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This paper offers recent thinking from the UK national programme in urban analytics (UA), hosted by 

the Alan Turing Institute (the Turing) as the national institute for data science and artificial 

intelligence (AI). A key objective of the programme, in line with the broader ambitions of the Turing, 

is to promote cutting edge research (drawing on the latest innovations in AI and machine learning 

(ML)), which generates impact through direct applications to policy and society. It is hard to 

overstate the contemporary importance of AI, given the breadth of social, economic and 

environmental challenges or ‘wicked problems’ we continue to try and resolve. For instance, the 
past 5 years have seen a global pandemic, a growing climate emergency and wars in Europe and 

beyond – with economic impacts such as increasing prices and a loss of energy and food resilience 

within the UK and much of Western Europe, and wider humanitarian repercussions across the globe. 

These are just a few of the ‘wicked problems’ that demand more robust and sophisticated evidence 
and modelling which can generate better insights into the design of effective mitigation strategies. 

Digital twins1 and AI2 can help meet this demand by offering decision-makers the possibility to 

interrogate a range of potential futures that can be expressed in social, financial or physical 

outcomes (e.g. poverty, healthy life expectancy, living standards, net zero; UDG11).  

At a recent symposium drawing together members of the Turing’s Urban Analytics Network, we 

assembled a panel session that included voices drawn from different disciplines and career stages. 

We wanted to leverage their combined expertise to evaluate the current and future potential of 

both AI and digital twin technologies to address wicked challenges, framing the conversation around 

both the ‘what’ (how do we understand these methods) and the ‘so what’ (why do we need them?) 
questions. These questions have a topical importance as we sit on the cusp of an AI revolution with 

more data than ever, and driven forward by a ‘current craze for Digital Twins’i . 

 A persistent criticism of methodological innovation is that it is no more than ‘old wine in new 
bottles’. In relation to AI, this could manifest itself in the view that AI is just the latest box of tricks 

which facilitates some degree of prediction of a complex system without delivering an attendant 

degree of understanding. Against this we argue that the achievements of AI over a long period are 

demonstrable and profound – for example, 50 years ago the perceived wisdom was that no 

computer programme could play chess to the standard of a human master, or replicate the 

conversational interaction between human companions. Now such things are established and widely 

exploited. Whilst large language models (LLMs) may be something less than a panacea, they are 

rapidly moving towards a demonstrable utility to support a huge range of tasks, from text 

summarisation and evaluation to data analysis and programming. As they become more refined, 

LLMs and related tools may become the de facto interface to data, offering the ability to gain insight 

from data that has previously only been possible using advanced skills and technologies.  

One thing which has until recently been lacking here, perhaps, is a recognition of the challenges in 

extending such technologies beyond text and into truly spatial datasets (e.g. area-based counts and 

profiles, networks and flows, positional data, satellite images, etc.). Previous developments in 

GeoAI/spatial machine learning can here be grouped into two categories: applications of ML to 

                                                           
1 A digital twin is a simulation of a real-world complex system, built for the purpose of predicting its behaviour 

in a range of counterfactual scenarios. Digital twins aspire to achieve a degree of empirical and ecological 

validity sufficient to make their predictions valuable to real-world system stakeholders. 
2 Artificial Intelligence refers to a wide array of technologies ranging from machine learning analytics, tools for 

automated reasoning and inference, chatbots and artificial agents, to so far unrealised artificial systems with 

human or super-human levels of general intelligence. In this paper we use "AI" in its broadest sense, 

encompassing potentially any of these technologies. 
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spatial data (most common in image recognition) and new ML approaches developed for spatial data 

(e.g., accounting for spatial heterogeneity or spatial autocorrelation). Recent reviews can be found 

inii,iii,iv.  The challenges associated with these approaches include how to include neighbourhood 

relationships in AI/ML models, scalability; transparency and explainability (this is important if DTs 

and AI as tools are to be used by policymakers), algorithm/data bias, how to link different urban 

subsystems (transportation, housing, energy, etc.) in DTs, and how to incorporate qualitative data 

like social values.  

We are particularly drawing on concerns about how well LLMs and other AI technologies can 

become spatially literate, and the impacts of integrating such technologies into workflows which are 

dependent on a well-developed awareness of geographical space and theory. However, this may 

change as foundation models (a model that is trained on large data sets and can be applied to 

multiple case-studies), that have shown remarkable success in natural language processing and 

computer vision, continue to be developed for spatial contexts. Spatial foundation models that offer 

the ability to seamlessly train on diverse datasets (satellite images, spatially referenced text reports, 

sensor data, and so on; seev for an example) could potentially offer a more holistic understanding of 

spatial phenomena and the capability to detect more complex patterns than existing methods are 

able to. They also offer opportunities for transfer learning. Here huge models trained on vast 

databases using specialist hardware can be made available to others for application without the 

need for retraining. They can also be trained in data-rich areas and applied to those that are data 

poor. That said, foundation models are temporally static and are entirely data-driven; there are 

currently no mechanisms for including theories of human behaviour, decision-making or other 

system features that will be essential components for a robust urban analytics programme. Hence 

there may be a growing role for methods that can include ‘soft’ social features, such as travel 
demand or housing market aspirations that might be captured more effectively by urban digital 

twins.  

The idea of a ‘digital twin’ (DT) has captured the imagination of policy-makers and funders, 

particularly within the UK, in recent years. At a simple level, the digital twin can be understood as an 

attempt to replicate a real-world system in silico, with the ambition that the dynamics or cross-

sectional impact of real-world change is then subject to cheap, powerful and flexible simulation 

within the computational laboratory. One of the key advantages of DTs over conventional models or 

representations of (urban) systems is that they are highly dynamicvi, where a change in the physical 

or ‘real’ system is accurately reflected in real-time by the DT, and vice versa. This is something that 

Kitchin and Dawkins (p6) described: “they become dyadically intertwined, with a change in one 

direction directly affecting the other”vii. Furthermore, there are other key distinguishing features of 

DTs, including their ability to be multidimensional or cross-sectoral, and their ability to operate in a 

fully autonomous fashionviii,ix. These ideas are considered as having the potential to be highly 

transformativex, and has already attracted considerable interest in the modelling of complex physical 

entities, notably in the fields of engineering and medicine, with applications to human organs, 

bridges and aeroplane enginesxi .  

A similar level of appeal for urban systems is easy to understand, for example as a means to forecast 

and compare the impact of alternative policy interventions ranging from the global (e.g. levying a 

sugar tax) to the local (e.g. building a new road junction). In some cases, the parallel to engineered 

systems is a strong one. For something like a network of buses in a city which follows well-defined 

patterns, we argue that the feasibility of a DT is relatively obvious. Through the utilisation of large 

volumes of historical and real-time network data, we can simulate a number of ‘what if’ scenarios in 
an effort to make substantial network improvements, evaluating these against known mobility 
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requirements of the populationxii. Operational examples can be found in cities around the world 

including Singaporexiii, whereby DTs are used to make key predictions, and inform better urban 

planning in these locations. Whilst the practical obstacles to successful deployment of such urban 

DTs remain considerable (e.g. in relation to data sharing, transparency), perhaps the greatest 

challenge relates to the digital representation of complex human behaviours.  

Human behaviour is ‘messy’xiv and does not follow a distinct series of rules that can be easily 

modelled and digitally represented. Nevertheless we do have at our disposal established approaches 

to the representation of human behaviour in urban DTs, such as spatial agent-based modellingxv and 

the use of synthetic populationsxvi. Analytical approaches to the COVID-19 pandemic is a compelling 

instance in which DTs of a policy environment – specifically through nonpharmaceutical 

interventions (i.e. lockdowns) – can be seen as both necessary and achievable in advancing the art of 

spatial modellingxvii. Elsewhere, the concept of the ‘social DT’ has been advanced as a means for the 
synthesis of population or household data into urban DTsxviii. Such efforts are in line with Goodchild 

et al.’s emphasis on the importance of scale in urban DTs, “where processes range from the 
individual scale of observable human behaviour to the emergent properties that characterize entire 

cities and societies”xix.  

Of course the parallels between a scientific and a social system in this debate are far from trivial. The 

power of contemporary computational hardware is sufficient to make the faithful and complete 

representation of a physical entity (such as an aircraft wing or a combustion chamber) a realistic 

ambition. However, the richness and complexity of human behaviour would suggest to most that a 

similar level of fidelity in social systems models will remain a subject for science fictionxx rather than 

political fact into the long-term future. This is far from a novel observation, with echoes back to the 

early days of the quantitative revolution in geography and social sciencexxi . This raises questions 

about the language and construction of a digital twin which are far from semantic. Whilst the 

dictionary definition of a twin as ‘one of two persons or things closely related to or resembling one 

another’ (Webster) admits a degree of variation between template and image, the underlying 
intentionality is clear. The language of ‘twin’ may also mislead the ultimate users of the technology – 

policymakers in particular – into perceiving what is ultimately a probabilistic and uncertain 

simulation as a ‘promise’ regarding the true state of the world or its future state. The notion of 
‘digital cousins for robust policy’ (Dai et al, 2024, https://arxiv.org/abs/2410.07408) goes some way 

towards addressing this deficiency, although perhaps not far enough to satisfy the hardliners for 

whom the digital twin is no more than the latest costume in which to dress established underpinning 

technologies (or just ‘models’ in the accepted language of social simulation)xxii. 

For all of this, there are also compelling arguments for sticking with the digital twin framing as a 

vehicle for policy innovation: first, that the DT has a proven capability to capture the imagination of 

government and policy-makers themselves, perhaps even the general public; second, that as with AI 

the rate of transformation in the associated methods – and particularly data – is clearly rapid, 

substantial and ongoing; third, to the extent that the DT metaphor is driving advances in physical 

modelling of fully replicable systems, then continuing to co-develop alongside such advances may be 

rational in its own right.  

A further question which arises here is the legitimacy of the digital twin vision in the first place. At 

one extreme we might ask whether the optimisation of policy insight through an all-seeing robotic 

overseer serves the interest of a free society, while if the answer to this is in the negative then what 

is our motivation in further development of such technology? The answer to this conundrum is 

surely that while policy will always be seen as a necessary interplay between the achievable and the 

desirable in a well-governed society, the means by which agreed outcomes can be achieved 
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(robustly, efficiently and equitably) is still uncertain and challenging, for all of the reasons cited 

above in relation to systemic complexity. Policymakers need support in this process, so that the 

rationale is simply one of enabling better decisions through scientific augmentationxxiii. Whilst AI and 

DT approaches are also potentially exposed to criticism for their ‘black box’ approach there is also a 
counter-argument that the power of technology may also be used to aid the interpretability of 

decisions and the underlying evidence. Might it be possible, for example, as in certain recent 

experiments to leverage LLM-style functionality onto vast repositories of social simulations to 

determine and narrate the outcome of alternative policy choices which fuels a constructive debate 

regarding those choices and their consequences?xxiv Could the right kind of AI enable a productive 

policy-relevant interplay between detail-rich “twins” with their realism and predictive validity (but 
opaque impenetrable complexity and fragility) and their semi-automatically generated 

unsophisticated toy-model “cousins” with their robustness and explanatory transparency but lack of 

realismxxv. Regardless of their specific practicability, such possibilities give a sense of the potential 

benefits from these research avenues which is to some extent independent of immediate short-term 

policy concerns.  

In conclusion, we urge early adopters to keep pioneering DTs and related AI technologies to foster 

significant leaps in the understanding and management of wicked problems in cities, advocate for 

continued critical examination of these methodologies from technical, practical and political 

perspectives, and encourage the undecided to commit more fully to engaging with the full spectrum 

of these efforts. The politics of social decision-making is complex, contested and multifaceted, but 

obscuring the relation between cause and effect or choice and outcome does nothing to improve 

the state of our world. As social scientists this is surely our ultimate motivation, and one which can 

only benefit from greater critical engagement with the new and powerful emerging technologies. 
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