feedforward path and the gain 

γ
m

i
 in the feedback. Each filter has a transfer function

The contribution of each filter to the total energy of the 

response can be calculated as

where ω is the angular frequency, and �·�2 denotes the ℓ2 

norm.

For any given positive value of γ smaller than 1, (9) 

represents an exponential function. For positive mi , 

the function approaches infinity as mi values decrease 

and tends to one as mi values increase. For example, 

let us consider the case when the gain-per-sample is 

γ = 0.9999 ( T60 = 1.44 s). In this scenario, the energy of 

the response from the comb filter with m1 = 200 is 8.5 

times greater than that with m2 = 10m1 = 2000 . Specifi-

cally, �H1(z)�
2
2

= 25.5 , while �H2(z)�
2

2
= 3 . Fundamen-

tally, shorter delays contribute more energy and produce 

strongly audible metallic-sounding comb peaks. In con-

trast, longer delays contribute less energy and tend to be 

masked by the more dominant comb filters [4]. The same 

conclusion can be derived through pole-zero analysis 

of (7). By definition, FDNs are networks of comb filters 

whose feedback paths are interconnected through a feed-

back matrix. Therefore, the reasoning above applies to 

FDNs with dense feedback matrices as well.

Figure 2 shows a section of the magnitude response of 

two FDNs with identical parameters but different delay-

line lengths. Since the resonant frequencies are uniformly 

distributed across the frequency, [11] the choice of the 

observed frequency range is arbitrary and serves only for 

visualization purposes. The feedback matrix is diagonal 

with values alternating between +1 and −1. The input 

and output gains are unit vectors. The lengths of the long 

delay lines are [533, 723, 753, 943, 1130, 1154, 1418, 165

4] samples, whereas the corresponding short delay-line 

lengths are [53,  72,  75,  94,  113,  115,  141,  165] samples. 

The FDN with shorter delay lengths, approximately one-

tenth of the longer delays, exhibits larger magnitude val-

ues and more distinct, louder resonances than the one 

(7)Hcombi
(z) =

z−mi

1 − γmiz−mi

.

(8)�Hcombi
(z)�22 =

∫

2π

0

∣

∣Hcombi
(eω)

∣

∣

2
dω

(9)=

1

1 − γ 2mi

,
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with long delay, which can be seen in Fig.  2. For long 

delays, the resonances become less noticeable, and the 

loudest frequencies exhibit a magnitude approximately 

20  dB lower compared to the scenario with shorter 

delays. This example suggests that to achieve a colorless 

FDN, it is necessary to avoid strongly recirculating short 

delays and instead use long delay lines.

2.5  Problem statement

In this paper, our goal is to optimize the parameters of an 

FDN with a small number of delay lines, to enhance the 

perceptual colorlessness of the resulting IR. Given a set 

of delay lines, we optimize the feedback delay matrix A , 

as well as its input and output gains b and c . In Fig. 1, the 

FDN parameters that are optimized are indicated in blue.

Previous studies suggest that the choice of frequency-

dependent attenuation has little impact on coloration 

[10]. Therefore, we conduct optimization on a long-ring-

ing, frequency-independent prototype FDN. For ideal 

late reverberator synthesis with this setup, the spectrum’s 

magnitude must remain constant across frequency and 

time. However, the recursive structure and the limited 

mixing capabilities of a tiny FDN introduce undesired 

coloration, which constitutes a primary challenge in our 

work, as emphasized in Sect. 2.4.

Another challenge is maintaining the temporal density 

of the IR during optimization. Our previous work dem-

onstrated that focusing solely on the frequency-sampled 

magnitude response may lead to convergence towards 

a comb filter [12]. To address this efficiently, we utilize 

the relationship between temporal density and the den-

sity of the feedback matrix. For evaluation, we adopt 

modal decomposition of the FDN transfer function, as 

it has proven useful in analyzing the coloration of recur-

sive systems [10]. To demonstrate the effectiveness of 

our method, we present various application scenarios 

that showcase its utilization for frequency-dependent 

attenuation and increased echo density, all while ensur-

ing that the computational efficiency is maintained.

3  FDN optimization

In this section, we present a method to reduce coloration 

in the IR of an FDN with frequency-independent T60 . We 

employ stochastic gradient descent to optimize the gain 

parameters of the FDN, which has been made differenti-

able by utilizing the frequency sampling method.

3.1  Differentiable FDN

Using the frequency sampling method, the FDN is 

approximated as a finite impulse response (FIR) filter. An 

FIR filter is straightforward to implement, as it does not 

require a recursive structure. Moreover, an FIR filter can 

be easily parallelized and optimized for hardware accel-

eration, such as a graphics processing unit. To obtain 

the FIR approximation of H(z), the delay matrix Dm(z) is 

evaluated at discrete frequency points

where M indicates the total number of frequency bins 

evenly distributed on the unit circle.

(10)zM =

[

e
π

0
M , e

π
1
M , . . . , e

π
M−1
M

]

,

Fig. 2 Magnitude response of a homogeneous FDN with size N = 8 , diagonal matrix, and unit input and output gains, showcasing the difference 

between long and short delay lines when the former is 10 times longer than the latter

Fig. 3 Architecture of the proposed optimization workflow. 

A thick line indicates an N-channel signal path. Backpropagation 

is highlighted with a dashed blue line
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The block diagram of the architecture including a 

Differentiable FDN (DiffFDN) is shown in Fig.  3. We 

integrated H(zM) into an optimization framework to 

estimate a set of FDN configurations based on a spec-

tral loss and a sparsity loss by gradient descent. The 

learnable parameters are the feedback matrix A and the 

input and output gain vectors b and c , respectively. The 

delay lengths m are set at initialization and kept constant 

during training. The direct gain d is set to zero. During 

training, the FDN is set to have a homogeneous decay by 

forcing A to satisfy (5) for a given γ.

At each training step the estimated channel-wise trans-

fer function H(z) is computed at a batch of frequency 

bins,

Every batch is composed of µ < M different frequency 

points that are randomly sampled from zM . The value of 

M is such that to ensure oversampling, we found empiri-

cally that µ can be as small as 0.05fs . At each epoch, H(z) 

is estimated at all frequency points within the vector zM . 

In our prior study [12], the computation of H(z) during 

each training step involved the entire vector zM rather 

than a subset, resulting in a bottleneck due to the compu-

tational complexity associated with matrix inversion and 

multiplication.

3.2  Orthogonal feedback matrix

To guarantee frequency independence of the energy 

decay, we adopted the parameterization in (5), where 

the feedback matrix is computed from an orthogonal 

matrix U  . The class of orthogonal matrices meets the 

unitary condition for losslessness and can be obtained 

through the parameterization of skew-symmetric matri-

ces described in [22].

At initialization, a random matrix W  is constructed. At 

each optimization step, W  is mapped to a skew-symmet-

ric matrix, and the matrix exponential is computed,

where W Tr is the upper triangular part of W  and the 

operator e(·) denotes the matrix exponential. The map-

ping in (12) implicitly ensures orthogonality of U  and can 

be used in regular gradient descent optimizers without 

creating spurious minima [22]. During training, the back-

ward pass differentiates through the parameterization in 

(12) and W  is updated accordingly.

3.3  Gain‑per‑sample

For stable training, the feedback matrix A must have 

eigenvalues with a modulus less than one, indicating 

(11)H(zµ) = c

[

Dm(zµ)−1
− A

]

−1

b + d .

(12)U = e
W Tr−W

⊤

Tr ,

losses. In the lossless case, i.e., |�i| = 1 , evaluating 

H(zM) becomes infeasible, as the denominator in (3) 

becomes null.

In our work, we adopted the homogeneous FDN where 

A is parameterized according to (5), and γ is set at initiali-

zation to a value lower than one which is constant during 

optimization. The value of γ used during optimization is 

chosen by examining the connection between the mean 

damping factor δ , used in room acoustics, and the mean 

spacing of resonance frequencies �f   . To guarantee that 

the modes are well separated, the mean spacing of reso-

nance frequencies should be larger than the average reso-

nance half-width [23]

In room acoustics, the limiting frequency below which 

the modes are well-separated is called Schroeder fre-

quency, indicated here as fSchroeder [24]. This frequency 

marks the threshold above which an average of at least 

three modes falls within one resonance half-width. Using 

the fact that in FDNs the modal frequencies are nearly 

equally distributed [11], we can derive the limiting aver-

age resonance half-width

We can use the above conditions to determine the min-

imum value for T60 to be used during training

Increasing the value of T60 leads to modes with lower 

half-widths and greater separation between them. For a 

target T60 , the value of γ can be derived from (6). How-

ever, as γ approaches 1, the resonance peaks in the mag-

nitude response become narrow, making it impossible 

to obtain a flat magnitude response by combining the 

resonances.

Figure  4 shows the effect of increasing γ on the reso-

nance width in a short section of the FDN magnitude 

response. To enhance the interpretability of the fig-

ure, its legend reports the T60 values associated with γ . 

The sharp peaks visible when T60 = ∞ ( γ = 1 ) are sig-

nificantly smoothed in the other two curves ( γ < 1 ). 

For T60 = 0.14 s ( γ = 0.999 ), the resonance half-widths 

become excessively large, making it difficult to identify 

individual resonances.

While (15) provides a lower bound for γ , defining an 

upper bound is more complex. Therefore, we recommend 

treating it as a hyperparameter to be tuned for optimal 

performance. We ran optimization at different values of 

(13)�f ≫
δ

π
.

(14)�f |f =fSchroeder
= 3

fs

M
.

(15)T60 ≫
Mln(10)

π fs
.
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γ , and we observed good convergence when T60 ≤ 10  s. 

At inference, γ serves as a free parameter, enabling the 

generation of reverberation with arbitrary T60 values.

3.4  Parameter initialization

In stochastic gradient descent, as in many other optimi-

zation algorithms, the choice of initial parameter values 

can affect the algorithm’s ability to find the global or a 

good local minimum of the loss function. We initialize 

the values of b and c by drawing them from the normal 

distribution N (0,N−1) , and the entries of W  from the 

uniform distribution U(−1/
√

N , 1/
√

N ) . This initializa-

tion strategy has empirically yielded good results in our 

experiments.

The design of the delays is a rather non-trivial task that 

requires further constraints. To maximize the echo den-

sity, the delay lengths should be co-prime [4]. However, 

the concentration of delays around a certain value may 

lead to a perceivable strong energy fluctuation over time. 

Moreover, low-order dependencies, which are integer lin-

ear combinations of delays that coincide with other inte-

ger linear combinations of delays with small coefficients, 

can also contribute negatively to the smoothness of the 

response [9]. To avoid degenerative patterns and ensure 

a smooth-sounding reverb, we choose delays that are 

logarithmically distributed co-prime numbers leading to 

M ≥ 6000 . The design of delays depends on the specific 

application, and the gain parameters must be optimized 

whenever a new set of delay lines is used since they con-

tribute to the system’s modal excitation distribution.

3.5  Loss function

The network is trained on two losses, Lspectral and 

Lsparsity . The spectral loss Lspectral aims to minimize the 

frequency-domain mean-squared error between the 

absolute value of the predicted magnitude response for 

each channel and the target flat magnitude response. 

The sparsity loss Lsparsity penalizes sparseness in the 

parameter values to encourage density in the time 

domain. The total loss function is

where α is a weighting term that controls the influence of 

Lsparsity on the overall loss. In this work, we set α to 1.

The spectral loss Lspectral is composed of a channel-wise 

term ( CW ) and the summed contribution of all channels 

( CS)

The individual loss terms are

where Hi(z) is the output of the network’s ith channel 

computed from the output of the ith delay line and scaled 

by ci . Including LCW
spectral in (17) is optional, as our tests 

showed comparable results on the objective metrics with 

and without it.

The sparsity loss, which is the last term above, is 

calculated from the sum of the absolute values of the 

matrix entries, i.e. 
∑

i,j

∣

∣Uij

∣

∣ . For orthogonal matri-

ces, its value is bounded between N and N
√

N  . To 

ensure that the loss decreases with increased den-

sity and has a dynamic range comparable to Lspectral , 

we shifted 
∑

i,j

∣

∣Uij

∣

∣ down by N
√

N  and normalized 

it by N (1 −

√

N ) . This normalization bounds Lsparsity 

between 0 and 1. This sparsity loss is motivated by the 

fact that echo density increases when the delay lines 

are highly interconnected. This principle underlies the 

(16)L = Lspectral(H(zµ)) + αLsparsity(U) ,

(17)Lspectral = L
CW
spectral(H(zµ)) + L

CS
spectral(H(zµ)) .

(18)

L
CW
spectral(H(z)) =

1

µ

∑

z∈zµ

1

N

N
∑

i=1

(|Hi(z)| − 1)2 ,

L
CS
spectral(H(z)) =

1

µ

∑

z∈zµ
(|H(z)| − 1)2 ,

Lsparsity(U) =
∑

i,j

∣

∣Uij

∣

∣ − N
√
N

N (1 −
√
N )

,

Fig. 4 Magnitude response of a homogeneous FDN of size N = 8 and order M = 8944 with random orthogonal feedback matrix and unitary 

input/output gains at different values of T60 in seconds. In the lossless case, T60 = ∞ , the resonances tend to infinity
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FDN’s structure, distinguishing it from that of parallel 

comb-filters [3, 20]. Moreover, in our previous work 

[12] we found that the absence of a term controlling the 

temporal density of the system’s IR may lead the matrix 

U  to converge towards either a diagonal matrix or its 

permutation. In our previous work [12], the sparseness 

was controlled by a temporal loss consisting of the ratio 

of the ℓ1 norm to the ℓ2 norm of the estimated IR. This 

required inverse DFT, slowing the optimization steps.

To clarify the impact of the loss function (16) on echo 

density, Fig.  5 illustrates how the echo density profile, 

as defined in [25], is influenced by the proposed train-

ing, particularly the inclusion of Lsparsity . The left panel 

in Fig. 5 displays the evolution of the loss and its com-

ponents over each epoch. The plot shows the losses 

when an FDN instance with eight delay lines is trained 

using (16) with α = 1 , as well as using only Lspectral , i.e. 

α = 0 in (16), indicated in the plot with an asterisk.

In Fig.  5 (left), the terms decay at similar rates, and 

after six epochs, they begin to converge. The right panel 

presents the echo density of the FDN at initialization, 

and after optimization with α = 1 and α = 0 . Both 

optimizations demonstrate an improvement in echo 

density, as the curve reaches 1 faster. However, when 

Lsparsity is included (i.e., α = 1 ), the echo buildup occurs 

more rapidly from the early reflections. Moreover, 

without sparsity control, the magnitude response may 

converge towards that of a comb filter, leading to a cor-

responding decrease in IR density, as demonstrated in 

our previous work [12]. Figure 5 (right), shows also that 

the proposed Lsparsity performs comparably to the more 

computationally expensive sparsity loss term intro-

duced in [12], which is a function of the norm of the 

impulse response. All evaluated FDNs are initialized 

with the same parameter values.

To implement the differentiable model and the train-

ing iterations, we used the PyTorch library [26]. PyTorch 

handles parameter adjustments through backpropaga-

tion, which involves computing the gradient of the loss 

function with respect to the given parameters. PyTorch’s 

built-in differentiation engine automatically computes 

the gradients for any computational graph. Additionally, 

PyTorch supports complex-valued tensors and back-

propagation for real-valued functions of complex tensors, 

using Wirtinger calculus, which is particularly beneficial 

for our work in the frequency domain [27].

4  Applications

This section showcases how the proposed approach can 

be effectively employed in practical applications. Specifi-

cally, the DiffFDN can be utilized for synthesizing rever-

beration with a frequency-dependent decay rate and 

creating dense reverb through the use of attenuation fil-

ters and an optimizable scattering feedback matrix.

4.1  Frequency‑dependent decay control

To generate a natural-sounding room IR that closely 

matches a measured reference IR, attenuation filters are 

inserted into a lossless FDN to control the reverbera-

tion time as a function of frequency T60(ω) [18, 28–30]. 

Using a differentiable FDN optimized for colorlessness as 

a lossless prototype can address coloration that cannot be 

effectively mitigated by the attenuation filter, facilitating a 

reduction in size as well.

The attenuation filter is designed to approximate a 

target frequency-dependent reverberation time T60(ω) 

by achieving a target gain-per-sample γ (ω) in dB as per 

(6). Attenuation filters are commonly introduced after 

the delay lines [28]. To simplify the transfer function, at 

the price of a negligibly lower T60(ω) accuracy, we place 

Fig. 5 Evolution of losses (left) during training of a size 8 FDN with an orthogonal feedback matrix trained with α = 1 (blue) and α = 0 (green, 

indicated in the legend with the asterisk). On the right, the echo density profile [25] at initialization and after optimization for both cases. 

For comparison, we included the echo density profile of the FDN trained with the framework in [12] (DAFx23)
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the filters in the feedback loop, resulting in the following 

transfer function:

where Ŵ(z) is the diagonal attenuation matrix, whose 

diagonal entries are the delay line specific per-sample 

attenuation filters Ŵi(z) . Ideally, Ŵ(z) would be zero-

phase, such that the decay rate of the FDN is determined 

by |Ŵ(z)|1/m [3]. In practical designs, the attenuation filter 

is not zero-phase, introducing a group delay that is, how-

ever, small compared to the delays m , hence negligible [3, 

18].

We construct the attenuation filters as a graphic equal-

izer (GEQ) composed of a cascade of eight peaking filters 

and of a combination of second-order low- and high-

shelving filters to control gains at the DC and Nyquist 

limit, respectively [31]. The peaking filters have center 

frequencies at one-octave intervals ranging from 63 to 

8000 Hz. The low-shelving filter’s crossover frequency is 

set at 46 Hz, and the high-shelving filter’s crossover fre-

quency is set at 11,360 Hz. While this filter design shows 

good performance for reverb synthesis, more accurate 

designs have been proposed [30, 32], together with their 

implementation within the DiffFDN [33]. Since this paper 

focuses on the effect of the DiffFDN itself rather than the 

choice of filter, we opted to use the simpler eight-band 

GEQ.

We used DecayFitNet, a neural-network-based 

approach [34], to estimate each band’s T60 and decay 

amplitude A from a reference room IR. DecayFitNet esti-

mates the parameters from the energy decay function 

modeled as a sum of at most three exponential decays 

and one noise term. In this work, we assume single slope 

decay, and we neglect the noise term. Each delay line’s 

output has a per-sample attenuation filter in the feedback 

path. This filter is designed to compensate for the delay 

mi introduced by the delay line by adjusting its target 

magnitude response

The attenuation filters modify the energy of each mode. 

To align it with the target frequency response envelope, 

we include a tone correction filter designed as a shared 

GEQ that matches the initial amplitude provided by the 

DecayFitNet and placed after the output gains.

4.2  Optimizing scattering feedback matrix

A central challenge in the design of FDNs is the genera-

tion of sufficient echo density in the IR while maintaining 

computational efficiency [35]. To make the echo density 

grow faster in time and reproduce a scattering-like effect, 

(19)H(z) = c
⊤
[

Dm(z)−1
− UŴ(z)

]−1

b + d ,

(20)
∣

∣Ŵi(e
ω)

∣

∣

= 10
miγdB(ω)/20

.

the feedback matrix can be generalized to a filter feed-

back matrix (FFM) [36] where each entry is an FIR filter. 

The transfer function of the FDN becomes

where A(z) = U(z)Ŵ(z) , and U(z) is a FFM, which 

can be expressed in terms of scalar coefficient matrices 

U0,U1, . . . ,US , i.e.,

where S is the maximum filter order of U(z) if US  = 0 . 

The losslessness condition is satisfied if U(z) is parau-

nitary, i.e., U(z−1)HU(z) = I , where I is the identity 

matrix and (·)H denotes the complex conjugate transpose 

[19]. In this work, U(z) is realized as a paraunitary FIR 

filter using the following factorization:

where U1, . . . ,UK  are N × N  unitary matrices and 

m0, . . . ,mK  are vectors of N integer delays [36]. In this 

arrangement, the FFM primarily incorporates K delays 

and mixing stages into the main FDN loop.

Similar to the scalar feedback matrix, we optimize the 

unitary matrices and input and output gains to reduce 

the coloration. We construct the unitary matrices Uk 

as the coefficients of a K × N × N  tensor W k para-

metrized according to (12) to ensure orthogonality. The 

delays mk are fixed, and their values are selected to be 

relatively small in comparison to the primary delays m to 

add short-term density. In our design, we used uniformly 

sampled integer delay values ranging from 1 to a half of 

the smallest of the primary delays.

4.3  Optimizing Householder matrix

An Householder matrix U = I − 2vv
⊤ , where v is a unit 

vector, gives a simple, yet restricted, parametrization of 

orthogonal matrices. The Sherman-Morrison formula, 

i.e.,

for an invertible square matrix V  , helps to avoid the 

matrix inversion when the Householder parametrization 

is used. Thus, the FDN transfer function is then written 

as

where V (z) = Dm(z)-1 − I . With this parameterization, 

the computational complexity required to calculate the 

(21)H(z) = c
⊤
[

Dm(z)−1
− A(z)

]−1

b + d ,

(22)U(z) = U0 + z
−1

U1 + z
−2

U2 + . . . z−S
US ,

(23)U(z) = DmK
(z)UK · · ·U2Dm1

(z)U1Dm0
(z) ,

(24)
(

V + 2vv
⊤
)-1

= V
-1

−
2V

-1
vv

⊤
V

-1

1 + 2v⊤V
-1
v

(25)H(z) = c
⊤
(

V (z) + 2vv
⊤
)-1

b ,
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FDN transfer function at one frequency point is reduced 

from O(N 3) to O(N ).

To ensure homogeneous absorption, Ŵ is included in 

(25) as

where Vγ (z) = Dm(z)−1
− Ŵ and vγ

⊤
= v

⊤
Ŵ . With 

this parametrization, the optimizable parameters 

become v, b, and c . The input to the sparsity loss 

remains U  , which is now defined using the Householder 

transformation.

5  Objective evaluation

The following section presents the FDN configuration 

and the objective evaluation of the proposed method. The 

assessment examines the modal excitation distribution.

5.1  Evaluation setup

We concentrate on smaller FDNs with limited delay lines, 

as these are more easily impacted by coloration. Specifi-

cally, we consider FDN sizes of N = 4, 6, 8  . The values 

of the delay-line lengths are presented in Table  1. The 

delay lengths are prime numbers distributed logarithmi-

cally. In all configurations, the total number of modes 

is 8700 < M < 9000 , which ensures a lack of artifacts 

related to low modal density [16].

During optimization, we used a sampling rate of 

fs = 48  kHz and M = 480000 frequency points evenly 

distributed over [0,π ] . The batch size was µ = 2000 , 

requiring 240 steps to complete an epoch. For training, 

we used 80% of the frequency points, while the remaining 

20% were used for validation. We employed Adam opti-

mizer [37] with a learning rate of η = 10
−3 . Regarding 

the gain-per-sample, we found that γ = 0.9999 leads to 

stable training and fast convergence. This choice implies 

T60 = 1.44 s and satisfies (15).

We analyze four configurations for each size, includ-

ing the differentiable FDN optimized according to 

our prior work (DAFx23) [12], which uses a random 

orthogonal feedback matrix. The proposed DiffFDN 

also incorporates an optimizable orthogonal feed-

back matrix, with three variations: random orthogonal 

(26)H(z) = c
⊤
(

Vγ (z) + 2vv
⊤

γ

)−1

b ,

(DiffFDN-O), Householder (DiffFDN-HH), and scatter-

ing (DiffFDN-SCAT).

5.2  Computational complexity

The presented optimization utilizes a sparse set of fre-

quency sampling points at each step. This choice aims 

to decrease the total number of operations, providing a 

notable reduction compared to the baseline method [12]. 

During the forward pass, the computational complexity 

needed to calculate the FDN transfer function at a sin-

gle frequency point in (11) is O(N 3) . For each epoch, the 

proposed method (DiffFDN-O) computes the transfer 

function at M points, where M corresponds to the data-

set size. In contrast, the baseline approach (DAFx23) 

requires calculating a similar number of frequency points 

at each training step, leading to a linear increase in the 

number of operations as the dataset size grows, which in 

[12] is represented by different values of M (e.g., 256 val-

ues sampled over [384,000, 480,000]). This is because the 

number of epochs required for convergence in the base-

line is close to that of the presented method. Additionally, 

in the forward pass of the baseline, the DFT is necessary 

due to the temporal loss, introducing additional opera-

tions. By employing the Householder matrix, we can sig-

nificantly decrease the computational complexity of (11) 

to O(N ) . Introducing the DFT would raise this complex-

ity to O(N log2(N )).

The FDNs also have different computational com-

plexity during operation. For an FDN with N delay 

lines, each equipped with an octave GEQ, the number 

of multiply-and-add operations per sample is as fol-

lows: 2N operations for input and output gains b and 

c , 2N operations for the delay lines, 44N operations 

for the attenuation filters, N 2 operations for the stand-

ard matrix multiplication, and 2N for the Householder 

matrix multiplication. The scattering matrix multiplica-

tion with K stages are then K (N 2
+ 2N ) operations. The 

comparison of computational complexity for FDN with 

random orthogonal matrix (RO), DiffFDN-O, DiffFDN-

SCAT, and DiffFDN-HH is shown in Table 2 across dif-

ferent matrix sizes.

Table 1 Delay-line lengths (in samples) for each size N of the 

analyzed FDNs. The lengths are logarithmically distributed prime 

numbers

N Delay‑line lengths

4 [1499, 1889, 2381, 2999]

6 [997, 1153, 1327, 1559, 1801, 2099]

8 [809, 877, 937, 1049, 1151, 1249, 1373, 1499]

Table 2 Number of operations for FDNs of different sizes and 

matrix types, each incorporating an octave GEQ. In comparison, a 

typical standard FDN with size N = 32 requires 2560 operations

FDN type 4 6 8

RO 208 324 448

DiffFDN-O 208 324 448

DiffFDN-HH 200 300 400

DiffFDN-SCAT 288 480 704
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5.3  Modal excitation distribution

To evaluate the improvements in coloration, we ana-

lyze the modal excitation distribution before and after 

the optimization. To obtain the residues ρi , we compute 

modal decomposition in (4) using the Ehrlich-Aberth 

iteration method [11, 38]. The method enables solving 

the eigenvalue problem for large delays m by finding an 

approximation to the eigenvalues based on the polyno-

mial matrix formulation of the FDN [38].

Table 3 shows the standard deviation of the modal exci-

tation distribution in dB, 20log10|ρi| , for each tested con-

figuration. The numbers refer to the mean of the standard 

deviation over 100 iterations, each with a unique set of 

randomly sampled initial parameters. Each optimization 

run is 20 epochs long for DAFx23 and DiffFDN-O, and 30 

epochs long for DiffFDN-HH and DiffFDN-SCAT. To run 

the objective test, we used FLAMO, a PyTorch library for 

the optimization of linear time-invariant systems in fre-

quency domain [39]. The code is available in a dedicated 

branch of the project repository1. In each scenario, the 

standard deviation decreases, signifying a reduction in col-

oration. However, based on this test alone, it is challenging 

to predict the overall trend across different FDN sizes.

To assess the impact of the changes to our previous 

optimization framework [12]-particularly the addition 

of the sparsity loss function and sparse frequency sam-

pling-we included the original optimization framework 

(DAFx23) for comparison. Each set of parameters used at 

initialization is shared between DAFx23 and DiffFDN-O 

conditions.

For N = 4 , the proposed method shows results com-

parable to our previous work (DAFx23). Even though it 

is likely impossible to perceive a difference of 0.1  dB in 

standard deviation, the more significant improvement 

lies in the reduction of operation count. For larger FDNs, 

the proposed method (DiffFDN-O) shows a narrower 

distribution at convergence.

Due to a different parametrization of the feedback 

matrix, in DiffFDN-HH and DiffFDN-SCAT the distri-

butions of the initial parameters differ from DAFx23 and 

DiffFDN-O. After optimization, the standard deviation 

reduces in both cases. Among all tested configurations, 

the DiffFDN-HH case exhibited the highest standard 

deviation, likely due to its more restrictive parametriza-

tion. The DiffFDN-SCAT case also showed a lower degree 

of improvement. This could be attributed to the higher 

complexity of the problem, suggesting potential enhance-

ment through fine-tuning the optimization framework. 

Moreover, our experiments showed that with more com-

plex structures, like the DiffFDN-SCAT, the optimization 

performance is more influenced by the initial parameter 

values, potentially causing convergence to poorly sound-

ing local minima.

The histograms in Fig.  6 illustrate the distribution of 

modal excitation at the start (Init) and end of the optimi-

zation process (Optim) for a single instance of DiffFDN-

O, across all analyzed sizes. The optimization reduces 

Table 3 Standard deviation of the modal excitation at initialization (Init), after optimization (Optim), and relative decrease from 

initialization of the tested conditions, at different FDN sizes. Numbers in bold letters indicate the configuration with a greater decrease 

in standard deviation for each FDN size. Conditions DAFx23 and DiffFDN-O share the same initial parameters. Delay-line lengths are 

reported in Table 1

N 4 6 8

FDN type Init Optim ↓ Init Optim ↓ Init Optim ↓

DAFx23 7.7 4.7 −39% 8.1 4.7 −42% 7.9 4.8 −39%

DiffFDN-O 7.7 4.6 −40% 8.1 3.4 −58% 7.9 2.8 −65%

DiffFDN-HH 9.4 6.6 −30% 10.2 7.7 −25% 10.5 8.3 −21%

DiffFDN-SCAT 7.1 6.6 −7% 7.4 7.1 −4% 7.6 7.3 −4%

Fig. 6 Distribution of modal excitations of FDNs with sizes 

N = 4, 6, and 8 before (Init) and after the optimization (Optim). 

The optimization led to a decrease in the loudest modal excitations 

and to a narrower distribution in each case, as desired
1 https:// github. com/ gdals anto/ diff- fdn- color less/

https://github.com/gdalsanto/diff-fdn-colorless/
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the loudest modes, leading to a shift toward a narrower 

overall excitation distribution. Figure 7 shows the effect 

on their magnitude response. Similarly to Fig.  2, only a 

narrow section of the response is displayed. While reso-

nances are inherent to the FDN structure, in the opti-

mized responses, their prominence has been reduced, 

and their peak gain shows fewer fluctuations across fre-

quencies. The effect of these changes on perceived color-

ation is further evaluated through a subjective test.

6  Perceptual evaluation

To further validate our results, a formal listening test was 

conducted to evaluate the perceived coloration in the IRs 

of the optimized FDN and quantify the improvement 

from IRs produced with the initial parameters.

6.1  Listening test procedure

The test followed the Multiple Stimuli with Hidden Ref-

erence and Anchor (MUSHRA) recommendation [40], 

and it was carried out using the web audio API-based 

experiment software webMUSHRA developed by Inter-

national Audio Laboratories Erlangen [41].

On each page, the listening test compared five FDN 

configurations against a reference. Similarly to the objec-

tive evaluation, the test items included three FDN sizes 

( N = 4, 6, and 8). The configurations were evaluated on 

three different reverberation conditions, each covering 

a dedicated section of the test. The tested reverbera-

tion conditions are  lossless, homogeneous decay, and fre-

quency-dependent decay. At the beginning of each part, 

a training page was presented to familiarize the subjects 

with the sound samples. Adjustments to the overall loud-

ness were allowed during the initial training page and it 

was maintained constant throughout the remainder of 

the test.

During the evaluation, participants rated the similar-

ity between each presented item and the reference sound 

using a scale ranging from 0 to 100. On each page, six IRs 

were assessed, including an anchor and the hidden refer-

ence. To encourage subjects to assess samples based on 

coloration rather than subtle temporal features, the hid-

den reference differed from the actual reference as a dis-

tinct instance of the generated signal while maintaining 

its statistical properties.

In the part testing the lossless condition, we evaluated 

late non-decaying reverb. The reference for this part 

was a 3-s segment of white Gaussian noise, known to 

be highly colorless. The IRs of the FDNs were extracted 

starting from the mixing time, thereby eliminating the 

initial echo buildup from the evaluation. The section 

testing homogeneous decay, focused on frequency-inde-

pendently decaying IRs, with a T60 value set at 2 s for all 

frequencies. A corresponding exponential decaying enve-

lope with the same T60 value was applied to the reference 

white Gaussian noise. The part testing frequency-depend-

ent decay involved decaying IRs with a fixed frequency-

dependent T60(ω) across conditions. The reference in this 

case was the IRs of an FDN of size N = 64 , ensuring a 

sufficiently smooth response. The frequency-dependent 

attenuation filter was designed following the steps out-

lined in Sect. 4.1.

The test evaluated the coloration of DiffFDN-O, 

DiffFDN-SCAT, and DiffFDN-HH. All tested items of a 

page share the same delay-line lengths and reverberation 

condition, and only the feedback matrix and the input 

and output gains were altered. The FDN implementation 

of the Schroeder series allpass reverberator (SH) was the 

anchor, whereas the RO condition acted as a baseline. 

For the RO, the initial values of DiffFDN-O were used. 

The direct gain d was set to zero in all cases. As the pri-

mary contribution of this work is focused on improving 

Fig. 7 Section of the magnitude response of the FDNs in Fig. 6. The magnitude of responses at initialization (Init) and at the end of optimization 

(Optim) was shifted for enhanced visual clarity. During the optimization, the resonances were reduced and more evenly distributed
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training efficiency compared to our previous work, we 

excluded the DiffFDN trained with the framework pre-

sented in [12] Adding this condition to the test would 

constitute a stimulus perceptually nearly identical to 

DiffFDN-O, possibly skewing the results. In total, there 

were 18 listening test pages with 6 stimuli each. The loud-

ness of each IR was normalized to ensure consistency 

across conditions.

The experiment was conducted in a sound-insulated 

booth at the Aalto Acoustics Lab, with participants 

wearing Sennheiser HD 650 headphones. The final 

items were presented to 14 listeners. The average age of 

the participants analyzed was 29.5 years, with a stand-

ard deviation of 4.72, and none of them reported any 

hearing impairments. All participants, except one, were 

either students or employees of the Aalto University 

Acoustics Lab and had previous experience with the 

MUSHRA test. The results from three subjects were 

removed from the following analysis because they were 

detected to be outliers according to the MUSHRA rec-

ommendation [40].

The box plots presented in Fig. 8 illustrate the outcomes 

of the listening test. In each box, the median is repre-

sented by the central mark, while the lower and upper 

edges indicate the 25th and 75th percentiles, respectively. 

The whiskers extend to encompass the most extreme data 

points not identified as outliers, with any outliers plotted 

separately. The shaded regions surrounding the medians 

facilitate the comparison of sample medians across vari-

ous box charts. Non-overlapping shaded regions signify 

differing medians between the compared box charts at 

the 5% significance level, assuming a normal distribution.

Despite excluding the reference and anchor conditions, 

the data, as revealed by the Shapiro-Wilk test [42], devi-

ated from a normal distribution. Additionally, the Wil-

coxon signed-rank test [43] was employed to assess the 

score distributions for each pair of conditions within each 

page. To address multiple comparisons (15 hypotheses 

Fig. 8 Listening test results on the analyzed reverberation conditions: a lossless, b homogeneous decay, and c frequency-dependent decay. The 

three DiffFDN conditions correspond to FDN configurations trained using the proposed optimization framework
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per page), we applied the Bonferroni method to adjust 

the alpha level.

The p-values for most paired conditions indicate sig-

nificant differences among all pairs of results. However, 

there are a few exceptions observed in the distribution of 

DiffFDN-O and DiffFDN-HH. In these cases, the p-val-

ues exceed the alpha level across most conditions with 

decaying modes suggesting a convergence in the scores 

assigned to the two conditions. Moreover, DiffFDN-

O and DiffFDN-HH reject the null hypothesis when 

paired with DiffFDN-SCAT in the lossy cases for N = 8 , 

suggesting that for larger FDN sizes, the performance 

improvement provided by DiffFDN-SCAT diminishes.

The IRs of the optimized FDNs always show a median 

greater than the initial condition (RO), proving the effec-

tiveness of the optimization. In the late reverb analysis, 

Fig. 8a, the DiffFDN-O has median ratings of 75.5, 82.5, 

and 72.5, respectively, for increasing FDN size. Only for 

N = 8, the FDN with scattering matrix received ratings 

higher than DiffFDN-O with a median of 75.5.

In the homogeneous decay and frequency-dependent 

decay tests the full IRs are taken into account. The scores 

given to the DiffFDN-SCAT condition suggest that 

the scattering matrix contributes to the smoothness of 

the early reflections as well as the reverberation tail. In 

general, spectral flatness is associated with temporal 

smoothness. The scattering feedback matrix increases 

echo density during early reflections, potentially suggest-

ing a less colored response, as shown in Fig.  8b, c. This 

effect becomes more noticeable for smaller FDNs, and 

for N = 8 , the medians of the results begin to converge 

among optimized FDNs. In [33], the authors demon-

strated in a listening test that, by utilizing the scattering 

feedback matrix, the DiffFDN can outperform neural 

network-based approaches when synthesizing real room 

IRs, highlighting the benefit of faster echo density 

build-up.

The confidence intervals for the results of all tests are 

relatively large. Although the objective results in Table 3 

indicate a limited reduction in modal excitation standard 

deviation, the optimized Householder matrix was rated 

relatively close to the DiffFDN-O in the listening test. The 

distribution of modal excitation is one quantity that can 

aid in deducing the coloration of the reverberator. How-

ever, this is a complicated concept, as evidenced by the 

results presented in the listening test.

7  Conclusion

This work introduces an optimization method for design-

ing artificial reverberation using a tiny differentiable 

feedback delay network, or DiffFDN. The method focuses 

on achieving spectral flatness and temporal density by 

optimizing the feedback matrix and the input and output 

gains. Emphasis has been placed on improving the com-

putational efficiency of the method without compro-

mising its performance. By incorporating attenuation 

filters and an optimizable scattering feedback matrix, this 

method can be further enhanced, presenting an efficient 

option for synthesizing natural room impulse responses.

Favorable results were obtained in this study with a tiny 

DiffFDN employing as few as four delay lines. In objective 

evaluations, we demonstrated that the proposed method 

reduces the width of the modal excitation distribution, 

thereby decreasing the prominence of the loudest modes. 

Listening test results further confirmed the success of 

this approach in attenuating artifacts commonly asso-

ciated with undesired coloration, making the DiffFDN 

close to an ideally colorless, smooth late reverberation.
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