

This is a repository copy of Uncovering protein conformational dynamics within twocomponent viral biomolecular condensates.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/226762/</u>

Version: Supplemental Material

Article:

Colyer, A., Acker, J., Borodavka, A. et al. (1 more author) (Accepted: 2025) Uncovering protein conformational dynamics within two-component viral biomolecular condensates. Protein Science. ISSN 0961-8368 (In Press)

This is an author produced version of an article accepted for publication in Protein Science, made available under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

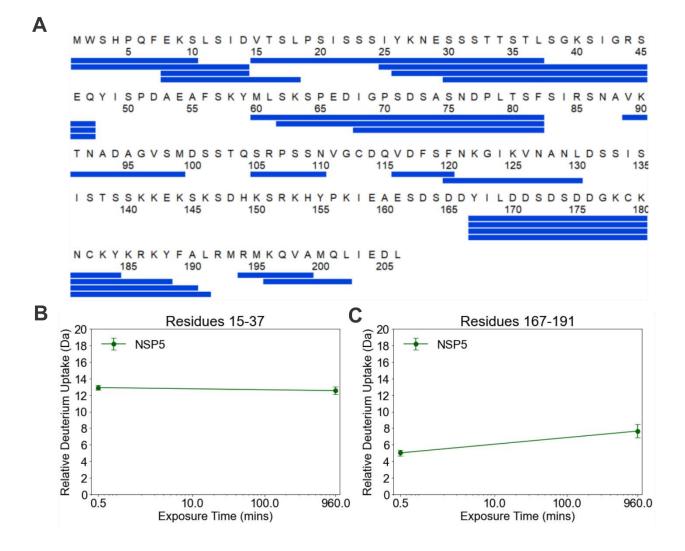
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

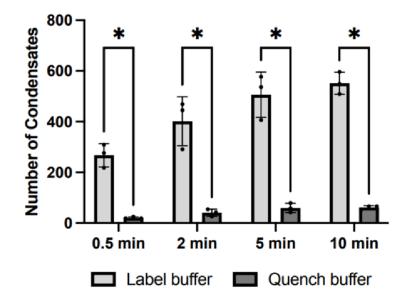
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supporting information


Uncovering protein conformational dynamics within two-component viral biomolecular condensates

Alice Colyer¹, Julia Acker², Alexander Borodavka^{2*}, Antonio N. Calabrese^{1*}


¹**Astbury Centre for Structural Molecular Biology**, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom

² **Department of Chemical Engineering and Biotechnology,** University of Cambridge, CB2 1QW, Cambridge, United Kingdom

Correspondence to Alexander Borodavka: ab2677@cam.ac.uk (A. Borodavka) *and Antonio N. Calabrese:* a.calabrese@leeds.ac.uk (A.N. Calabrese)

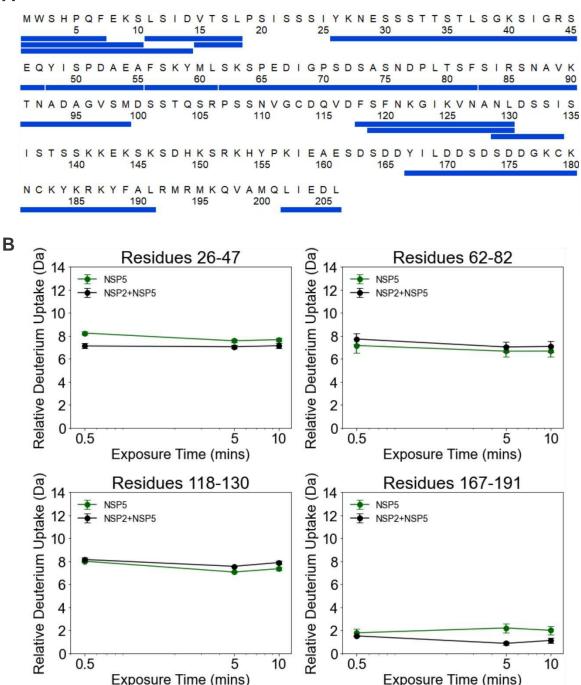


Fig. S1 (A) Coverage map of differential HDX-MS of NSP5. Each blue bar represents an individual peptic peptide identified by HDX-MS. A total of 21 NSP5-derived peptides were identified after digestion with pepsin, representing over 66% sequence coverage. No coverage was observed between residues 131-166, likely due to the low sequence complexity of this region (which contains a high proportion of serine, lysine and aspartic acid residues that may not be cleaved by pepsin). (B) N-terminal peptide fragment appears to reach maximum exchange at the 30 second time point (residues 15-37), (C) whereas C-terminal peptide fragments appear to increase in relative deuterium uptake between 30 seconds and 16 hour time points (residues 167-191).

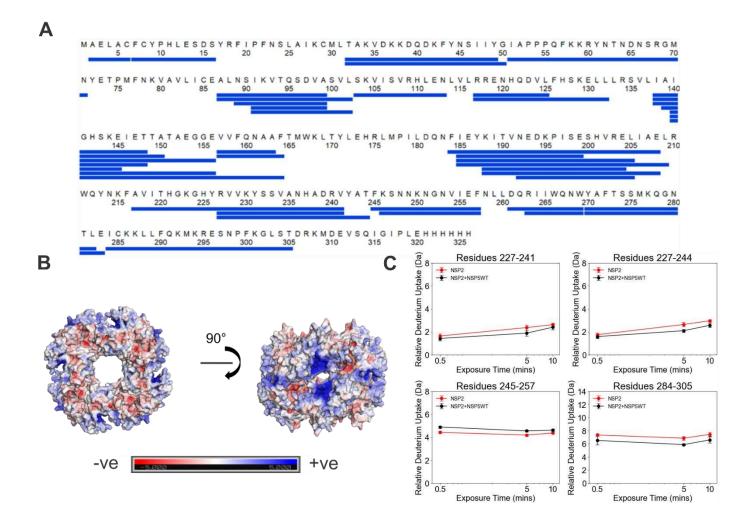


Fig. S2 Number of condensates under equilibration, label and quench conditions across HDX-MS timepoints. Significant differences in the number of condensates were calculated by performing a one-way ANOVA (** = $p \le 0.001$)

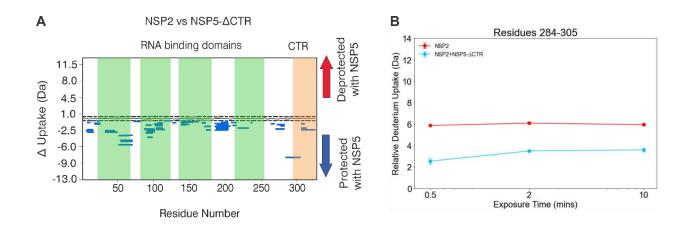


Fig. S3 (A) Coverage map for HDX-MS of NSP5 in the presence of NSP2. Each blue bar represents an individual peptic peptide identified by HDX-MS. (B) Individual uptake plots for representative significantly protected and deprotected NSP5 peptides in the presence of NSP2. A small decrease in relative deuterium uptake is observed between 30 seconds and 5 minutes, which can occur due to reduced back exchange as a result of the LEAP robot, coupled to our mass spectrometry system, omitting a step when it is utilised for sample preparation for 2-minute time points or less (Lumpkin & Komives, 2019).

Fig. S4. (A) Coverage map for HDX-MS of NSP2 in the presence of NSP5. Each blue bar represents an individual peptic peptide identified by HDX-MS. (B) Electrostatic projection of NSP2 octamer rendered in Pymol (version 4.6) using APBS electrostatics plugin. (C) Individual uptake plots for protected peptides (residues 227-244 and 284-305) and deprotected peptides (residues 245-257). A small decrease in relative deuterium uptake is observed between 30 seconds and 5 minutes, which can occur due to reduced back exchange as a result of the LEAP robot, coupled to our mass spectrometry system, omitting a step when it is utilised for sample preparation for 2-minute time points or less (Lumpkin & Komives, 2019).

Fig. S5. (A) Cumulative Woods' plot showing the summed differences in deuterium incorporation over all timepoints for NSP2 vs NSP5- Δ CTR. Peptides from NSP2 that were significantly protected and deprotected peptides when incubated with deuterium in the presence of NSP2 are shown in blue and red, respectively (hybrid statistical test, p < 0.02). (B) Individual uptake plot for the protected peptide spanning residues 284-305.

Table S1. HDX-MS summary data table

	NSP5	NSP2 + NSP5	NSP5 + NSP2	NSP2 + NSP5- ΔCTR
HDX reaction details	25mM potassium phosphate, 25mM dipotassium phosphate, 300mM NaCl in 85.5% D ₂ O, pH 6.6, 4°C	1X PBS in 95% D₂O, pH 6.6, 4°C		
HDX time points (mins)	0.5, 960	0, 0.5, 5, 10		0, 0.5, 2, 10
HDX controls	Maximally labelled controls were not performed			
Back-exchange	N/A	N/A	N/A	N/A
No. of peptides	21	39	15	122
Sequence coverage	66%	72.7.%	67.5%	95.4%
Average peptide length / redundancy	15.29 / 2.37	14.67 / 2.41	11.87 / 1.28	9.86 / 3.87
Replicates	3 (Technical)	3 (Technical)	3 (Technical)	3 (Technical)
Repeatability	0.098 (average SD)	0.0595 (average SD)	0.0787 (average SD)	0.0354 (average SD)
Significant difference in HDX (delta HDX > XD)	p-value <0.05	98% CI: 0.26 Da / p-value <0.02	98% CI: 0.45 Da / p-value <0.02	98% Cl: 0.17 Da p-value 0.02

References

Lumpkin, R. J., & Komives, E. A. (2019). DECA, A Comprehensive, Automatic Post-processing Program for HDX-MS Data*. *Molecular & Cellular Proteomics*, *18*(12), 2516–2523. doi: 10.1074/mcp.TIR119.001731