
This is a repository copy of A Cloud-Agnostic Serverless Architecture for Distributed 
Machine Learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/226782/

Version: Accepted Version

Proceedings Paper:
Predoaia, Ionut orcid.org/0000-0002-2009-4054 and García-López, Pedro (2025) A Cloud-
Agnostic Serverless Architecture for Distributed Machine Learning. In: Proceedings - 2024 
IEEE/ACM International Conference on Big Data Computing, Applications and 
Technologies, BDCAT 2024. 11th IEEE/ACM International Conference on Big Data 
Computing, Applications and Technologies, BDCAT 2024, 16-19 Dec 2024 IEEE , ARE , 
pp. 131-140. 

https://doi.org/10.1109/BDCAT63179.2024.00032

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/BDCAT63179.2024.00032
https://eprints.whiterose.ac.uk/id/eprint/226782/
https://eprints.whiterose.ac.uk/


A Cloud-Agnostic Serverless Architecture

for Distributed Machine Learning

Ionut Predoaia

University of York

United Kingdom

ionut.predoaia@york.ac.uk

Pedro GarcÂıa-LÂopez

Universitat Rovira i Virgili

Spain

pedro.garcia@urv.cat

AbstractÐServerless computing has shown vast potential for
big data analytics applications, especially involving machine
learning algorithms. Nevertheless, little consideration has been
given in the literature to cloud-agnostic serverless architectures
that leverage existing parallel implementations of machine learn-
ing algorithms. This work bridges this gap by proposing a multi-
cloud serverless architecture for distributed machine learning,
that enables machine learning engineers without cloud comput-
ing expertise to effortlessly port already implemented parallel
machine learning algorithms to serverless, whilst overcoming
vendor lock-in. In this work, two stateful machine learning
algorithms have been ported to serverless, k-means clustering
and logistic regression. The serverless implementation of k-means
provided superior performance and scalability compared to a
serverful implementation when using a number of workers that
is equal to or slightly lower than the total number of vCPUs
available on the VM running the serverful implementation.
Additionally, it achieved an 87-fold speedup compared to a
sequential implementation. Moreover, two storage designs of the
shared state will be proposed for the serverless implementations,
one that requires locks for updating the shared state, and another
that is lock-free. Our experimental evaluation demonstrates that
the performance of the lock-free serverless implementation of
k-means declines with the increase in the number of clusters.

Index TermsÐDistributed Machine Learning, Big Data,
Serverless Architectures, Cloud Agnostic, Multicloud, Lithops

I. INTRODUCTION

The rise of serverless computing has widely propagated

the democratization of massive-scale data parallelism. By

leveraging serverless computing, cloud users can today launch

thousands of concurrent stateless functions to run big data

analytics workloads, without the need of complex cluster man-

agement and the burden of managing and provisioning cloud

resources. One can seamlessly launch thousands of cores on

demand, to enable the parallel execution of machine learning

(ML) algorithms over data sets in the order of terabytes, that

could typically not be stored on a single machine.

A multitude of research efforts have been carried out in the

context of serverless machine learning, related to stateful ap-

plications requiring shared state [1], [2], frameworks and pro-

totypes for serverless ML [3]±[6], tradeoff analysis between

ML on serverless and serverful [7], [8], neural networks [9],

[10], distributed optimizations [11], [12], and others focused

on details regarding implementation [13] and architecture [14],

[15]. Nevertheless, the prior works have not focused on a

simplified cloud-agnostic serverless architecture that leverages

existing parallel implementations of ML algorithms. This

paper aims to close this gap by proposing a serverless archi-

tecture that enables ML engineers without cloud computing

expertise to effortlessly port already implemented parallel ML

algorithms to serverless, whilst overcoming vendor lock-in, by

minimally modifying the code of the algorithms. Particularly,

we are interested in stateful ML algorithms, that require shared

state when executed in a distributed manner. As such, two

stateful ML algorithms will be ported to serverless in this

work, k-means clustering and logistic regression. For instance,

the k-means clustering algorithm is highly parallelizable, how-

ever, it requires regular communication between workers at the

end of each iteration to update and retrieve the new centroids.

Our serverless architecture has been instrumented through

Lithops [16], a multi-cloud framework that enables untrained

users to run single-machine Python code at scale in the cloud.

Lithops provides an Application Programming Interface (API)

that mimics the Python concurrent.futures [17] API. Thus, en-

gineers can take existing Python-based parallel ML algorithms

that rely on concurrent.futures and port them to serverless via

Lithops through minimal code modifications. Our serverless

implementation of k-means provided superior performance and

scalability compared to a serverful implementation when using

a number of workers that is equal to or slightly lower than

the total number of virtual CPUs (vCPUs) available on the

virtual machine (VM) running the serverful implementation.

Furthermore, it achieved an 87-fold speedup compared to

a sequential implementation. Moreover, two storage designs

of the shared state will be explored, by using a serverless

implementation that requires locks, and another that does not

require locks, for updating the shared state.

Section II presents the necessary background. Section III

introduces Lithops, a distributed computing framework. Sec-

tion IV presents our serverless architecture and implementa-

tion. Section V evaluates and validates our work. Section VI

presents related work. Section VII concludes the paper and

provides future work directions.

II. BACKGROUND

Serverless computing is an emerging paradigm for the

deployment of software applications in the cloud. When using

the serverless paradigm, servers do exist, however, their pro-

visioning and management is handled by the cloud provider.



1 import lithops

2

3 def my_function(x):

4 return x + 7

5

6 if __name__ == "__main__":

7 data = [3, 6, 9]

8 fexec = lithops.FunctionExecutor()

9 fexec.map(my_function, data)

Listing 1. Example of a Lithops-Based Program

Fig. 1. High-Level Architecture of Lithops

With serverless computing, customers simply upload their

code to a cloud platform, and then, the platform executes

the code on the customer’s behalf as needed at any scale

[18]. Serverless computing has brought the shift toward a

disaggregated data center, where each resource type (e.g.,

compute, memory, storage) is built as a standalone resource

blade, and a network fabric interconnects the resource blades

[19]. Hardware resource disaggregation is a technique for de-

composing general-purpose monolithic servers into segregated,

network-attached resource pools, each of which can be built,

managed, and scaled independently [20].

Function as a Service (FaaS) is a serverless computing

model in which the unit of computation is a function that

is executed in response to triggers, e.g., events and HTTP

requests [21]. Serverless functions have the ability to scale

to zero and have almost infinite on-demand scalability. The

functions are run in stateless compute containers, that are

created and destroyed by the FaaS provider depending on the

runtime need. The execution duration of a function is limited

to a short amount of time, and after the timeout, the function

is terminated, e.g., the maximum timeout for AWS Lambda

is 15 minutes. By leveraging disaggregated compute resource

services (e.g., AWS Lambda), one can benefit from hundreds

of compute units, i.e., vCPUs, to parallelize algorithms, where

one vCPU typically equates to one serverless function. Note

that serverless functions are not directly network-addressable,

hence concurrent serverless functions cannot communicate

with each other to share state.

Backend as a Service (BaaS) is a serverless computing

model in which engineers outsource the behind-the-scenes

aspects of software applications, such as database management

and cloud storage. An example of cloud storage BaaS is

Amazon S3, which is a disaggregated object storage service

that provides scalability, data availability, security, and perfor-

mance. Data is stored in Amazon S3 as objects within buckets,

where an object is a file along with any metadata that describes

the file, and a bucket is a container for objects [22].

A disaggregated memory resource service (i.e., Redis) has

been used in this work for managing shared state. Redis is an

in-memory data structure store that can be used as a distributed

in-memory key-value database, cache and message broker.

III. LITHOPS : A DISTRIBUTED COMPUTING FRAMEWORK

Lithops is a multi-cloud distributed computing framework

that enables engineers to run unmodified single-machine

Python code at scale over the main cloud platforms, such

as AWS, Microsoft Azure and Google Cloud. Therefore, the

framework avoids vendor lock-in by providing portability

across multiple cloud providers via its cloud-agnostic architec-

ture. Code is transparently deployed into serverless functions,

without requiring knowledge of how the deployment is carried

out. This has the benefit of lowering the entry barrier for

novice cloud users, who may often be puzzled by the wide

array of possible choices (e.g., VM instance type and cluster

size) that can be made regarding the execution of a simple

application in parallel [16].

A. Architecture

Figure 1 captures the high-level architecture of Lithops.

In the following, the main components of Lithops [16] are

presented by using Listing 1 as an example.

Lithops makes use of a compute backend to run parallel

jobs and a storage backend to store the input and output data

of the jobs. One can run Lithops in a serverless context, in

which the compute backend is a FaaS platform (e.g., AWS

Lambda) and the storage backend is a BaaS service (e.g.,

Amazon S3), such that the compute and storage resources can

scale independently of each other. Alternatively, one can run

Lithops on a local machine (i.e., in localhost mode), in which

the compute backend is represented by local parallel processes

and the storage backend is represented by the local file system.

The Executor, upon a Lithops API call (e.g., the call to the

map method from line 9), serializes and uploads the single-

machine code (e.g., my_function from lines 3±4) and the

input data (e.g., the data variable defined at line 7) from the

local machine to the storage backend. Note that the single-

machine code is a user-defined function (UDF). At this point,

the Invoker has the duty of invoking a serverless function for

each partition of the input data against the compute backend.

Considering the example from Listing 1, the Invoker performs

three invocations of serverless functions against the compute



backend, i.e., one for each item from the data list defined at

line 7. It is worth noting that Lithops provides a built-in data

partitioner that splits a data set into several partitions, where

each partition is passed as input to a serverless function. Next,

the Worker runs inside a serverless function on the compute

backend, and it fetches the (UDF) code and input data from

the storage backend, then it executes the code, and finally,

the output is persisted to the storage backend. The Executor

monitors the storage backend for the output data, and when it

becomes available, it transfers the data to the local machine.

Lithops provides an API that mimics the concur-

rent.futures [17] API from Python. The Lithops API con-

tains three methods for running code in serverless functions:

call_async(), map() and map_reduce(). Further-

more, it contains one method that keeps track of a serverless

function’s execution, i.e., wait(), and another method that

downloads the final results of a serverless function from the

storage backend, i.e., get_result().

B. Shared State Abstractions

Lithops contains a Multiprocessing module that provides

abstractions to enable concurrent serverless functions to share

state with each other. The Lithops Multiprocessing API mimics

the Python Multiprocessing API. The shared state abstractions

from the Python Multiprocessing API [23] store their state

values in local memory, whereas the shared state abstractions

from the Lithops Multiprocessing API store their state values

through disaggregated memory, in a Redis memory data store.

The shared state abstractions of Lithops are categorized into

three types: message-passing primitives (e.g., Pipe, Queue),

shared memory primitives (e.g., Value, Array, Manager) and

synchronization primitives (e.g., Lock, Barrier). The previ-

ously enumerated Lithops primitives behave similarly to the

ones from the Python Multiprocessing API, with the difference

that their values are stored in a Redis node by executing Redis

commands (e.g., BLPOP, LPUSH).

IV. SERVERLESS ARCHITECTURE AND IMPLEMENTATION

Lithops has been used for porting k-means and logistic re-

gression to serverless. Already existing Python-based parallel

implementations of k-means and logistic regression that relied

on the concurrent.futures API [17] for enabling task paral-

lelism and the Multiprocessing API [23] for sharing state, were

modified to use Lithops by changing a few lines of code. The

serverless architecture followed in our implementations is the

one illustrated in Figure 1, whose workflow has been described

in Section III. The implementation artifacts are open-source:

https://github.com/CLOUDLAB-URV/lithops-distributed-ml

The serverless implementations have been built by following

the Bulk Synchronous Parallel (BSP) synchronization proto-

col, which relies on synchronization barriers that wait for

all workers at the end of an iteration before continuing to

the next iteration. BSP ensures the correctness of the results,

unlike other synchronization protocols such as Barrierless

Asynchronous Parallel (BAP) which can develop incorrect

solutions. However, the BSP protocol has the limitation that it

brings synchronization overheads that slow down execution.

A client machine (e.g., laptop, VM) executes client code that

launches several serverless functions (i.e., workers) that share

mutable state through disaggregated memory. Each worker

operates on a partition of the data set and at each iteration

exchanges partial results with the other workers via the shared

state through a Redis node. The workers perform parallel

computations regarding shared data (e.g., centroids) and then

the partial results obtained by all workers are aggregated

to attain global results. At each iteration, the partial results

computed by the workers are stored in the shared state, as

one of the workers fetches the partial results of all other

workers, and then aggregates them. Note that only one worker

carries out this task, as there is no need in having multiple

workers performing the aggregation. Furthermore, the global

results are stored in the shared state, for the reason that they

must be accessed by all workers at each iteration. In the case

of the k-means algorithm, the partial results are represented

by the cluster totals and cluster counters, whereas the global

results are the centroids that are computed by dividing the

cluster totals by the cluster counters. Moreover, in the case

of the logistic regression algorithm, the partial results are

represented by the partial gradients, whereas the global results

are represented by the weights and the global gradients.

When using this architecture, the Redis node must be

accessed as little as possible to minimize communication

overheads. Therefore, the workers should operate over data

stored in local memory as much as viable, rather than shared

data, and then access and update the shared state only when

necessary. Furthermore, bulk operations for accessing and

updating the shared state should always be preferred, as they

minimize the number of communication requests to the Redis

node. At each iteration, the workers fetch the global shared

state from the Redis node, then run a computation phase that

yields partial results that are stored in the shared state before

continuing to the next iteration. At the end of every iteration,

one of the workers fetches the partial results from the global

shared state, and then performs an aggregation of the partial

results of all workers, and finally stores the aggregated results

in the shared state. By convention, the worker who performs

the described aggregation is always the first worker.

Two versions have been implemented for both algorithms,

where each version uses a different storage design of the

shared state. In the first version of the implemented algorithms,

there is one single copy for each data object being stored

globally in the shared state. Therefore, locks are used to

prevent concurrent serverless functions from simultaneously

accessing the same data object. Locks have the limitation

of carrying overheads and slowing down the execution of

the algorithms, therefore the second version aims to mitigate

overheads by proposing a lock-free design. In contrast to the

first version, the second version stores in the shared state one

copy of each data object for every worker. Therefore, whenever

a worker must update the shared state with his partial results,

the worker will access the data objects that are associated with

https://github.com/CLOUDLAB-URV/lithops-distributed-ml


Fig. 2. Data Set (left) and Shared State of Lock-Based Version (right)

Fig. 3. Initial Shared State of Lock-Free Version (2 Workers and 3 Clusters)

him. By following this approach, it can be said that every

worker has his own memory space in the global shared state,

therefore access conflicts are avoided when the workers update

the shared state with their partial results.

A. Serverless K-Means Clustering

In this section, the two serverless implementation versions

of the standard k-means clustering algorithm (Lloyd’s algo-

rithm) are detailed. Both versions follow the same logic,

however, the first version requires locks for updating the shared

state, whereas the second version proposes a lock-free design.

Figure 2 presents the principal shared state data objects of

the lock-based implementation, where the table from the left is

an example data set, and each table from the right represents

a shared state variable. The bi-dimensional data set has three

clusters, and is split into two partitions, one for each worker, as

this example uses two workers. To compute the centroids, one

would need the sum of all data points assigned to the cluster

(clusters_totals), and the number of data points be-

longing to the cluster (clusters_counters). The shared

data objects (clusters_totals, clusters_counters

and clusters_centers) are stored as arrays, in which the

index i is associated with the cluster i.

The workers iterate over their data set partition, and for each

data point, they update the values of the arrays from the shared

state, depending on which cluster the data point is assigned.

To exemplify, the first worker assigns the first data point to

the second cluster, therefore it increments by 1 the value of

the second index of the clusters_counters array, and

additionally, the first data point is summed to the value of the

second index of the clusters_totals array. Three data

points from the data set are assigned to the second cluster,

therefore the value at index 2 of clusters_counters

will become 3 by the end of the iteration. Furthermore,

the value at index 2 of clusters_totals will be the

sum of all data points assigned to the second cluster by

the end of the iteration. More specifically, the data point

[5.8; 6.6] represents the sum of all data points assigned to

the second cluster, i.e., [0.5; 0.7], [1.1; 3.9], and [4.2; 2].

When both workers have finished assigning the data points to

clusters, and have finished updating the shared state variables

called clusters_counters and clusters_totals,

one of the workers (i.e., the first worker) will compute

the values of the centroids. The first worker will fetch the

final values of the iteration of clusters_counters and

clusters_totals, and then compute the centroids by

dividing the totals by the counters. Finally, the first worker will

update the shared state variable clusters_centers by the

computed centroids. At the beginning of the next iteration, all

workers will retrieve the current centroids by fetching from

the shared state the value of clusters_centers.

In the lock-based implementation, locks are used for syn-

chronization purposes, when the workers update the values of

the arrays containing the cluster totals and cluster counters.

The downside is that the lock objects bring additional over-

heads that slow down the execution of the algorithm. Con-

sidering the example from Figure 2, the two workers should

not be able to write simultaneously at the same index of the

arrays clusters_totals and clusters_counters.

Therefore, locks have been used to synchronize access to a

specific index of the two arrays. One lock has been used for

every index (i.e., for every cluster), instead of using only one

lock for the entire array, as an entire array should not be locked

at a certain point by a worker, but rather only the access to the

value of a specific cluster index should be locked by a worker.

In the lock-free implementation of the algorithm, the

difference in the shared state is that the variables

clusters_totals and clusters_counters are de-

fined as a list of arrays, where each item of the list repre-

sents the memory space of one worker, as illustrated in Fig-

ure 3. For instance, clusters_totals[0] represents the

clusters_totals stored in the memory space associated

with the first worker. As every worker has his own memory

space in the global shared state, no access conflicts can occur

when the workers update the shared state with their partial

results. Therefore, locks are not required considering that there

is no need for synchronization. At the end of every iteration,

one of the workers (i.e., the first worker) fetches all data

objects of all workers from the shared state, and aggregates

them, and then stores the aggregated results in the shared

state before continuing to the next iteration. The limitation of

the lock-free serverless implementation is that the aggregation

phase lasts longer, considering that more data objects from the

shared state must be aggregated, as there is one copy of each

data object for every worker.

There is one variable in the shared state which represents the

state of convergence of the algorithm. This variable was used

to have only one of the workers (i.e., the first worker) checking

for convergence, rather than all workers, to avoid overheads.

The first worker will verify convergence by comparing the

centroids of the last iteration with the centroids of the current

iteration, and if they are equal, then the first worker will set

the value of the convergence variable to 1. The advantage

of this approach is that the other workers will not verify

the convergence criteria themselves, but rather they will only

verify the value of the convergence variable from the shared



Algorithm 1: Serverless K-Means

Input: k, X, worker id, max iter
Output: global clusters centers, labels

1 if worker id == 0 then

2 global clusters centers← getRandomCentroids(X , k)

3 global barrier.wait()

4 for iter ← 0; iter < max iter; iter ← iter + 1 do

5 local clusters centers← global clusters centers
6 local clusters counters, local clusters totals, labels← computeClusters(X , local clusters centers)

7 global clusters counters← global clusters counters + local clusters counters
8 global clusters totals← global clusters totals + local clusters totals
9 global barrier.wait()

10 if worker id == 0 then

11 global clusters centers← global clusters totals / global clusters counters
12 global clusters counters, global clusters totals←0

13 if global clusters centers == local clusters centers then

14 global converged←1

15 global barrier.wait()

16 if global converged == 1 then

17 break

18 end

state. If all workers were to verify the convergence criteria

themselves, they would have had to fetch once more all

centroids from the shared state, instead of fetching a singular

boolean value representing the state of convergence.

The output of the k-means algorithm is the centroids and

the labels. The centroids are stored in the shared state, i.e.,

remotely in the Redis node, therefore the serverless functions

do not need to output the centroids, as they can be accessed

by the client machine directly via the shared state. However,

the labels (i.e., the cluster index to which each data point is

assigned) represent data that is local to the serverless functions,

and it must be returned to the client machine that launched the

serverless functions, to avoid losing it. Therefore, the output of

each serverless function is the labels of its assigned partition

of the data set. Each serverless function outputs a set of partial

labels, which must be concatenated later on the client machine

to obtain the complete list of labels for the entire data set.

A limitation of the serverless implementations is that fetching

the final global centroids, retrieving the partial labels outputted

by the serverless functions and aggregating the partial labels,

yield additional overheads that slow down execution.

Algorithm 1 contains the pseudocode of a generalized

serverless implementation of the k-means algorithm. The algo-

rithm takes as input the number of clusters k, X which repre-

sents the data set partition assigned to the worker, worker id
which represents the identifier of the worker, and max iter
which represents the maximum number of iterations. The

output of the algorithm is the global centroids and the labels.

The shared state is represented by all variables prefixed

with ªglobalº, whereas the variables prefixed by ªlocalº

represent the local version of the variables from the shared

state. Initially, the values of the cluster counters and totals from

the shared state are initialized to 0. At lines 1±2, the centroids

are randomly initialized by the first worker, whose worker id

is by convention 0, whereas the other workers wait for the

centroids to be initialized at line 3. The iteration phase begins

at line 4, and at line 5, the global centroids are fetched from

the shared state and stored in a local variable. At line 6, the

labels and cluster counters and totals are computed. At lines 7±

8, the global shared state variables for counters and totals are

aggregated with the partial values computed by each worker.

At line 9, all workers synchronize, and by this point, the final

values for the current iteration of the counters and totals have

been obtained. At lines 10±11, the first worker computes the

new centroids by dividing the final totals and counters from

the shared state, and then updates the global centroids with the

new centroids. At line 12, the first worker resets the values of

the cluster counters and totals from the shared state to 0 for

the next iteration. At lines 13±14, the first worker sets the

value of the converged variable to 1 if convergence has

been met. The workers must once again synchronize at line

15, to ensure that they are operating with the new computed

centroids. Finally, at the end of every iteration, at lines 16±17,

all workers check whether the algorithm has converged and

break the execution of the algorithm if necessary.

B. Serverless Logistic Regression

The logistic regression algorithm based on (batch) gradient

descent has been implemented with a serverless architecture in

two versions. The rationale followed in the logistic regression

serverless implementations is similar to the one described in

the previous section for k-means, thus relevant details will

be omitted for brevity. Note that the training phase (i.e., the

fitting) of the algorithm has been implemented, and not the

classifier’s prediction procedure of a new given observation.

The first version of the serverless implementation requires

locks for updating the shared state, whereas the second version

follows a lock-free design, similar to Figure 3.



The shared state is primarily represented by the gradients

and the weights. In the lock-based implementation, both of

these data objects are represented as an array, where the length

of the array is dictated by the number of features of the

training set. In the lock-free implementation of the algorithm,

the difference in the shared state is that the gradients have been

defined as a list of arrays, where each item of the list represents

the memory space of one worker, similar to Figure 3. The

synchronization of the workers is realized at each iteration via

a barrier object. At every iteration, each worker increments the

global gradients from the shared state with the partial gradients

(i.e., sub-gradients) computed by the worker. Before the end

of every iteration, one of the workers (i.e., the first worker)

fetches the final global gradients aggregated from all workers

and computes the new values of the weights by using the

gradients and a learning rate. The weights represent the output

of the logistic regression algorithm, however, the weights do

not need to be returned by the serverless functions to the client

machine that launched the functions. The weights are stored

in the shared state, i.e., remotely in the Redis node, therefore

they can be fetched by the client machine directly.

V. EVALUATION AND VALIDATION

The Lithops-based serverless implementations were ported

successfully to AWS Lambda and Google Cloud Functions,

in order to validate that vendor lock-in is indeed avoided.

Analogous, one could port the Lithops-based serverless im-

plementations to other platforms of choice (e.g., Microsoft

Azure Functions), ensuring the avoidance of vendor lock-in.

Furthermore, the correctness of the serverless implementations

has been validated successfully through validation scripts that

compare the results obtained using the serverless implemen-

tations with the results obtained using standard implementa-

tions of k-means and logistic regression based on the scikit-

learn ML library. For instance, the validation script of k-

means validates that the centroids and labels obtained by

the serverless implementation are identical to the centroids

and labels obtained by the k-means implementation from the

scikit-learn library. The validation of the k-means serverless

implementation has been carried out successfully, by using

data sets of various sizes, with various numbers of clusters,

and various numbers of workers. Specifically, the validation

has been carried out using data sets with sizes of [10, 50,

100, 500] MB, with a number of [3, 5, 7, 10] clusters, and

with a number of [1, 2, 10, 20, 50] workers. Analogous, the

same rationale has been followed to validate the correctness

of the serverless implementation of logistic regression.

Several experiments have been carried out to evaluate the

performance of the serverless implementations. Throughout

the experiments, the serverless functions were executed over

AWS Lambda, and the data sets were stored in Amazon

S3. The experiments were performed over k-means, using

randomly generated bi-dimensional data sets. All resources

have been placed in the eu-west2 (Europe±London) region,

including the EC2 VMs, the AWS Lambda functions having a

timeout of 15 minutes, and the Amazon S3 buckets storing the

data sets. For minimizing network latency, the AWS Lambda

functions and the EC2 instances, i.e., the Redis node and the

client machine, have been configured to run inside the same

virtual private cloud (VPC).

A memory-optimized r5.large (2 vCPU, 16GB RAM) EC2

instance was used for hosting Redis. A general-purpose

t2.2xlarge (8 vCPU, 32GB RAM) EC2 instance has been used

as the client machine that launches the serverless functions.

A client machine with 32GB of memory was used for the

reason that the experiments involved the k-means algorithm,

which outputs one label for every observation of the data set,

therefore in the case of large data sets, a considerable amount

of memory is required for being able to store in memory the

labels outputted by the serverless functions. The experiments

have initialized different executions of the algorithm with the

same centroids to secure a fair evaluation. The execution times

of the experiments have been measured in the context of warm

starts of serverless functions, rather than cold starts.

A. Serverless Synchronization Overheads

An experiment has been carried out to measure the syn-

chronization overheads incurred by barriers. The k-means

algorithm has been executed with a data set of 2GB over

serverless functions with 1769MB, which is equivalent to 1

full vCPU [24]. The average time spent waiting on a barrier

has been measured with an increasing number of workers.

The chart from Figure 4 outlines the results of the ex-

periment. The horizontal axis of the chart represents the

number of workers used for executing the k-means algorithm,

whereas the vertical axis represents the average time spent

waiting on a barrier. Thus, when running 300 workers, a

synchronization overhead of 2.72 seconds is incurred by each

barrier. Considering that two barriers are used at each iteration

for synchronizing the execution of the k-means algorithm,

substantial overheads can result when executing the algorithm

over a large number of iterations.

B. Serverless Peformance Compared to Sequential

This experiment aims to compare the performance of the

serverless (lock-based) implementation of the k-means algo-

rithm with its sequential (i.e., serial) implementation. The

sequential implementation of k-means has been executed on a

compute-optimized c5.4xlarge (16 vCPU, 32GB RAM) EC2

instance. Both implementations have used the same 8GB data

set. Furthermore, for running the serverless implementation,

each serverless function has been allocated with 1 full vCPU.

Figure 5 presents the speedup obtained by using a server-

less implementation compared to a single-machine sequential

implementation. The speedup is measured as the ratio of

the execution time of the sequential implementation, to the

execution time of the serverless implementation. Note that a

speedup factor of n is called an n-fold speedup. The horizontal

axis of the chart represents the number of workers used for

executing the k-means algorithm, whereas the vertical axis rep-

resents the obtained speedup. The serverless implementation

was launched with a number of concurrent serverless functions



Fig. 4. Synchronization Overheads Ð Average Time Waiting on a Barrier

Fig. 5. Speedup Ð Serverless Compared to Sequential

that are multiple of 50, up to 400. The peak performance is

achieved with 350 workers, obtaining a speedup factor of 87,

i.e., an 87-fold speedup. The performance of the serverless

implementation improves with the number of workers up to

350 workers, and then the performance begins to decline. The

performance decline is to be expected, as the size of the data

set is constant throughout the entire experiment.

C. Serverless Peformance Compared to Serverful

This experiment compares the performance of the serverless

(lock-based) implementation of the k-means algorithm with its

serverful (i.e., parallel and single-machine) implementation.

Both implementations have used the same 3GB data set. More-

over, each serverless function has been allocated with 1 full

vCPU. The serverful implementation is based on Lithops and

contains the same code as the serverless implementation, but it

uses the localhost deployment option of Lithops. Furthermore,

it was executed on a compute-optimized c5.4xlarge (16 vCPU,

32GB RAM) EC2 instance. The parallelization of the serverful

implementation is enabled via processes and a local (i.e., on

the same EC2 instance) Redis instance has been set up for

storing the shared state of the processes.

Figure 6 presents the execution time of the serverless

implementation compared to the serverful implementation.

The horizontal axis of the chart represents the number of

workers (i.e., the number of concurrent serverless functions or

Fig. 6. Execution Time Ð Serverless Compared to Serverful

Fig. 7. Scalability Ð Serverless Compared to Serverful

processes) used for executing the k-means algorithm, whereas

the vertical axis represents the execution time. The execution

times have been compared when using [8, 12, 16] workers.

The chart shows that the serverless implementation is slower

when using 8 concurrent serverless functions than the serveful

implementation when using 8 processes. Furthermore, the

serverless implementation is slightly faster than the serverful

implementation when using 12 workers, however, the differ-

ence is negligible and is likely caused by fluctuating network

latencies. Moreover, the serverful implementation is slower

than the serverless implementation when using 16 workers.

When using all vCPUs of the EC2 instance, the performance

of the serverful implementation degrades. It can be noted that

the performance of the serverful implementation only slightly

increases with the increase in the level of parallelism, however,

the performance declines when all vCPUs are used. In contrast,

the performance of the serverless implementation improves

steadily with the increase in the level of parallelism.

A breakdown of the execution times has been carried

out to determine the reason why the performance of the

serverless implementation improves steadily with the increase

in the number of workers. After analyzing the breakdown of

execution times, it can be concluded that the performance

of the serverless implementation improves steadily with the

increase in the number of workers due to the parallelization

of computation and of reading the data set from object storage



Fig. 8. Serverless Scalability Ð Synchronization Time

Fig. 9. Serverless Lock-Based and Lock-Free Performance Comparison
by Number of Clusters

in parallel. Table I (columns #1 and #2) shows that the total

time of reading the data set decreases with the increase in the

number of workers. Furthermore, the duration of the compu-

tation phase of the k-means algorithm decreases significantly

with the increase in the level of parallelism.

Similarly, a breakdown of the execution times has been

carried out to determine the reason why the performance of the

serverful implementation slightly increases with the increase

in the number of processes but then declines when a number

of processes equal to the number of vCPUs are used. Table I

(columns #3 and #4) shows that the total time for reading the

data set and for performing the computation phase slightly

decreases when increasing the number of processes from 8

to 12. However, when using all vCPUs of the EC2 instance,

the total time of reading the data set and carrying out the

computation phase of the k-means algorithm slightly increases.

D. Serverless Scalability Compared to Serverful

An experiment has been carried out to compare the scal-

ability of the serverless (lock-based) implementation of the

k-means algorithm with its serverful implementation. The

serverless implementation was executed over serverless func-

tions with 256MB. The serverful implementation is based on

Lithops, by using localhost deployment, and it has been exe-

cuted on two compute-optimized EC2 instances, one having 8

vCPU (c5.2xlarge) and another having 16 vCPU (c5.4xlarge).

The size of the baseline data set is 50MB, i.e., this represents

the size of the data set when executing the k-means algorithm

with one worker. Data sets of sizes that are multiples of 50MB

are used proportionally to the number of workers. For example,

a data set of 100MB is used when running two workers, and

a data set of 200MB is used when running four workers.

Figure 7 presents the scalability of the serverless imple-

mentation compared to the serverful implementation. The

horizontal axis of the chart represents the number of workers

(i.e., the number of serverless functions or processes) used

for executing the k-means algorithm, whereas the vertical axis

represents the scale-up. The scalability is measured in terms of

scale-up = T1/Tn, where T1 is the execution time using one

worker and a data set of 50MB, whereas Tn is the execution

time using n workers and a data set of n×50MB. Perfectly

linear scalability would be denoted with scale-up = 1, i.e.,

the increase in the number of workers can handle the increase

in the workload size. The chart shows that the scalability

of the serverless implementation outperforms the serverful

implementation. The scale-up of the serverless implementation

degrades at a slower pace than the serverful implementation, as

it can be noted that the scale-up of the serverful implementa-

tion quickly degrades. The serverless implementation achieves

a scale-up factor of 0.96 with 40 workers, but it lowers down to

0.91 with 100 workers. The serverful implementation running

on the EC2 instance with 8 vCPU achieves a scale-up factor of

0.99 with 4 workers, but it lowers down to 0.47 with 8 workers.

Correspondingly, the serverful implementation running on the

EC2 instance with 16 vCPU achieves a scale-up factor of 0.98

with 8 workers, but it lowers down to 0.65 with 12 workers,

and to 0.48 with 16 workers.

After analyzing a breakdown of the execution times, it has

been determined that the scalability of the serverless imple-

mentation slowly degrades due to synchronization overheads.

Figure 8 shows that the total synchronization times of the

serverless implementation rise with the increase in the number

of workers. The synchronization times are caused by the

total time spent waiting on barrier objects. One of the likely

influencing factors for this is that the Redis node may not

handle gracefully requests from multiple connection points,

i.e., the concurrent serverless functions.

Similarly, after carrying out a breakdown of the execution

times, it has been determined that the scalability of the

serverful implementation degrades due to the duration of the

computation phase of the algorithm. Table II presents the

execution time of the computation phase when running the

algorithm on the two EC2 instances. The results show that as

the number of used vCPUs increases, the performance of the

computation decreases.

E. Serverless Lock-Based and Lock-Free Performance

An experiment using serverless functions with 1GB of

memory has been carried out to evaluate the performance of

the two types of serverless implementations, in the context of

the k-means algorithm. As a reminder, the first implementation



No.
Workers

Read Dataset
Serverless #1

Compute
Serverless #2

Read Dataset
Serverful #3

Compute
Serverful #4

8 28.83 527.27 17.06 378.82

12 19.47 341.15 11.64 361.79

16 14.08 262.12 17.37 398.02

TABLE I
BREAKDOWN OF EXECUTION TIMES (SECONDS) Ð SERVERLESS

AND SERVERFUL IMPLEMENTATIONS

No. Workers
Compute Phase

c5.4xlarge (16 vCPU)
Compute Phase

c5.2xlarge (8 vCPU)

4 51.22 49.13

8 51.72 49.59

12 70.76 109.26

16 106.80 -

TABLE II
SERVERFUL SCALABILITY Ð COMPUTATION TIME (SECONDS)

k clusters
Serverless

Implementation
Update

Shared State
Aggregate

Shared State

100
Lock-Based 11.10 10.57

Lock-Free 5.58 31.31

200
Lock-Based 14.19 8.20

Lock-Free 11.04 62.96

300
Lock-Based 31.52 32.27

Lock-Free 15.17 88.62

400
Lock-Based 45.35 44.15

Lock-Free 22.17 122.13

500
Lock-Based 57.46 55.27

Lock-Free 27.00 153.01

TABLE III
SERVERLESS LOCK-BASED AND LOCK-FREE Ð BREAKDOWN OF

EXECUTION TIMES (SECONDS) BY NUMBER OF CLUSTERS

version is lock-based as it requires locks for updating the

shared state, whereas the second version is lock-free.

The experiment compares the execution times of the it-

eration phase of the two serverless implementations, with

an increasing number of clusters. The experiment aims to

determine the effect of the number of clusters on execu-

tion times. Data sets of 100MB have been used in the

experiment, where each data set contains data that can

be clustered into a different number of k partitions. Note

that in this experiment, 10 workers have been used in

all executions. Figure 9 shows the performance improve-

ment gained by using the lock-based rather than the lock-

free serverless implementation. The performance improvement

is measured as a percentage and has been calculated as

(100%− lockBased duration / lockFree duration), where

the duration represents the execution time. The horizontal

axis of the chart represents the number of clusters con-

tained in the data sets, whereas the vertical axis represents

the performance improvement. The chart shows that with a

small number of clusters, the performance improvement has

a negative value, whereas the performance improves steadily

with the increase in the number of clusters. Therefore, the

lock-free implementation is slightly faster than the lock-based

implementation when using a number of clusters of (k < 50).

However, the performance of the lock-free implementation

declines with the increase in the number of clusters, to the

point in which it is less performant than the lock-based

implementation when using a number of clusters of (k > 50).

A breakdown of the execution times has been carried out

to determine the reason for the performance degradation of

the lock-free implementation with the increase in the number

of clusters. Table III shows that the time spent aggregating

the shared state in the lock-free implementation increases

significantly with the increase in the number of clusters. The

reason for this is that more data objects from the shared state

must be aggregated, as in the shared state of the lock-free

implementation there is one copy of each data object for

every worker. However, the results show that the lock-free

implementation does speed up the process of updating the

shared state, due to the removal of locks. Nevertheless, the

performance improvement for updating the shared state by

removing the locks does not compensate for the performance

degradation in the aggregation of the shared state. Hence, the

performance of the lock-free implementation declines with the

increase in the number of clusters.

VI. RELATED WORK

The work from [2] leverages CRUCIAL to implement ML

algorithms, i.e., k-means clustering and logistic regression,

with a serverless architecture. Similar to our work, the scala-

bility of the serverless implementation of k-means has been

compared against a serverful implementation, achieving a

scale-up factor of 94% with 160 workers, and 90% with

320 workers. Moreover, the iteration’s phase running time of

the CRUCIAL-based implementation of k-means and logistic

regression was compared against Apache Spark. The results

show that logistic regression is 18% faster in CRUCIAL than

in Apache Spark, whereas k-means is 40% faster in CRUCIAL

than in Apache Spark with k = 25 clusters.

MLLESS is presented in [6], a FaaS-based ML training

prototype that proposes optimizations tailored to the char-

acteristics of serverless computing. First, it implements a

significance filter for making indirect communication more

effective by following a synchronization protocol that is a

variant of Approximate Synchronous Parallel (ASP). Second,

it implements a scale-in auto-tuner for reducing cost by lever-

aging the sub-second billing model of FaaS providers. Unlike

our work which focuses on performance, the research from [6]

focuses on cost-efficiency, as it has evidenced that running ML

models on serverless can be more cost-efficient than running

them as serverful, for models that converge quickly.

SMLT [5] is an automated serverless framework for scalable

and adaptive ML design and training. The framework provides

an overarching view of dynamic ML workflows for enabling

adaptive and efficient serverless scaling and supports user-

centric deployment goals such as training deadlines and budget

limits for running ML workflows on serverless. SMLT has

achieved 8× faster training speed and 3× lower monetary cost

compared to similar state-of-the-art approaches.



Other works have demonstrated the benefits of using server-

less architectures for the implementation of ML algorithms

[3], [4], [7]. CIRRUS [3] is an ML framework that leverages

serverless infrastructures to enable robust and efficient iterative

ML training. CIRRUS has been evaluated with logistic regres-

sion against PyWren on AWS Lambda. SIREN is proposed

in [4], an asynchronous distributed ML framework based on

serverless architectures. A serverless implementation of logis-

tic regression with Stochastic Gradient Descent (SGD) based

on SIREN has been compared against its equivalent serverful

implementation. The evaluation results have shown that the

serverless implementation needed 22.9% less training time to

reach the same loss. Furthermore, a comprehensive study has

been carried out in [7] to outline the tradeoffs between training

ML models on serverless and serverful architectures, which

has been further extended in [8]. Additional research efforts

have ported ML algorithms to serverless [9]±[11], [13]±[15],

[25], however, they do not address cloud-agnostic serverless

architectures that rely on existing parallel implementations

of ML algorithms, as we have engineered with Lithops in

our work. Furthermore, intra-function parallelism [26] is a

technique that has demonstrated that the performance of

ML algorithms running on serverless can be improved, by

parallelizing the execution of serverless functions [12].

VII. CONCLUSIONS AND FUTURE WORK

This paper proposed a cloud-agnostic serverless architecture

for distributed ML. Two stateful ML algorithms were ported

to serveless via Lithops, k-means and logistic regression. In

addition, two serverless implementations were realized for

each algorithm, one requiring locks for updating the shared

state, and another that is lock-free. The lock-based serverless

implementation of k-means was superior in terms of perfor-

mance and scalability compared to a serverful implementation

when using a number of workers that is equal to or slightly

lower than the total number of vCPUs available on the VM

running the serverful implementation. Additionally, it achieved

an 87-fold speedup compared to a sequential implementation.

Moreover, the average time waiting on a synchronization

barrier was 2.72 seconds when running k-means over 300

workers. Furthermore, it was shown that the performance of

the lock-free serverless implementation of k-means declines

with the increase in the number of clusters. We plan to evaluate

the generality of our serverless architecture by porting other

ML algorithms to AWS Lambda and to other serverless plat-

forms. Additionally, we plan to carry out further experiments

involving logistic regression and other ML algorithms, and use

data sets with more features and of larger sizes.

REFERENCES

[1] D. Barcelona-Pons, M. SÂanchez-Artigas, G. ParÂıs, P. Sutra, and
P. GarcÂıa-LÂopez, ªOn the FaaS Track: Building Stateful Distributed
Applications with Serverless Architectures,º in Proceedings of the 20th

International Middleware Conference, 2019, pp. 41±54.
[2] D. Barcelona-Pons, P. Sutra, M. SÂanchez-Artigas, G. ParÂıs, and

P. GarcÂıa-LÂopez, ªStateful Serverless Computing with CRUCIAL,º ACM

Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 3, pp. 1±38, 2022.

[3] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, ªCirrus: A
Serverless Framework for End-to-end ML Workflows,º in Proceedings

of the ACM Symposium on Cloud Computing, 2019, pp. 13±24.
[4] H. Wang, D. Niu, and B. Li, ªDistributed Machine Learning with a

Serverless Architecture,º in IEEE INFOCOM 2019-IEEE Conference

on Computer Communications. IEEE, 2019, pp. 1288±1296.
[5] A. Ali, S. Zawad, P. Aditya, I. E. Akkus, R. Chen, and F. Yan, ªSMLT:

A Serverless Framework for Scalable and Adaptive Machine Learning
Design and Training,º arXiv preprint arXiv:2205.01853, 2022.

[6] P. G. Sarroca and M. SÂanchez-Artigas, ªMLLess: Achieving cost effi-
ciency in serverless machine learning training,º Journal of Parallel and

Distributed Computing, vol. 183, p. 104764, 2024.
[7] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,

W. Wu, and C. Zhang, ªTowards Demystifying Serverless Machine
Learning Training,º in Proceedings of the 2021 International Conference

on Management of Data, 2021, pp. 857±871.
[8] J. Jiang, S. Gan, B. Du, G. Alonso, A. Klimovic, A. Singla, W. Wu,

S. Wang, and C. Zhang, ªA systematic evaluation of machine learning
on serverless infrastructure,º The VLDB Journal, vol. 33, no. 2, pp.
425±449, 2024.

[9] L. Feng, P. Kudva, D. Da Silva, and J. Hu, ªExploring Serverless Com-
puting for Neural Network Training,º in 2018 IEEE 11th International

Conference on Cloud Computing (CLOUD). IEEE, 2018, pp. 334±341.
[10] V. Ishakian, V. Muthusamy, and A. Slominski, ªServing Deep Learning

Models in a Serverless Platform,º in 2018 IEEE International Confer-

ence on Cloud Engineering (IC2E). IEEE, 2018, pp. 257±262.
[11] A. Aytekin and M. Johansson, ªExploiting Serverless Runtimes for

Large-Scale Optimization,º in 2019 IEEE 12th International Conference

on Cloud Computing (CLOUD). IEEE, 2019, pp. 499±501.
[12] I. Predoaia and P. GarcÂıa-LÂopez, ªLeveraging Intra-Function Parallelism

in Serverless Machine Learning,º in Proceedings of the 9th International

Workshop on Serverless Computing, 2023, pp. 36±41.
[13] A. Deese, ªImplementation of Unsupervised k-Means Clustering Algo-

rithm Within Amazon Web Services Lambda,º in 2018 18th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CC-

GRID). IEEE, 2018, pp. 626±632.
[14] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, ªA Case

for Serverless Machine Learning,º in Workshop on Systems for ML and

Open Source Software at NeurIPS, vol. 2018, 2018, pp. 2±8.
[15] T. P. Bac, M. N. Tran, and Y. Kim, ªServerless Computing Approach

for Deploying Machine Learning Applications in Edge Layer,º in 2022

International Conference on Information Networking (ICOIN). IEEE,
2022, pp. 396±401.

[16] J. Sampe, M. Sanchez-Artigas, G. Vernik, I. Yehekzel, and P. Garcia-
Lopez, ªOutsourcing Data Processing Jobs With Lithops,º IEEE Trans-

actions on Cloud Computing, 2021.
[17] Python, Concurrent Futures API, URL: https://docs.python.org/3/library/

concurrent.futures.html (Last Accessed: 2024-08-25).
[18] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,

V. Sreekanti, A. Tumanov, and C. Wu, ªServerless Computing: One Step
Forward, Two Steps Back,º arXiv preprint arXiv:1812.03651, 2018.

[19] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, ªNetwork Requirements for Resource
Disaggregation.º in OSDI, vol. 16, 2016, pp. 249±264.

[20] Y. Shan, Distributing and Disaggregating Hardware Resources in Data

Centers. University of California, San Diego, 2022.
[21] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, ªThe Rise of

Serverless Computing,º Communications of the ACM, vol. 62, no. 12,
pp. 44±54, 2019.

[22] AWS, Amazon S3 Guide, URL: https://docs.aws.amazon.com/
AmazonS3/latest/userguide (Last Accessed: 2024-08-25).

[23] Python, Multiprocessing API, URL: https://docs.python.org/3/library/
multiprocessing.html (Last Accessed: 2024-08-25).

[24] AWS, Configuring AWS Lambda functions, URL: https://docs.
aws.amazon.com/lambda/latest/dg/configuration-memory.html (Last Ac-
cessed: 2024-08-25).

[25] E. Paraskevoulakou and D. Kyriazis, ªLeveraging the serverless
paradigm for realizing machine learning pipelines across the edge-cloud
continuum,º in 2021 24th Conference on Innovation in Clouds, Internet

and Networks and Workshops (ICIN). IEEE, 2021, pp. 110±117.
[26] M. Kiener, M. Chadha, and M. Gerndt, ªTowards Demystifying Intra-

Function Parallelism in Serverless Computing,º in Proceedings of the

Seventh International Workshop on Serverless Computing (WoSC7)

2021, 2021, pp. 42±49.

https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide
https://docs.aws.amazon.com/AmazonS3/latest/userguide
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html

	Introduction
	Background
	Lithops:A Distributed Computing Framework
	Architecture
	Shared State Abstractions

	Serverless Architecture and Implementation
	Serverless K-Means Clustering
	Serverless Logistic Regression

	Evaluation and Validation
	Serverless Synchronization Overheads
	Serverless Peformance Compared to Sequential
	Serverless Peformance Compared to Serverful
	Serverless Scalability Compared to Serverful
	Serverless Lock-Based and Lock-Free Performance

	Related Work
	Conclusions and Future Work
	References

