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Abstract
As the world rapidly urbanises and cities become larger and more complex, under-
standing pedestrian dynamics is paramount. New data sources, particularly those 
that measure pedestrian counts (i.e. ‘footfall’), offer potential as a means of better 
understanding the fundamental spatio-temporal structures that characterise aggre-
gate pedestrian behaviour. However, footfall data are often complex and influenced 
by a wide range of social, spatial and temporal factors, which complicates interpre-
tation. This paper applies principal component analysis (PCA) to hourly pedestrian 
count data from Melbourne, Australia, to extract the key temporal signatures that 
underpin observed urban footfall patterns. PCA can reduce the dimensionality of 
noisy pedestrian flow data, revealing dominant activity patterns such as weekday 
commuting cycles and weekend leisure activities. By subsequently analysing pedes-
trian volumes through the lens of these components, we start to expose the under-
lying types of pedestrian activities that characterise different neighbourhoods. In 
addition, we can distinguish multiple overlapping activity patterns within a single 
location, identifying changes in urban functionality and detecting shifts in mobil-
ity trends. The impacts of external shocks, such as the COVID-19 pandemic, are 
particularly stark. These findings shed light on the intricacies of urban mobility and 
suggest that there is value in the use of PCA as a means to better understand urban 
dynamics.
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1 Introduction

As the world becomes increasingly more urbanised—by 2050, 68% of the world’s 
population is projected to live in urban areas (United Nations 2018)—understanding 
pedestrian dynamics is crucial. The importance of pedestrian activities in creating 
safer, more vibrant cities has been discussed for some time (Jacobs 1961). However, 
only recently has the “golden age of data” (Arribas-Bel and Tranos 2018) enabled 
large-scale quantitative analyses of pedestrian dynamics. This has fostered a greater 
awareness of the need for data-driven empirical evidence (Philp et al. 2022) to sup-
port urban development.

Despite this, there has been relatively little attention paid to the temporal sig-
natures that emerge from the activities of pedestrians in places. These signatures 
that provide estimates for the changing number of pedestrians who were present in 
a particular place over a particular time period can reveal insight into the evolving 
usage patterns of the built environment over short (hourly) or longer (weekly/yearly) 
time scales. For example, Fig. 1 illustrates hypothetical footfall counts for an urban 
location over the course of a week. Qualitatively, the counts appear to suggest that 
the vast majority of people who visit this area will do so for the purposes of tradi-
tional ‘9–5’ employment. However, without a more formal quantitative assessment 
of footfall dynamics we cannot answer questions such as: are there additional hid-
den ‘signals’ present that are suppressed by the dominant commuting pattern?; is 
this kind of pattern representative of the dynamics present in other places, or is it 
unique?; does this pattern change over the course of a year, or has it changed notice-
ably over the last decade? (which would indicate an evolution in the activities under-
taken in the area); etc. Ultimately, without isolating the individual temporal signa-
tures that, together, make up the observed footfall counts, we might miss some of the 
key pedestrian dynamics that underpin wider urban processes.

Gaining such insight from pedestrian counting datasets can be extremely diffi-
cult. Footfall is influenced by both macro-scale effects (economic trends, weather 
conditions, a pandemic, etc.) and micro-scale effects (the presence of particular 

Fig. 1  Hypothetical footfall counts for an urban location over a week. The location exhibits peaks in the 
morning and evening during weekdays that are likely to correspond to people commuting. During the 
weekend, there is substantially lower footfall, suggesting that this may be a place that does not attract 
visitors for activities other than work
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shops, the perceived ‘character’ of a place, the configuration of transport infra-
structure, etc.)  (Philp et  al. 2022) which results in the presence of a very large 
number of diverse factors that influence the flows of pedestrians in different ways, 
both spatially and temporally. Recognising the regular signals that emerge from 
so much noise can be challenging. However, dimensionality reduction can help to 
simplify these temporal data, enhancing the clarity of long-term trends and cycli-
cal behaviours inherent in pedestrian movements.

To begin to answer questions such as those above, this paper presents a formal, 
quantitative approach to the analysis of temporal footfall patterns. The aim is to 
extract the core temporal ‘signatures’ that underpin otherwise noisy and diverse 
pedestrian count data and can explain most of the variability across the city. We 
leverage hourly pedestrian count data—an important innovation in itself as hourly 
variations are often overlooked in footfall studies—and use principal component 
analysis (PCA) to reduce otherwise complex footfall counts into a small number 
of principal components that encapsulate the most significant variations in foot-
fall. Interestingly, the components that explain most of the variance are easily 
recognisable as being related to common activities, such as commuting peaks in 
the mornings and evenings, or activities during the day on weekends. By then 
further analysing these components themselves we can start to identify different 
area types—i.e. those that are characterised largely by commuting activities v.s. 
those that are more likely to be associated with daytime leisure activities—and 
identify how the usage patterns in different parts of the city vary over time.

It is worth noting that exploratory data analysis (EDA) techniques are also com-
monly used to explore footfall patterns, yet they are limited in their ability to sys-
tematically decompose complex, overlapping temporal activity patterns. PCA offers 
distinct advantages by quantitatively isolating distinct components. This allows us 
to: (i) extract dominant temporal signatures, such as weekday commuting cycles or 
weekend leisure activities, in a way that avoids subjective interpretation; (ii) quantify 
variations in the dominance of different signatures across locations and time periods 
in a systematic way; and (iii) identify relationships between recurring patterns (such 
as changes in commuting behaviour that might take place alongside other changes 
in a location) that can be obscured in simpler visual analyses. These benefits make 
PCA particularly suited to uncovering latent patterns in pedestrian dynamics that 
would be difficult to extract using EDA alone.

The main contributions of the paper are threefold: 

1. We demonstrate that, using PCA, it is possible to simplify and distil complex, 
noisy pedestrian count data into a small number of interpretable components 
that represent the core temporal footfall signatures. This reveals the dominant 
temporal patterns in urban pedestrian activities.

2. By clustering the principal components that represent the temporal footfall pat-
terns in a particular area, it is possible to isolate quantitatively different footfall 
patterns that exist at that location. This provides strong evidence that some areas 
attract people for multiple different purposes as distinct from others that exhibit 
similar usage patterns throughout the week.
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3. By examining the changes in the scores of the principal components over time, 
we can highlight the presence of latent factors that drive longer-term changes 
in pedestrian mobility patterns. Specifically the paper identifies shifts in urban 
functionality, particularly as a result of the COVID-19 pandemic, that suggest that 
the activities that people engage in when they visit some areas have materially 
changed.

The paper is structured as follows: Sect.  2 reviews the relevant literature; Sect.  3 
outlines the methodology and the main method used (PCA); Sect.  4 outlines the 
data sources used and conducts an exploratory data analysis; Sect. 5 discusses the 
PCA implementation; Sect. 6 presents and discusses the results; and Sect. 7 draws 
conclusions.

2  Previous work

Quantifying footfall—i.e. the number of pedestrians moving through a place at a 
particular time—is crucial for applications as diverse as urban planning  (Cooper 
et al. 2021), economic strategy (Mumford et al. 2021; Philp et al. 2022), environ-
mental health  (Park and Kwan 2017), and public safety  (Malleson and Andresen 
2016; Boivin and Felson 2017; Hanaoka 2018; Tucker et  al. 2021). Recent years 
have seen the emergence of a literature on “ambient”  (Whipp et  al. 2021), “day 
time”  (Boeing 2018) and “temporary”  (Charles-Edwards and Bell 2013; Panczak 
et al. 2020) populations. These refer to different measures of the dynamic popula-
tions present in an area, i.e. commuters, shoppers, students, tourists, event attendees, 
etc. For a recent review of the ‘ambient’ population literature, the interested reader 
can refer to Panczak et al. (2020) or Richardson (2020). However, with a few excep-
tions (Charles-Edwards and Bell 2013; Ma et al. 2017; Liu et al. 2018; Richardson 
2020), much less attention has been paid to the hour-by-hour changes that occur in 
specific locations that emerge from the activities of pedestrians in places. One rea-
son for this is that, historically, residential-based data have been much more forth-
coming than footfall data. Fortunately, in recent decades, a range of data sources 
have become available that either provide proxy estimates of footfall, or count peo-
ple directly. These include, for example, telecommunications data  (Traunmueller 
et al. 2014; Bogomolov et al. 2014; Song et al. 2023), smartphone apps that cap-
ture mobility traces (Richardson 2020), street view images (Chen et al. 2020, 2022), 
social media data  (Malleson and Andresen 2015a, b; Botta et  al. 2015; Liu et  al. 
2022), publicly available traffic videos (Dobler et al. 2021) and, importantly, devices 
that count pedestrians as they pass by a sensor (Kontokosta and Johnson 2017; Crols 
and Malleson 2019; Soundararaj et al. 2020; Philp et al. 2022).

One of the most common application areas for the study of high-resolution foot-
fall data is in the area of retailing. To measures their success, shops need to esti-
mate the number of potential shoppers who pass their premises. This is even more 
important in an age where physical businesses are competing with online retailers 
and, more broadly, because footfall is the “lifeblood” (Philp et al. 2022) of a high 
street. For example, Trasberg et al. (2021) show that the inclusion of footfall data 



Leveraging principal component analysis to uncover urban…

into models that predict store sales improves their predictive capability, highlighting 
the importance of footfall for store turnover. In a similar vein, Philp et al. (2022) use 
pedestrian foot traffic in retail environments to classify micro-locations into distinct 
clusters that are related to their retail characteristics.

Beyond retailing, the analysis of footfall data is also relevant for understanding 
urban dynamics more broadly. For example, Dobler et  al. (2021) parse publicly 
available pedestrian traffic videos to estimate footfall counts in New York City and 
use these to explore the dynamics of pedestrian activity. As expected, they find a 
typical ‘3-peak structure’ (morning commute, lunch time, evening commute) in 
weekday pedestrian behaviour and a steadier change over weekends. These results 
are strikingly similar to those presented in this paper, although here we go further 
by trying to isolate the different ‘signatures’ that lead to the emergence of the overall 
observed patterns.

Methodologically speaking, very few papers have tried to derive insight into 
the underlying temporal signatures that make up aggregate footfall patterns. In this 
paper, we approach the problem using principal component analysis (PCA) as a way 
to reduce the complexity of noisy footfall data into a few core statistical components. 
Although widely used in general, there are relatively few applications of PCA to 
studies of pedestrian dynamics. Chraibi et al. (2016) use functional PCA (a variation 
of PCA that can be applied to trajectory data) to validate their agent-based pedes-
trian models, comparing simulated outputs with real data. Their work is relevant 
here because they argue that PCA is a valuable tool for offering insight into pedes-
trian dynamics (although focusing on count data rather than individual trajectories), 
which aligns with our aims. More broadly, the functional approach  (e.g. Ramsay 
and Silverman 2006) has been used to study temperature and precipitation (Ramsay 
and Dalzell 1991) as well as neighbourhood change (Jung and Song 2022). Such an 
approach may be appropriate here because it would treat the footfall data as continu-
ous functional data, making the approach better suited to handling temporal continu-
ity. However, for this preliminary study we use ‘traditional’ PCA as it is more likely 
to produce clear, explainable components, which is more important for understand-
ing footfall patterns than generating optimal components.

A related approach that could have been employed, rather than PCA, is independ-
ent component analysis (ICA). ICA attempts to identify statistically independent 
components, focusing on separating mixed signals into distinct sources (Hyvärinen 
and Oja 2000). This approach is well-suited for scenarios where the goal is to sepa-
rate mixed signals or to identify independent sources of variation, such as separat-
ing audio signals. However, temporal patterns in time-series pedestrian data, such as 
daily and weekly cycles, are typically correlated as they represent recurring trends 
over time. For example, footfall data may show strong correlations between certain 
hours of the day or between weekdays and weekends. These patterns are periodic 
and follow a predictable structure, rather than being independent signals. There-
fore, ICA’s focus on independence, rather than correlation, makes it less suitable 
for capturing such temporal patterns. In addition, solving ICA optimisation, which 
is inherently non-convex, from different initial approximations can lead to vary-
ing solutions, making it harder to identify the optimal number of components that 
underpin regular pedestrian behaviour and can be interpreted qualitatively to better 
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understand urban dynamics (Tibaduiza et  al. 2012; Kairov et  al. 2017). Similar 
observations have been noted in prior studies using PCA for temporal analysis (e.g. 
Jolliffe 1986; Abdi and Williams 2010.

We also considered the use of nonnegative matrix factorisation (NMF). NMF is 
one of the most widely used dimensionality reduction techniques and is particularly 
effective for handling nonnegative data (such as pedestrian counts). Unlike PCA, 
which maximises variance, NMF focuses on minimising reconstruction error (Gan 
et  al. 2021). However, NMF raises similar problems to those of ICA in that the 
approach to determining the optimal number of components is not clear (Cai et al. 
2022; Maisog et al. 2021). On the other hand, with PCA the first few components 
explain the most variance which allows for the extraction of dominant temporal pat-
terns that aligns with our objective of uncovering key urban footfall dynamics.

The most directly similar study is that of Kim (2020). The authors use cell phone 
activity count data (aggregated to a 50  m2 spatial grid and hourly temporal bins) as 
a proxy for pedestrian dynamics and apply functional PCA to those data to explore 
characteristics of ‘urban vitality’. While there are similarities in the components 
identified by Kim, such as the aforementioned ‘3 peaks’, there are also notable dif-
ferences. For example there is the absence of any strong ‘lunch time’ behaviour (that 
we uncover later in Fig. 8), although this may be because the authors only present 
the shapes of the first two components. Finally, Elhaik (2022) caution that PCA-
derived results may not be “reliable, robust, or replicable.” However, their findings 
are specific to genetic studies, and it remains unclear whether these issues apply 
more broadly. Their assessment is not echoed in other PCA-related studies.

3  Methodology

3.1  An overview of PCA

Principal component analysis (PCA), originally developed by Hotelling (1933), is 
a statistical technique used for dimensionality reduction. It aims to analyse a data 
table, where each row contains a number of inter-correlated observations (termed 
‘variables’), and transform the original table into a new set of variables that sum-
marise the most significant features. These features, referred to as the ‘princi-
pal components’, are constructed in such a way that they are uncorrelated. This is 
achieved through orthogonality: the components are at right angles to each other in 
a multi-dimensional space. Once the components have been established, the origi-
nal observations can be approximated through a linear combination of the principal 
components and a set of unique loadings (i.e. coefficients) that are applied to each 
component. Section 3.2 explains this process in more detail in the context of PCA 
for footfall data.

The quality of the PCA—i.e. the extent to which the raw data can be recon-
structed purely through a linear combination of the components—can be quantified 
using the proportion of the explained variance. This represents the proportion of the 
total variance in the data set that is captured by each principal component (Elhaik 
2022). The first component will have the largest possible variance and hence will 
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‘explain’ the largest part of the variation observed in the data table, with subse-
quent components explaining gradually less of the variance. The proportion of the 
explained variance is calculated by dividing the variance captured by a specific prin-
cipal component by the total variance of the original data set. This metric is crucial 
for understanding how much information from the original data set is retained after 
the dimensionality reduction process and can be used, as we do here, to determine 
how many components need to be retained in order to reconstruct the original data 
to an acceptable degree of accuracy.

For a fuller outline of PCA and worked example, the interested reader can refer 
to Abdi and Williams (2010) or Jolliffe (2011). The remainder of this section out-
lines the process of applying PCA to hourly pedestrian count data from Melbourne, 
Australia.

3.2  PCA for the footfall data

The data used here encompass measurements from 94 sensors distributed across 
Melbourne, recording the number of people who walk past each sensor in hourly 
intervals. Full details of the data collection and pre-processing steps are provided in 
Sect. 4.

We consider two periodicities for our analysis: days and weeks. These are cho-
sen because they capture the most important features of typical urban dynamics, 
but future work might also consider aggregation by alternative periodicities such as 
months or seasons (winter, summer, etc.). To explain how PCA works in our con-
text, consider just the daily periodicity. In this case the footfall pattern for a par-
ticular sensor on a particular day is encoded as a 24-item vector where each item 
represents the counts for each hour in the day. We refer to a sensor-day vector as an 
‘observation’. Each observation can therefore be thought of as a single point in a 24 
dimensional space, and the entire data table becomes a 24-dimension point cloud, 
where the number of points (observations) is equal to the number of sensors multi-
plied by the total number of days in the study time period. The principal components 
can then be thought of as directions in that space, each necessarily represented by 
a 24-item vector. The components are organised such that the first explains most of 
the variation in the points, with latter components explaining iteratively less varia-
tion. The original observations can then be approximated through a linear combina-
tion of the principal components and their loadings (i.e. coefficients). Loadings can 
be positive or negative, with negative loadings effectively reversing the influence of 
a component on an observation.

As a raw observation is a 24-item vector, if we conducted a PCA with 24 com-
ponents then each observation in the original data could be recreated perfectly. This 
is not useful though, so the aim of PCA is to reproduce the original data reasonably 
well with the use of fewer than 24 components, i.e. dimensionality reduction. The 
PCA process is identical for the weekly aggregation, except that the space is larger 
with 24 ∗ 7 = 168 dimensions.

To identify the most suitable number of components to consider, Fig. 2a illus-
trates the explained variance ratio for each component under daily and weekly 
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aggregations. For both aggregations we see that a large amount of the variation 
in the data can be explained by the first component and that there are diminishing 
returns from the fourth component onwards. Observing the cumulative explained 
variance ratio (Fig. 2b), it is apparent that, with only three components, 95% of the 
variation for the daily aggregation and 90% of the variation for weekly aggregation 
can be captured. Therefore, in the later descriptive results analyses (Sect. 6) we con-
centrate on the first three components as these represent the clearest temporal signa-
tures and explain most of the observed variation.

4  Data

4.1  Melbourne pedestrian counters

Although a number of cities across the globe publish pedestrian count data, the Mel-
bourne data set1 is by far the most comprehensive in terms of both total sensor num-
bers and period of time available. The data set contains hourly pedestrian counts at 
numerous locations across the city, covering more than a decade with the earliest 
records being made in May 2009. There are 94 sensors that have been active at some 
time from 2009 to the present, although not all sensors were active initially and have 
not necessarily remained active up to the time of writing. Figure  3 illustrates the 
time periods in which each sensor has returned at least one pedestrian count value. 
In this study we analyse two full years of data from the beginning of 2018 to the end 
of 2019. This period was chosen because it contains the largest volume of count data 

(a) Explained variance ratio. (b) Cumulative explained variance ratio.

Fig. 2  Explained variance ratio and cumulative explained variance of PCA for daily and weekly aggrega-
tion

1 The Melbourne footfall data are available publicly through the Melbourne Open Data Portal: https:// 
data. melbo urne. vic. gov. au/ explo re/ datas et/ pedes trian- count ing- system- month ly- counts- per- hour/ infor 
mation/

https://data.melbourne.vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/information/
https://data.melbourne.vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/information/
https://data.melbourne.vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/information/
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but is also not affected by the COVID pandemic that began in 2020 and significantly 
disrupted ‘normal’ urban activities.

The sensors are located across the city, sampling a wide range of different sites 
including retail and business/commercial zones as well as transportation hubs and 
leisure venues, as per Fig. 4. The sensors’ footfall detection mechanisms are likely 
to be based on a Doppler radar system2 although published details about the detec-
tion mechanisms and the rationale behind the spatial distribution of the sensors are 
opaque. The Doppler method counts the physical presence of a body in the space, 
avoiding a possible bias against the pedestrians who may be missed by systems 
that rely on detecting the presence of WiFi or Bluetooth signals from a pedestrian’s 

Fig. 3  Graph illustrating the days that each sensor reports at least one count (green) or no counts (red) 
(colour figure online)

2 A Doppler radar system is likely two reasons. Firstly, the sensor location contains two direction fields 
and there is also a data set aggregated by minutes which contains the counts in two different directions.
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mobile phone (e.g. Kontokosta and Johnson 2017; Crols and Malleson 2019; Sound-
araraj et al. 2020 Trasberg et al. 2021.

4.2  Data preparation

To prepare the data for PCA, we reshape the raw hourly counts into two alterna-
tive structures for daily and weekly analysis. In the reformatted datasets, each row 
corresponds to a single sensor-day or sensor-week observation, represented as a 
24-column or 168-column vector of hourly counts, respectively. Table 1 illustrates 
the structure of these datasets. If a sensor has incomplete records for any given day 
or week (i.e. if even one hourly count is missing), then that day or week for that sen-
sor is discarded.

The daily and weekly counts for 100 randomly chosen observations as well 
as the mean counts across all observations are shown in Fig. 5. In Fig. 5a (daily 

Fig. 4  Sensor locations in the Melbourne data set and the locations of four case study sensors
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aggregation) we can see a typical urban daily schedule (typical of many Global 
North cities at least), characterised by a quiet period during the early hours 
and three activity peaks corresponding to morning, midday and late afternoon. 
Similarly, Fig. 5b (weekly aggregation) exhibits the same daily pattern repeated 
with a slightly different behaviour on the weekend; the three activity peaks are 
no longer visible. Overall, Fig.  5 suggests that there are some diverse activity 
patterns that can be distinguished, e.g. morning/evening commute, lunch time 
activities, etc. We would like to use PCA to try to extract and interrogate these 
quantitatively.

Table 1  Illustration of reformatted data for PCA
(a) Daily Data

Sensor ID Day Hourly Counts

0 1 ... 23

101 2018-01-01 12 15 ... 22
102 2018-01-01 8 10 ... 20
... ... ... ... ... ...

(b) Weekly Data

Sensor ID Week Hourly Counts

0 1 ... 167

101 2018-W01 12 15 ... 24
102 2018-W01 8 10 ... 25
... ... ... ... ... ...

(a) Daily aggregation (b) Weekly aggregation

Fig. 5  Aggregating on days and weeks. The mean is plotted in red as well as a random sample of 100 
sensor-day/week pairs
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4.3  Four case study locations

The aim of this paper is to isolate and analyse the key temporal signatures that 
comprise aggregate daily pedestrian activity across the city. To demonstrate the 
utility of our approach, we identify four sensors that are situated in locations that 
have particularly distinctive features of the built environment and, as a result, 
noticeably different aggregate footfall patterns. These locations were depicted in 
Fig. 4 and will be used in throughout the paper to show that the key elements that 
we extract using PCA can uniquely describe these neighbourhoods. The sensors 
we consider are: 

Monash Road–Swanston Street  –Located at the in the centre of Melbourne 
University.

New Quay  –A riverside destination with leisure facilities.

Southbank  –Located at Southbank Promenade; a riverside 
destination featuring dining, arts, and leisure.

Southern Cross  –Southern Cross Railway Station, a major trans-
portation hub serving intercity, local, and under-
ground train services as well as bus services.

To contextualise the case study locations, first consider the hourly count data over 
4 weeks, shown in Fig. 6. All locations have a strong weekly periodicity. The daily 
periodicity is disrupted by the weekday/weekend cycle. The difference between 
the weekday and weekend footfall patterns varies between different locations, for 
example Southern Cross Station (Fig.  6d) shows a large drop-off in footfall dur-
ing the weekends compared to Southbank (Fig. 6c). Within each weekday cycle we 
see three peaks corresponding to morning, noon, and afternoon. Within each daily 
cycle, the peaks vary in strength with Southern Cross Station (Fig. 6d) experienc-
ing two strong peaks of equal strength during the morning and afternoon and with 
the relative height of the noon-peak being comparatively small. Contrast this with 
Monash Road (Fig. 6a) where the peaks are all of comparable height.

Looking at longer time scales, Fig.  7 reveals further complexities. Monash 
road, located in the centre of the University area, illustrates a complex interplay 
of drifts and multiple seasonalities (Fig. 7a). We see a strong weekly cycle with 
a greatly diminished pedestrian presence at the weekend and within each year we 
see two cycles corresponding to two university semesters. Additionally, within 
each semester we see a drop-off in attendance that corresponds to a reading week 
and a steady decline in footfall over each semester. Southbank (Fig. 7c) is located 
at Southbank Promenade, a riverside destination featuring dining, arts, and lei-
sure activities, and shows a steady decline in pedestrian footfall over time with 
the year 2019 showing noticeably less footfall than 2018. New Quay (Fig. 7b) is 
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(a) Monash Rd-Swanston St (West)

(b) New Quay

(c) Southbank

(d) Southern Cross Station

Fig. 6  Hourly pedestrian counts for selected locations, over a single month. Note that the scale of the 
y-axis changes between the plots
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(a) Monash Rd-Swanston St (West)

(b) New Quay

(c) Southbank

(d) Southern Cross Station

Fig. 7  Hourly pedestrian counts for selected locations, over 2 years. Note that the scale of the y-axis 
changes between the plots
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another riverside destination with leisure facilities and demonstrates anomalies 
where there are large spikes in the pedestrian counts.

To summarise, Figs. 6 and 7 evidence the diversity of the footfall patterns and 
the likely related activities that occur throughout a city. Although we do not survey 
people to ascertain exactly what activities they are involved in, it is likely that these 
patterns distinguish activities like education, commuting, leisure, etc., as well as the 
overall ‘busyness’ of an area. It is extremely unlikely that any particular location 
will only exhibit one of these common activities; most places will contain a mix 
of activities that will not only vary throughout the week but may also change over 
longer time periods as the city develops and neighbourhood characteristics evolve. 
In the following section, we discuss our PCA implementation that we later use to 
extract these distinctive temporal features from aggregate pedestrian count data 
in order to better understand the nature of different parts of the city and how they 
might be evolving.

5  Implementation and preliminary analysis

5.1  Implementation of PCA

The analysis is conducted using the Python scikit-learn library and the source 
code is available in full on GitHub. The code automatically downloads the necessary 
data from the Melbourne Open Data portal as required. See the Data Availability 
Statement for full details. The PCA process itself is implemented in the sklearn.
decomposition.PCA class.

5.2  Labelling the principal components

We conduct PCA on the daily and weekly aggregated data. Interestingly, the most 
important components (those that explain most of the variance in the original data) 
appear to be representative of different aspects of urban dynamics. Although this 
is not entirely unexpected, we were surprised that some of them exhibited such 
interpretable patterns. That said, the patterns quickly become harder to interpret so 
we only label the first four components. Starting with the daily aggregation, Fig. 8 
plots the shapes of the first six of the principal components. Recall that for the daily 
aggregation each component is a vector of length 24, with each item representing a 
pedestrian count at a particular time.

Component 1, ‘busyness’  (Fig. 8a). The low overnight counts and distinguish-
able peaks in the morning, midday and afternoon are almost identical to the mean 
daily activity exhibited in Fig. 5a. Therefore, this component does not represent 
any specific activity, but rather quantifies the average busyness of a location. An 
observation, i, with loading, w

i
> 0 for this component will be busier than the 

average, and vice versa for those with w
i
< 0.
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Component 2, ‘commuter rush’  (Fig. 8b). This component is distinguished by 
sizable peaks in the early morning and late afternoon that correspond closely 
to typical ‘rush hour’ commuting times. Observations with loadings w

i
> 0 for 

this component will probably arise from sensors that are located in areas that 
are attended by large numbers of commuters.
Component 3, ‘lunchtime suppression’  (Fig. 8c). This component represents a 
substantial decrease in footfall at around 12:00. Although it will also cause a 
slight increase in evening activity, peaking at approximately 20:00, the largest 
impact will be to reduce activity around lunch time.
Component 4, ‘afternoon suppression’  (Fig. 8d). Similar to component 3, this 
component corresponds to a suppression of activity in the late afternoon and 
a slight increase at lunchtime. However, as the most substantial impact is to 
reduce the afternoon commuting peak we assign the label to reflect this.
Components 5 and 6  (Fig. 8e and f) explain only a small part of the variance 
(recall that components 1–3 explain 95%), and it becomes difficult to distin-
guish a noticeable activity that they might be associated with. We include them 
here as an example but the later discussion will concentrate on earlier compo-
nents.

The weekly aggregation gives further insight into the usage patterns with in the 
city, as illustrated in Fig. 9. Interestingly components 1–3 are almost identical to 
the first three components in the daily aggregation, but carry with them additional 
information particularly for the weekend.

(a) Component 1:
‘busyness’

(b) Component 2:
‘commuter rush’

(c) Component 3:
‘lunchtime suppression’

(d) Component 4:
‘afternoon suppression’

(e) Component 5 (f) Component 6

Fig. 8  Principal components for daily behaviour
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Component 1, ‘busyness’  (Fig. 9a). As with the daily aggregation, this appears to 
be almost identical to the mean weekly activity in Figure 5b.
Component 2, ‘commuter rush’  (Fig. 9b). This component exhibits clearly iden-
tifiable early morning and late afternoon peaks during weekdays. Interestingly, 
during weekends there is a small but noticeable suppression of activity during the 
middle of the day, which gives further evidence that this component is capturing 
weekly commuting behaviour.
Component 3, ‘lunchtime suppression’  (Fig. 9c). As with the daily aggregation, 
this component illustrates a suppression of footfall around lunchtime. Now the 
component also captures an increase in late evening activity on Friday, Saturday, 
and Sunday.
Components 4, 5 and 6  (Fig. 9d, e, f) explain only a small part of the variance 
and do not discern an obvious footfall pattern.

Having calculated and described the main principal components that characterise 
daily and weekly footfall behaviour, the following section analyses the compo-
nent loadings in more detail and discusses the insights they can provide into urban 
dynamics more broadly.

5.3  Component loadings in the case study locations

Section  4.3 outlined four distinct locations that are useful for demonstrating the 
insight that can be gained through deeper analysis of the principal components. 
These locations are: Monash Road–Swanston Street (university); New Quay 

(a) Component 1:
‘busyness’

(b) Component 2:
‘commuter rush’

(c) Component 3:
‘lunchtime suppression’

(d) Component 4 (e) Component 5 (f) Component 6

Fig. 9  Principal components for weekly activities
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(a) Monash Road-Swanston St (university)

(b) New Quay (leisure)

(c) Southbank (leisure)

(d) Southern Cross Station (transport hub)

Fig. 10  Component loadings for the four case study locations on two different days: Tuesday 5th and Sat-
urday 9th February 2019. Only the first ten components are shown for clarity
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(leisure); Southbank (leisure); and Southern Cross (transport hub). In the following 
analysis, we illustrate how the component loadings differ for each of these locations 
on two specific days: Tuesday 5th and Saturday 9th February 2019. We choose a 
Tuesday and a Saturday to compare weekly and weekend activities and choose a 
week in February because this is during the summer term at Melbourne University 
(so student activities at the University will feature in the analysis). Figure 10 illus-
trates the loadings for those four locations on those 2 days.

We highlight the results for Southbank (Fig.  10c) and Southern Cross Station 
(Fig. 10d) as these are the most striking. Considering Southbank, on the Tuesday, 
the most substantial impact is caused by Component 1 (busyness). Footfall pat-
terns at the station follow a ‘typical’ pattern with morning and evening commutes 
and activity at lunch time. The pattern on Saturday, however, is very different. The 
area remains busy on the whole, but there is a considerable decrease in component 
2 activity (‘commuter rush’) to be replaced by component 3 (‘lunchtime suppres-
sion’). A secondary impact of component 3 is to increase footfall in the evenings, 
so ultimately it appears that on Saturday the activity in the Southbank area changes 
noticeably from commuting behaviour to afternoon/evening activities. With respect 
to Southern Cross Station, the results are even more striking. The large commuting 
activities that take place on the Tuesday are almost non-existent on the Saturday, 
evidenced by a substantial drop in the ‘busyness’ and ‘commuter rush’ component 
weightings.

6  Results: an insight into pedestrian dynamics with PCA

6.1  Relationships between component loadings

An advantage of deriving interpretable principal components is the ability to 
examine how the loadings of different components vary across observations to 
gain insights into urban activities. While the components themselves are orthog-
onal by design, their loadings can still reveal how different temporal patterns 

Fig. 11  Interactions between the three main principal components in the case study locations
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manifest across locations. To this end, Appendix A provides a three-dimensional 
analysis of the values of the three most important components for every sensor 
and every day. Interpreting all points simultaneously in three dimensions is chal-
lenging, so Fig.  11 presents the component interactions for the four case study 
areas in isolation, represented using two 2D plots. There are some striking fea-
tures that offer insight into the nature of the four areas: 

Monash Road– 
Swanston Street (university)  –busyness has no relationship with com-

muter rushes, but appears to have a nega-
tive relationship with lunchtime suppres-
sion. This implies that when the area is 
busier this can be attributed to an increase 
in footfall in the middle of the day rather 
than during commuting times (a nega-
tive weighting to ‘lunchtime suppression’ 
will increase footfall during the day). 
This observation makes sense given that 
the sensor is located on the Melbourne 
University campus.

New Quay (leisure)  –Increases in busyness appear to show a 
strong negative relationship with com-
muter rushes and no obvious relation-
ship with lunchtime suppression. When 
New Quay is busy, this is not caused by 
commuters, nor are the changes restricted 
mainly to midday hours as was the case 
with Monash Road–Swanston Street.

Southbank (leisure)  —There is no clear relationship between 
busyness and lunchtime suppression, sug-
gesting lunchtime activities do not influ-
ence busyness in a regular way (although 
analysis of the component loadings in 
Sect. 5.3 suggested an increase in lunch-
time suppression on a Saturday, this may 
be obscured as it is only present on one 
day per week, whereas commuting behav-
iour is much more common). Regardless, 
there is a striking relationship between 
busyness and commuter ruses (also 
noticed in Sect. 5.3) that deserves further 
attention below.
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Southern Cross (transport hub)  –shows an extremely strong positive rela-
tionship between busyness and commuter 
rushes but no relationship between busy-
ness and lunchtime suppression, which 
would be expected from a public transport 
hub where commuting has the main influ-
ence and other components have almost 
no influence (rather than a non-systematic 
influence as is the case in Southbank).

The relationship between busyness and commuter rushes for Southbank deserves 
closer attention. Firstly, however, consider again Southern Cross Station in Fig. 11. 
There appears to be a single, strong, positive relationship between busyness and 
commuter rushes. As Southern Cross Station becomes more busy, the shape of the 
daily footfall pattern does not change; we see the same footfall patterns on different 
days, but on some days the absolute counts are higher than on others. This is not 
the case with Southbank however. As Fig.  11. illustrates, there appears to be two 
or three separate groups of points. As with Southern Cross Station, within a single 
group we see the same footfall shape, but of varying intensity. However, the shapes 
within each of the three clusters will be different. In effect Fig. 11 suggests that there 
are two or three different usage patterns present in the area. To explore this further, 
we manually separate the groups of points into three distinct clusters and then plot 
the daily footfall traces for each of the clusters. Figure 12a illustrates the three man-
ually chosen clusters and Fig. 12b illustrates their daily traces.

Observing Fig. 12, although there are small differences in the traces captured in 
cluster 1 and 2, broadly the daily patterns follow a typical pattern that consists of 
peak footfall times in the morning, lunchtime and afternoon. Cluster 3, however, 
captures an entirely different trend that, although exhibiting similar footfall magni-
tudes, exhibits a gradual increase in footfall throughout the day and does not display 
any discernible peaks. It is likely here that we observe substantially different week-
day and weekend behaviour at Southbank, even though the footfall magnitudes are 
similar. In other words, the area remains busy at the weekend, but we can hypoth-
esise that the reasons for visiting the area are different. This is in contrast to other 
commuting areas where the footfall magnitude diminishes at the weekend and might 
reveal some useful insights into the way that the built environment is used by visi-
tors in this location.

6.2  Exploring the evolution urban usage patterns

In this final piece of analysis, we examine longer-term footfall trends to investigate 
how the different patterns of behaviour vary over time. Some studies have previ-
ously investigated changes in mobility patterns due to the impact of the COVID-
19 pandemic—for example: Kim and Jun (2022) analysed regional mobility shifts 
during COVID-19, using inflow and outflow big data to identify key patterns and 
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influencing factors; and Schmahmann et al. (2022) examined metropolitan mobility 
trends, noting a decrease in inner-city movement and an increase in out-migration—
but to the best of our knowledge no research has specifically used quantitative meth-
ods to explore the latent factors driving the long-term changes in footfall patterns.

Having found a set of principal components using the data from 2018 and 2019, 
we can use these to inspect the footfall patterns at times outside this window. In 
Fig. 13 we present the weekly aggregated counts for two selected sites along with 
the first three components of the PCA decomposition. These sites are chosen 

Fig. 12  Clustering the busyness and commuter rushes components for Southbank and analysing their 
daily footfall traces
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specifically because they exhibit interesting patterns; in other sites there is very lim-
ited change in the longer-term trends.

For South Cross Station (Fig. 13a), we see a steady increase in pedestrian footfall 
between 2010 and 2020, followed by a sharp drop during the COVID-19 pandemic. 
Looking at the decomposition we can see that contribution due to lunchtime sup-
pression remains small during the entire time, while the change only comes with the 
busyness and commuter rush components. Although footfall at the site appears to 
be increasing, it is a long way from its pre-COVID levels which may reflect larger 
numbers of people working from home after the pandemic and hence not returning 
to the area. This is potentially valuable insight for policy makers as it suggests that 
additional footfall might be encouraged through secondary means, such as making 
on-site working more popular to encourage greater commuting, rather than through 
direct initiatives that improve the attractiveness of the area.

Considering Lygon Street (Fig. 13b), we see a steady decline in footfall between 
2014 and 2022, which becomes more chaotic during COVID-19. Considering the 
PCA components, we can see that this decline has been driven by a decrease in over-
all busyness and a small decline in lunchtime suppression, while commuter rushes 
have actually increased over time. This suggests that although Lygon St. is gradually 
becoming less busy, it may be transitioning into a more commuter-oriented location.

(a) South Cross Station

(b) Lygon St (West)

Fig. 13  Aggregated weekly footfall counts compared with the first three components of the PCA
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7  Conclusions, limitations and future work

This paper has demonstrated how the use of principal component analysis (PCA) 
can lead to insight into the key temporal signatures that underpin urban footfall. 
By using PCA, it is possible to reduce a complex, noisy time-series to a more 
comprehensible number of components, and then analyse these components to 
draw inferences about urban space usage more broadly. This final section will dis-
cuss the limitations of the work and outline avenues for future research.

An obvious drawback with the approach relates to the validation of the identi-
fied activities. Although the components that we extract appear to be related to 
well-known activities, such as ‘9–5’ commuting, we do not have any information 
about the activities that the individuals who contribute to the footfall counts are 
actually doing. Although the patterns match expectations and findings in previ-
ous work, such as the ‘three peaks’ identified by others (Kim 2020; Dobler et al. 
2021), and it is difficult to imagine an alternative explanation for these structures, 
further work would be needed to validate these assumptions. There are several 
possible avenues for validation. For example, it could involve the use of activity 
surveys in the region, either via a new, bespoke survey, or through the analysis 
of existing mobility surveys such as the UK National Travel Survey that collects 
information on “how, why, when and where people travel”(Department for Trans-
port 2024). Alternatively, validation could be achieved through triangulation with 
alternative data-driven mobility estimates, such as the LandScan or Population 
24/7 products (see Richardson (2020) for further detail) or via a more nuanced 
analysis of individual movement traces, such as those that are created passively 
through mobile phone use.

A second issue relates to bias and representation. Although Melbourne has a 
very large number of publicly available footfall sensors—the largest number for a 
city available globally as far as we are aware—we have not attempted to analyse 
the equity in their spatial distribution. Evidence from other places suggests that 
sensors such as these are not typically distributed across the population equitably 
(Robinson and Franklin 2020; Robinson et al. 2022) and instead cluster in areas 
that are well known by the researchers tasked with deploying them or in places 
where, for a variety of reasons, their deployment is relatively straightforward 
from an administrative/infrastructure perspective. The result is that, unless the 
sensor locations have been carefully planned, they are unlikely to provide a ‘true’ 
picture of the variety in footfall patterns that occur throughout the city. Future 
work could attempt to explore this question by analysing the demographics of the 
city more broadly and assessing the degree to which the sensor locations capture 
the behaviour of all residents, although this will of course be complicated by the 
fact that while the sensors measure outdoor activity, most demographic data sets 
will capture residential characteristics. Again, qualitative surveys of the people 
who visit different parts of the city might help.

The generalisability of the work comes in to question because we do not 
attempt to apply the method to places other than Melbourne, Australia. That said, 
the patterns that we uncover are not especially surprising; they are similar to 
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those found cities such as New York (Dobler et al. 2021) and Seoul (Kim 2020) 
so may well be representative of other major cities in ‘Global North’ countries. 
Data permitting, it would be interesting to apply the method in a variety of dif-
ferent places to determine whether the same key footfall components can explain 
such a large part of the overall variance. Similarly, we base most of the analysis 
on data for the 2018–2019 period in order to avoid the huge disruption to foot-
fall patterns that occurred during the COVID-19 pandemic. Although unlikely, 
as there is nothing to suggest that 2018–2019 was an exceptional period in Mel-
bourne’s history (unlike, say, 2020), it is possible that had the key temporal sig-
natures might be different were another time period chosen. A related issue is that 
while PCA effectively uncovers regular temporal patterns in footfall data, it lacks 
the capability to detect anomalies and special events. Here we have focussed on 
more regular ‘signatures’, but future work will aim to complement the current 
analysis with methods that enhance the identification of such variations.

In conclusion, in this paper we apply the technique of principal component analy-
sis (PCA) to footfall count data from Melbourne, Australia. Interestingly the three 
components that explain most of the variability in the footfall patterns across the 
city are recognisable as typical activity patterns, such as ‘9–5’ commuting or leisure 
activities during evenings and weekends. Further analysing the components them-
selves, and their interactions, offers the opportunity to better understand the dynam-
ics of pedestrian behaviour in the city from a data-driven/quantitative perspective to 
complement qualitative work. Immediate plans for future research include (i) assess-
ing the generalisability of the work by replicating the study across a larger num-
ber of cities and (ii) exploring the demographics of the city in more detail to better 
understand the cause of the observed patterns.

Appendix A: Interpretation of the components in 3D

Figure 14 illustrates the values of the three most important components (busyness, 
commuter rushes and lunchtime suppression) for ever sensor and every day. Note 
that interpretation of the 3D plot is considerably easier when these are viewed inter-
actively so that they can be zoomed and rotated. To this end, an html file has been 
included in the Supplementary Information that provides a 3D interactive plot that 
allows the reader to explore the point cloud in more detail.

The most striking immediate observation from Fig. 14 is the cone shape: as the 
busyness component increases there is a much greater spread in the values of the 
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other two components (both positive and negative). This is interesting but not unex-
pected; if the value of the first component is large, then the other components must 
necessarily have particularly large or small values to have a noticeable impact on the 
final footfall counts. More broadly, the analysis of individual sensors using interac-
tive 3D plots such as this could produce unexpected insights into the dynamics of 
urban footfall.
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