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Abstract

As the world rapidly urbanises and cities become larger and more complex, under-
standing pedestrian dynamics is paramount. New data sources, particularly those
that measure pedestrian counts (i.e. ‘footfall’), offer potential as a means of bet-
ter understanding the fundamental spatio-temporal structures that characterise
aggregate pedestrian behaviour. However, footfall data are often complex and
influenced by a wide range of social, spatial and temporal factors, which compli-
cates interpretation. This paper applies Principal Component Analysis (PCA) to
hourly pedestrian count data from Melbourne, Australia, to extract the key tem-
poral signatures that underpin observed urban footfall patterns. PCA can reduce
the dimensionality of noisy pedestrian flow data, revealing dominant activity
patterns such as weekday commuting cycles and weekend leisure activities. By
subsequently analysing pedestrian volumes through the lens of these components,
we start to expose the underlying types of pedestrian activities that characterise
different neighbourhoods. In addition, we can distinguish multiple overlapping
activity patterns within a single location, identifying changes in urban function-
ality and detecting shifts in mobility trends. The impacts of external shocks, such
as the COVID-19 pandemic, are particularly stark. These findings shed light on
the intricacies of urban mobility and suggest that there is value in the use of
PCA as a means to better understand urban dynamics.

Keywords: Principal Component Analysis, Footfall, Urban Dynamics, Geographic

Information Science
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1 Introduction

As the world becomes increasingly more urbanised – by 2050, 68% of the world’s
population is projected to live in urban areas (United Nations 2018) – understanding
pedestrian dynamics is crucial. The importance of pedestrian activities in creating
safer, more vibrant cities, has been discussed for some time (Jacobs 1961). However,
only recently has the “golden age of data” (Arribas-Bel and Tranos 2018) enabled
large-scale quantitative analyses of pedestrian dynamics. This has fostered a greater
awareness of the need for data-driven empirical evidence (Philp et al. 2022) to support
urban development.

Despite this, there has been relatively little attention paid to the temporal signa-
tures that emerge from the activities of pedestrians in places. These signatures, that
provide estimates for the changing number of pedestrians who were present in a par-
ticular place over a particular time period, can reveal insight into the evolving usage
patterns of the built environment over short (hourly) or longer (weekly/yearly) time
scales. For example, Figure 1 illustrates hypothetical footfall counts for an urban loca-
tion over the course of a week. Qualitatively, the counts appear to suggest that the
vast majority of people who visit this area will do so for the purposes of traditional
‘9–5’ employment. However, without a more formal quantitative assessment of footfall
dynamics we cannot answer questions such as: are there additional hidden ‘signals’
present that are suppressed by the dominant commuting pattern?; is this kind of pat-
tern representative of the dynamics present in other places, or is it unique?; does this
pattern change over the course of a year, or has it changed noticeably over the last
decade? (which would indicate an evolution in the activities undertaken in the area);
etc. Ultimately, without isolating the individual temporal signatures that, together,
make up the observed footfall counts, we might miss some of the key pedestrian
dynamics that underpin wider urban processes.

Fig. 1: Hypothetical footfall counts for an urban location over a week. The location
exhibits peaks in the morning and evening during weekdays that are likely to corre-
spond to people commuting. During the weekend there is substantially lower footfall,
suggesting that this may be a place that does not attract visitors for activities other
than work.
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Gaining such insight from pedestrian counting datasets can be extremely difficult.
Footfall is influenced by both macro-scale effects (economic trends, weather conditions,
a pandemic, etc.) and micro-scale effects (the presence of particular shops, the per-
ceived ‘character’ of a place, the configuration of transport infrastructure, etc.) (Philp
et al. 2022) which results in the presence of a very large number of diverse factors
that influence the flows of pedestrians in different ways, both spatially and temporally.
Recognising the regular signals that emerge from so much noise can be challenging.
However, dimensionality reduction can help to simplify these temporal data, enhanc-
ing the clarity of long-term trends and cyclical behaviours inherent in pedestrian
movements.

To begin to answer questions such as those above, this paper presents a formal,
quantitative approach to the analysis of temporal footfall patterns. The aim is to
extract the core temporal ‘signatures’ that underpin otherwise noisy and diverse pedes-
trian count data and can explain most of the variability across the city. We leverage
hourly pedestrian count data – an important innovation in itself as hourly variations
are often overlooked in footfall studies – and use Principal Component Analysis (PCA)
to reduce otherwise complex footfall counts into a small number of principal com-
ponents that encapsulate the most significant variations in footfall. Interestingly, the
components that explain most of the variance are easily recognisable as being related
to common activities, such as commuting peaks in the mornings and evenings, or
activities during the day on weekends. By then further analysing these components
themselves we can start to identify different area types – i.e. those that are charac-
terised largely by commuting activities v.s. those that are more likely to be associated
with daytime leisure activities – and identify how the usage patterns in different parts
of the city vary over time.

It is worth noting that exploratory data analysis (EDA) techniques are also
commonly used to explore footfall patterns, yet they are limited in their ability to sys-
tematically decompose complex, overlapping temporal activity patterns. PCA offers
distinct advantages by quantitatively isolating distinct components. This allows us
to: (i) extract dominant temporal signatures, such as weekday commuting cycles or
weekend leisure activities, in a way that avoids subjective interpretation; (ii) quantify
variations in the dominance of different signatures across locations and time periods
in a systematic way; and (iii) identify relationships between recurring patterns (such
as changes in commuting behaviour that might take place alongside other changes in
a location) that can be obscured in simpler visual analyses. These benefits make PCA
particularly suited to uncovering latent patterns in pedestrian dynamics that would
be difficult to extract using EDA alone.

The main contributions of the paper are threefold:

1. We demonstrate that, using PCA, it is possible to simplify and distil complex,
noisy pedestrian count data into a small number of interpretable components that
represent the core temporal footfall signatures. This reveals the dominant temporal
patterns in urban pedestrian activities.

2. By clustering the principal components that represent the temporal footfall patterns
in a particular area, it is possible to isolate quantitatively different footfall patterns
that exist at that location. This provides strong evidence that some areas attract
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people for multiple different purposes as distinct from others that exhibit similar
usage patterns throughout the week.

3. By examining the changes in the scores of the principal components over time,
we can highlight the presence of latent factors that drive longer-term changes in
pedestrian mobility patterns. Specifically the paper identifies shifts in urban func-
tionality, particularly as a result of the COVID-19 pandemic, that suggest that the
activities that people engage in when they visit some areas have materially changed.

The paper is structured as follows: Section 2 reviews the relevant literature;
Section 3 outlines the methodology and the main method used (PCA); Section 4
outlines the data sources used and conducts an exploratory data analysis; Section 5
discusses the PCA implementation; Section 6 presents and discuses the results; and
Section 7 draws conclusions.

2 Previous work

Quantifying footfall – i.e. the number of pedestrians moving through a place at a par-
ticular time – is crucial for applications as diverse as urban planning (Cooper et al.
2021), economic strategy (Mumford et al. 2021; Philp et al. 2022), environmental
health (Park and Kwan 2017), and public safety (Malleson and Andresen 2016; Boivin
and Felson 2017; Hanaoka 2018; Tucker et al. 2021). Recent years have seen the emer-
gence of a literature on “ambient” (Whipp et al. 2021), “day time” (Boeing 2018)
and “temporary” (Charles-Edwards and Bell 2013; Panczak et al. 2020) populations.
These refer to different measures of the dynamic populations present in an area, i.e.
commuters, shoppers, students, tourists, event-attendees, etc. For a recent review of
the ‘ambient’ population literature the interested reader can refer to Panczak et al.
(2020) or Richardson (2020). However, with a few exceptions (Charles-Edwards and
Bell 2013; Ma et al. 2017; Liu et al. 2018; Richardson 2020), much less attention has
been paid to the hour-by-hour changes that occur in specific locations that emerge
from the activities of pedestrians in places. One reason for this is that, historically,
residential-based data have been much more forthcoming than footfall data. Fortu-
nately, in recent decades, a range of data sources have become available that either
provide proxy estimates of footfall, or count people directly. These include, for exam-
ple, telecommunications data (Traunmueller et al. 2014; Bogomolov et al. 2014; Song
et al. 2023), smartphone apps that capture mobility traces (Richardson 2020), street
view images (Chen et al. 2020, 2022), social media data (Malleson and Andresen
2015a,b; Botta et al. 2015; Liu et al. 2022), publicly available traffic videos (Dobler
et al. 2021) and, importantly, devices that count pedestrians as they pass by a sen-
sor (Kontokosta and Johnson 2017; Crols and Malleson 2019; Soundararaj et al. 2020;
Philp et al. 2022).

One of the most common application areas for the study of high-resolution footfall
data is in the area of retailing. To measures their success, shops need to estimate the
number of potential shoppers who pass their premises. This is even more important in
an age where physical businesses are competing with online retailers and, more broadly,
because footfall is the “lifeblood” (Philp et al. 2022) of a high street. For example,
Trasberg et al. (2021) show that the inclusion of footfall data into models that predict
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store sales improves their predictive capability; highlighting the importance of footfall
for store turnover. In a similar vein, Philp et al. (2022) use pedestrian foot traffic in
retail environments to classify micro-locations into distinct clusters that are related
to their retail characteristics.

Beyond retailing, the analysis of footfall data is also relevant for understanding
urban dynamics more broadly. For example, Dobler et al. (2021) parse publicly-
available pedestrian traffic videos to estimate footfall counts in New York City and
use these to explore the dynamics of pedestrian activity. As expected, they find a typ-
ical ‘3-peak structure’ (morning commute, lunch time, evening commute) in weekday
pedestrian behaviour and a steadier change over weekends. These results are strik-
ingly similar to those presented in this paper, although here we go further by trying
to isolate the different ‘signatures’ that lead to the emergence of the overall observed
patterns.

Methodologically speaking, very few papers have tried to derive insight into the
underlying temporal signatures that make up aggregate footfall patterns. In this paper,
we approach the problem using Principal Component Analysis (PCA) as a way to
reduce the complexity of noisy footfall data into a few core statistical components.
Although widely used in general, there are relatively few applications of PCA to studies
of pedestrian dynamics. Chraibi et al. (2016) use functional PCA (a variation of PCA
that can be applied to trajectory data) to validate their agent-based pedestrian models,
comparing simulated outputs with real data. Their work is relevant here because
they argue that PCA is a valuable tool for offering insight into pedestrian dynamics
(although focusing on count data rather than individual trajectories), which aligns
with our aims. More broadly, the functional approach (e.g. Ramsay and Silverman
2006) has been used to study temperature and precipitation (Ramsay and Dalzell
1991) as well as neighbourhood change (Jung and Song 2022). Such an approach may
be appropriate here because it would treat the footfall data as continuous functional
data, making the approach better suited to handling temporal continuity. However, for
this preliminary study we use ‘traditional’ PCA as it is more likely to produce clear,
explainable components, which is more important for understanding footfall patterns
than generating optimal components.

A related approach that could have been employed, rather than PCA, is Indepen-
dent Component Analysis (ICA). ICA attempts to identify statistically independent
components, focusing on separating mixed signals into distinct sources (Hyvärinen
and Oja 2000). This approach is well-suited for scenarios where the goal is to separate
mixed signals or to identify independent sources of variation, such as separating audio
signals. However, temporal patterns in time-series pedestrian data, such as daily and
weekly cycles, are typically correlated as they represent recurring trends over time.
For example, footfall data may show strong correlations between certain hours of the
day or between weekdays and weekends. These patterns are periodic and follow a pre-
dictable structure, rather than being independent signals. Therefore, ICA’s focus on
independence, rather than correlation, makes it less suitable for capturing such tem-
poral patterns. In addition, solving ICA optimisation, which is inherently non-convex,
from different initial approximations can lead to varying solutions, making it harder to
identify the optimal number of components that underpin regular pedestrian behaviour
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and can be interpreted qualitatively to better understand urban dynamics (Tibaduiza
et al. 2012; Kairov et al. 2017). Similar observations have been noted in prior studies
using PCA for temporal analysis (e.g. Jolliffe 1986; Abdi and Williams 2010).

We also considered the use of Non-negative Matrix Factorization (NMF). NMF is
one of the most widely used dimensionality reduction techniques and is particularly
effective for handling non-negative data (such as pedestrian counts). Unlike PCA,
which maximizes variance, NMF focuses on minimizing reconstruction error (Gan et al.
2021). However, NMF raises similar problems to those of ICA in that the approach to
determining the optimal number of components is not clear (Cai et al. 2022; Maisog
et al. 2021). On the other hand, with PCA the first few components explain the most
variance which allows for the extraction of dominant temporal patterns that aligns
with our objective of uncovering key urban footfall dynamics.

The most directly similar study is that of Kim (2020). The authors use cell phone
activity count data (aggregated to a 50m2 spatial grid and hourly temporal bins) as
a proxy for pedestrian dynamics and apply functional PCA to those data to explore
characteristics of ‘urban vitality’. Whilst there are similarities in the components iden-
tified by Kim, such as the aforementioned ‘3 peaks’, there are also notable differences.
For example there is the absence of any strong ‘lunch time’ behaviour (that we uncover
later in Figure 8), although this may be because the authors only present the shapes
of the first two components. Finally, Elhaik (2022) caution that PCA-derived results
may not be “reliable, robust, or replicable.” However, their findings are specific to
genetic studies, and it remains unclear whether these issues apply more broadly. Their
assessment is not echoed in other PCA-related studies.

3 Methodology

3.1 An overview of PCA

Principal Component Analysis (PCA), originally developed by Hotelling (1933), is
a statistical technique used for dimensionality reduction. It aims to analyse a data
table, where each row contains a number of inter-correlated observations (termed
‘variables’), and transform the original table into a new set of variables that summarise
the most significant features. These features, referred to as the ‘principal components’,
are constructed in such a way that they are uncorrelated. This is achieved through
orthogonality: the components are at right angles to each other in a multi-dimensional
space. Once the components have been established, the original observations can be
approximated through a linear combination of the principal components and a set
of unique loadings (i.e. coefficients) that are applied to each component. Section 3.2
explains this process in more detail in the context of PCA for footfall data.

The quality of the PCA – i.e. the extent to which the raw data can be reconstructed
purely through a linear combination of the components – can be quantified using
the proportion of the explained variance. This represents the proportion of the total
variance in the data set that is captured by each principal component (Elhaik 2022).
The first component will have the largest possible variance and hence will ‘explain’ the
largest part of the variation observed in the data table, with subsequent components
explaining gradually less of the variance. The proportion of the explained variance
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is calculated by dividing the variance captured by a specific principal component by
the total variance of the original data set. This metric is crucial for understanding
how much information from the original data set is retained after the dimensionality
reduction process and can be used, as we do here, to determine how many components
need to be retained in order to reconstruct the original data to an acceptable degree
of accuracy.

For a fuller outline of PCA and worked example, the interested reader can refer to
Abdi and Williams (2010) or Jolliffe (2011). The remainder of this section outlines the
process of applying PCA to hourly pedestrian count data from Melbourne, Australia.

3.2 PCA for the Footfall Data

The data used here encompass measurements from 94 sensors distributed across Mel-
bourne, recording the number of people who walk past each sensor in hourly intervals.
Full details of the data collection and pre-processing steps are provided in Section 4.

We consider two periodicities for our analysis: days and weeks. These are cho-
sen because they capture the most important features of typical urban dynamics, but
future work might also consider aggregation by alternative periodicities such as months
or seasons (winter, summer, etc.). To explain how PCA works in our context, consider
just the daily periodicity. In this case the footfall pattern for a particular sensor on a
particular day is encoded as a 24-item vector where each item represents the counts
for each hour in the day. We refer to a sensor-day vector as an ‘observation’. Each
observation can therefore be thought of as a single point in a 24 dimensional space,
and the entire data table becomes a 24-dimension point cloud, where the number of
points (observations) is equal to the number of sensors multiplied by the total number
of days in the study time period. The principal components can then be thought of as
directions in that space, each necessarily represented by a 24-item vector. The compo-
nents are organised such that the first explains most of the variation in the points, with
latter components explaining iteratively less variation. The original observations can
then be approximated through a linear combination of the principal components and
their loadings (i.e. coefficients). Loadings can be positive or negative, with negative
loadings effectively reversing the influence of a component on an observation.

As a raw observation is a 24-item vector, if we conducted a PCA with 24 compo-
nents then each observation in the original data could be re-created perfectly. This is
not useful though, so the aim of PCA is to reproduce the original data reasonably well
with the use of fewer than 24 components, i.e. dimensionality reduction. The PCA
process is identical for the weekly aggregation, except that the space is larger with
24 ∗ 7 = 168 dimensions.

To identify the most suitable number of components to consider, Figure 2a illus-
trates the explained variance ratio for each component under daily and weekly
aggregations. For both aggregations we see that a large amount of the variation in the
data can be explained by the first component and that there are diminishing returns
from the fourth component onwards. Observing the cumulative explained variance
ratio (Figure 2b) it is apparent that, with only three components, 95% of the varia-
tion for the daily aggregation and 90% of the variation for weekly aggregation can be
captured. Therefore in the later descriptive results analyses (Section 6) we concentrate
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on the first three components as these represent the clearest temporal signatures and
explain most of the observed variation.
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(a) Explained variance ratio.
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(b) Cumulative explained variance ratio.

Fig. 2: Explained variance ratio and cumulative explained variance of PCA for daily
and weekly aggregation.

4 Data

4.1 Melbourne Pedestrian Counters

Although a number of cities across the globe publish pedestrian count data, the Mel-
bourne data set1 is by far the most comprehensive in terms of both total sensor
numbers and period of time available. The data set contains hourly pedestrian counts
at numerous locations across the city, covering more than a decade with the earliest
records being made in May 2009. There are 94 sensors that have been active at some
time from 2009 to the present, although not all sensors were active initially and have
not necessarily remained active up to the time of writing. Figure 3 illustrates the time
periods in which each sensor has returned at least one pedestrian count value. In this
study we analyse two full years of data from the beginning of 2018 to the end of 2019.
This period was chosen because it contains the largest volume of count data but is also
not affected by the COVID pandemic that began in 2020 and significantly disrupted
‘normal’ urban activities.

The sensors are located across the city, sampling a wide range of different sites
including retail and business/commercial zones as well as transportation hubs and
leisure venues, as per Figure 4. The sensors’ footfall detection mechanisms are likely

1The Melbourne footfall data are available publicly through the Melbourne Open Data Portal: https:
//data.melbourne.vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/
information/
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Fig. 3: Graph illustrating the days that each sensor reports at least one count (green)
or no counts (red).

to be based on a Doppler radar system2 although published details about the detec-
tion mechanisms and the rationale behind the spatial distribution of the sensors are
opaque. The Doppler method counts the physical presence of a body in the space,
avoiding a possible bias against the pedestrians who may be missed by systems that
rely on detecting the presence of WiFi or bluetooth signals from a pedestrian’s mobile
phone (e.g. Kontokosta and Johnson 2017; Crols and Malleson 2019; Soundararaj et al.
2020; Trasberg et al. 2021).

2A Doppler radar system is likely two reasons. Firstly the sensor location contain two direction fields
and there is also a data set aggregated by minutes which contains the counts in two different directions.
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Fig. 4: Sensor locations in the Melbourne data set and the locations of four case study
sensors.

4.2 Data Preparation

To prepare the data for PCA, we reshape the raw hourly counts into two alternative
structures for daily and weekly analysis. In the reformatted datasets, each row corre-
sponds to a single sensor-day or sensor-week observation, represented as a 24-column
or 168-column vector of hourly counts, respectively. Table 1 illustrates the structure
of these datasets. If a sensor has incomplete records for any given day or week (i.e. if
even one hourly count is missing), then that day or week for that sensor is discarded.

The daily and weekly counts for 100 randomly-chosen observations as well as the
mean counts across all observations are shown in Figure 5. In Figure 5a (daily aggre-
gation) we can see a typical urban daily schedule (typical of many Global North cities
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Table 1: Illustration of Reformatted Data for PCA

(a) Daily Data

Sensor ID Day Hourly Counts

0 1 ... 23

101 2018-01-01 12 15 ... 22
102 2018-01-01 8 10 ... 20
... ... ... ... ... ...

(b) Weekly Data

Sensor ID Week Hourly Counts

0 1 ... 167

101 2018-W01 12 15 ... 24
102 2018-W01 8 10 ... 25
... ... ... ... ... ...

at least), characterised by a quiet period during the early hours and three activ-
ity peaks corresponding to morning, midday and late afternoon. Similarly Figure 5b
(weekly aggregation) exhibits the same daily pattern repeated with a slightly differ-
ent behaviour on the weekend; the three activity peaks are no longer visible. Overall,
Figure 5 suggests that there are some diverse activity patterns that can be distin-
guished, e.g. morning/evening commute, lunch time activities, etc. We would like to
use PCA to try to extract and interrogate these quantitatively.

(a) Daily aggregation (b) Weekly aggregation

Fig. 5: Aggregating on days and weeks. The mean is plotted in red as well as a random
sample of 100 sensor-day/week pairs.
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4.3 Four Case Study Locations

The aim of this paper is to isolate and analyse the key temporal signatures that com-
prise aggregate daily pedestrian activity across the city. To demonstrate the utility of
our approach we identify four sensors that are situated in locations that have particu-
larly distinctive features of the built environment and, as a result, noticeably different
aggregate footfall patterns. These locations were depicted in Figure 4 and will be used
in throughout the paper to show that the key elements that we extract using PCA
can uniquely describe these neighbourhoods. The sensors we consider are:

Monash Road - Swanston Street - Located at the in the centre of Melbourne Univer-
sity.
New Quay - A riverside destination with leisure facilities.
Southbank - Located at Southbank Promenade; a riverside destination featuring
dining, arts, and leisure
Southern Cross - Southern Cross Railway Station, a major transportation hub serving
intercity, local, and underground train services as well as bus services.

To contextualise the case study locations, first consider the hourly count data
over four weeks, shown in Figure 6. All locations have a strong weekly periodicity.
The daily periodicity is disrupted by the weekday / weekend cycle. The difference
between the weekday and weekend footfall patterns varies between different locations,
for example Southern Cross Station (Figure 6d) shows a large drop-off in footfall during
the weekends compared to Southbank (Figure 6c). Within each weekday cycle we see
three peaks corresponding to morning, noon, and afternoon. Within each daily cycle
the peaks vary in strength with Southern Cross Station (Figure 6d) experiencing two
strong peaks of equal strength during the morning and afternoon and with the relative
height of the noon-peak being comparatively small. Contrast this with Monash Road
(Figure 6a) where the peaks are all of comparable height.

Looking at longer time scales, Figure 7 reveals further complexities. Monash road,
located in the centre of the University area, illustrates a complex interplay of drifts
and multiple seasonalities (Figure 7a). We see a strong weekly cycle with a greatly
diminished pedestrian presence at the weekend and within each year we see two cycles
corresponding to two university semesters. Additionally within each semester we see
a drop off in attendance that corresponds to a reading week and a steady decline in
footfall over each semester. Southbank (Figure 7c) is located at Southbank Promenade,
a riverside destination featuring dining, arts, and leisure activities, and shows a steady
decline in pedestrian footfall over time with the year 2019 showing noticeably less
footfall than 2018. New Quay (Figure 7b) is another riverside destination with leisure
facilities and demonstrates anomalies where there are large spikes in the pedestrian
counts.

To summarise, Figures 6 and 7 evidence the diversity of the footfall patterns and
the likely related activities that occur throughout a city. Although we do not survey
people to ascertain exactly what activities they are involved in, it is likely that these
patterns distinguish activities like education, commuting, leisure, etc., as well as the
overall ‘busyness’ of an area. It is extremely unlikely that any particular location
will only exhibit one of these common activities; most places will contain a mix of
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Fig. 6: Hourly pedestrian counts for selected locations, over a single month. Note that
the scale of the y-axis changes between the plots.

13



2018-01 2018-04 2018-07 2018-10 2019-01 2019-04 2019-07 2019-10 2020-01
Date Time

0

250

500

750

1000

1250

1500

Pe
de

st
ria

n 
Co

un
t

Monash Rd-Swanston St (West)

(a) Monash Rd-Swanston St (West)

2018-01 2018-04 2018-07 2018-10 2019-01 2019-04 2019-07 2019-10 2020-01
Date Time

0

1000

2000

3000

4000

5000

6000

Pe
de

st
ria

n 
Co

un
t

New Quay

(b) New Quay

2018-01 2018-04 2018-07 2018-10 2019-01 2019-04 2019-07 2019-10 2020-01
Date Time

0

2000

4000

6000

8000

10000

Pe
de

st
ria

n 
Co

un
t

Southbank

(c) Southbank

2018-01 2018-04 2018-07 2018-10 2019-01 2019-04 2019-07 2019-10 2020-01
Date Time

0

1000

2000

3000

4000

5000

6000

Pe
de

st
ria

n 
Co

un
t

Southern Cross Station

(d) Southern Cross Station

Fig. 7: Hourly pedestrian counts for selected locations, over two years. Note that the
scale of the y-axis changes between the plots.
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activities that will not only vary throughout the week but may also change over longer
time periods as the city develops and neighbourhood characteristics evolve. In the
following section we discuss our PCA implementation that we later use to extract these
distinctive temporal features from aggregate pedestrian count data in order to better
understand the nature of different parts of the city and how they might be evolving.

5 Implementation and Preliminary Analysis

5.1 Implementation of PCA

The analysis is conducted using the Python scikit-learn library and the source
code is available in full on GitHub. The code automatically downloads the nec-
essary data from the Melbourne Open Data portal as required. See the Data
Availability Statement for full details. The PCA process itself is implemented in the
sklearn.decomposition.PCA class.

5.2 Labelling the Principal Components

We conduct PCA on the daily and weekly aggregated data. Interestingly, the most
important components (those that explain most of the variance in the original data)
appear to be representative of different aspects of urban dynamics. Although this is not
entirely unexpected, we were surprised that some of them exhibited such interpretable
patterns. That said, the patterns quickly become harder to interpret so we only label
the first four components. Starting with the daily aggregation, Figure 8 plots the
shapes of the first six of the principal components. Recall that for the daily aggregation
each component is a vector of length 24, with each item representing a pedestrian
count at a particular time.

Component 1, ‘busyness’ (Figure 8a). The low overnight counts and distinguishable
peaks in the morning, midday and afternoon are almost identical to the mean daily
activity exhibited in Figure 5a. Therefore this component does not represent any spe-
cific activity, but rather quantifies the average busyness of a location. An observation,
i, with loading, wi > 0 for this component will be busier than the average, and vice
versa for those with wi < 0.
Component 2, ‘commuter rush’ (Figure 8b). This component is distinguished by siz-
able peaks in the early morning and late afternoon that correspond closely to typical
‘rush hour’ commuting times. Observations with loadings wi > 0 for this component
will probably arise from sensors that are located in areas that are attended by large
numbers of commuters.
Component 3, ‘lunchtime suppression’ (Figure 8c). This component represents a sub-
stantial decrease in footfall at around 12:00. Although it will also cause a slight increase
in evening activity, peaking at approximately 20:00, the largest impact will be to
reduce activity around lunch time.
Component 4, ‘afternoon suppression’ (Figure 8d). Similar to component 3, this com-
ponent corresponds to a suppression of activity in the late afternoon and a slight
increase at lunchtime. However, as the most substantial impact is to reduce the
afternoon commuting peak we assign the label to reflect this.
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Fig. 8: Principal components for daily behaviour.

Components 5 and 6 (Figure 8e and Figure 8f) explain only a small part of the vari-
ance (recall that components 1–3 explain 95%) and it becomes difficult to distinguish
a noticeable activity that they might be associated with. We include them here as an
example but the later discussion will concentrate on earlier components.

The weekly aggregation gives further insight into the usage patterns with in the
city, as illustrated in Figure 9. Interestingly components 1–3 are almost identical to
the first three components in the daily aggregation, but carry with them additional
information particularly for the weekend.

Component 1, ‘busyness’ (Figure 9a). As with the daily aggregation, this appears to
be almost identical to the mean weekly activity in Figure 5b.
Component 2, ‘commuter rush’ (Figure 9b). This component exhibits clearly identi-
fiable early morning and late afternoon peaks during weekdays. Interestingly, during
weekends there is a small but noticeable suppression of activity during the middle
of the day, which gives further evidence that this component is capturing weekly
commuting behaviour.
Component 3, ‘lunchtime suppression’ (Figure 9c). As with the daily aggregation,
this component illustrates a suppression of footfall around lunchtime. Now the com-
ponent also captures an increase in late evening activity on Friday, Saturday, and
Sunday.
Components 4, 5 and 6 (Figure 9d, Figure 9e and Figure 9f) explain only a small
part of the variance and do not discern an obvious footfall pattern.
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Fig. 9: Principal components for weekly activities.

Having calculated and described the main principal components that characterise
daily and weekly footfall behaviour, the following section analyses the component
loadings in more detail and discusses the insights they can provide into urban dynamics
more broadly.

5.3 Component Loadings in the Case Study Locations

Section 4.3 outlined four distinct locations that are useful for demonstrating the insight
that can be gained through deeper analysis of the principal components. These loca-
tions are: Monash Road - Swanston Street (university); New Quay (leisure); Southbank
(leisure); and Southern Cross (transport hub). In the following analysis we illustrate
how the component loadings differ for each of these locations on two specific days:
Tuesday 5th and Saturday 9th February 2019. We choose a Tuesday and a Saturday
to compare weekly and weekend activities and choose a week in February because this
is during the summer term at Melbourne University (so student activities at the Uni-
versity will feature in the analysis). Figure 10 illustrates the loadings for those four
locations on those two days.

We highlight the results for Southbank (Figure 10c) and Southern Cross Station
(Figure 10d) as these are the most striking. Considering Southbank, on the Tuesday,
the most substantial impact is caused by Component 1 (busyness). Footfall patterns at
the station follow a ‘typical’ pattern with moring and evening commutes and activity at
lunch time. The pattern on Saturday, however, is very different. The area remains busy
on the whole, but there is a considerable decrease in component 2 activity (‘commuter
rush’) to be replaced by component 3 (‘lunchtime suppression’). A secondary impact
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Fig. 10: Component loadings for the four case study locations on two different days:
Tuesday 5th and Saturday 9th February 2019. Only the first 6 components are shown
for clarity. 18



of component 3 is to increase footfall in the evenings, so ultimately it appears that
on Saturday the activity in the Southbank area changes noticably from communting
behaviour to afternoon/evening activities. With respect to Southern Cross Station,
the results are even more striking. The large commuting activities that take place on
the Tuesday are almost non-existant on the Saturday, evidenced by a substantial drop
in the ‘busyness’ and ‘commuter rush’ component weightings.

6 Results: An Insight into Pedestrian Dynamics with
PCA

6.1 Relationships Between Component Loadings

An advantage of deriving interpretable principal components is the ability to examine
how the loadings of different components vary across observations to gain insights into
urban activities. While the components themselves are orthogonal by design, their
loadings can still reveal how different temporal patterns manifest across locations. To
this end, Appendix A provides a three-dimensional analysis of the values of the three
most important components for every sensor and every day. Interpreting all points
simultaneously in three dimensions is challenging, so Figure 11 presents the component
interactions for the four case study areas in isolation, represented using two 2D plots.
There are some striking features that offer insight into the nature of the four areas:

Monash Road - Swanston Street (university) – busyness has no relationship with
commuter rushes, but appears to have a negative relationship with lunchtime suppres-
sion. This implies that when the area is busier this can be attributed to an increase
in footfall in the middle of the day rather than during commuting times (a nega-
tive weighting to ‘lunchtime suppression’ will increase footfall during the day). This
observation makes sense given that the sensor is located on the Melbourne University
campus.
New Quay (leisure) – Increases in busyness appear to show a strong negative relation-
ship with commuter rushes and no obvious relationship with lunchtime suppression.
When New Quay is busy, this is not caused by commuters, nor are the changes
restricted mainly to midday hours as was the case with Monash Road - Swanston
Street.
Southbank (leisure) – There is no clear relationship between busyness and lunchtime
suppression, suggesting lunchtime activities do not influence busyness in a regular way
(although analysis of the component loadings in Section 5.3 suggested an increase in
lunchtime suppression on a Saturday, this may be obscured as it is only present on
one day per week, whereas commuting behaviour is much more common). Regardless,
there is a striking relationship between busyness and commuter ruses (also noticed in
Section 5.3) that deserves further attention below.
Southern Cross (transport hub) – shows an extremely strong positive relationship
between busyness and commuter rushes but no relationship between busyness and
lunchtime suppression, which would be expected from a public transport hub where
commuting has the main influence and other components have almost no influence
(rather than a non-systematic influence as is the case in Southbank).
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Fig. 11: Interactions between the three main principal components in the case study
locations.

The relationship between busyness and commuter rushes for Southbank deserves
closer attention. Firstly, however, consider again Southern Cross Station in Figure 11.
There appears to be a single, strong, positive relationship between busyness and com-
muter rushes. As Southern Cross Station becomes more busy, the shape of the daily
footfall pattern does not change; we see the same footfall patterns on different days,
but on some days the absolute counts are higher than on others. This is not the case
with Southbank however. As Figure 11. illustrates, there appears to be two or three
separate groups of points. As with Southern Cross Station, within a single group we
see the same footfall shape, but of varying intensity. However, the shapes within each
of the three clusters will be different. In effect Figure 11 suggests that there are two
or three different usage patterns present in the area. To explore this further, we man-
ually separate the groups of points into three distinct clusters and then plot the daily
footfall traces for each of the clusters. Figure 12a illustrates the three manually chosen
clusters and Figure 12b illustrates their daily traces.

Observing Figure 12, although there are small differences in the traces captured in
cluster 1 and 2, broadly the daily patterns follow a typical pattern that consists of peak
footfall times in the morning, lunchtime and afternoon. Cluster 3, however, captures an
entirely different trend that, although exhibiting similar footfall magnitudes, exhibits
a gradual increase in footfall throughout the day and does not display any discernible
peaks. It is likely here that we observe substantially different weekday and weekend
behaviour at Southbank, even though the footfall magnitudes are similar. In other
words, the area remains busy at the weekend, but we can hypothesise that the reasons
for visiting the area are different. This is in contrast to other commuting areas where
the footfall magnitude diminishes at the weekend and might reveal some useful insights
into the way that the built environment is used by visitors in this location.
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(a) Manually dividing the points into three clusters.

(b) Daily traces of the three ‘clusters’ of busyness and commuter rushes for Southbank.

Fig. 12: Clustering the busyness and commuter rushes components for Southbank
and analysing their daily footfall traces.
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6.2 Exploring the Evolution Urban Usage Patterns

In this final piece of analysis, we examine longer-term footfall trends to investigate
how the different patterns of behaviour vary over time. Some studies have previously
investigated changes in mobility patterns due to the impact of the COVID-19 pandemic
– for example: Kim and Jun (2022) analysed regional mobility shifts during COVID-19,
using inflow and outflow big data to identify key patterns and influencing factors; and
Schmahmann et al. (2022) examined metropolitan mobility trends, noting a decrease
in inner-city movement and an increase in out-migration – but to the best of our
knowledge no research has specifically used quantitative methods to explore the latent
factors driving the long-term changes in footfall patterns.

Having found a set of principal components using the data from 2018 and 2019,
we can use these to inspect the footfall patterns at times outside this window. In
Figure 13 we present the weekly aggregated counts for two selected sites along with the
first three components of the PCA decomposition. These sites are chosen specifically
because they exhibit interesting patterns; in other sites there is very limited change
in the longer-term trends.
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Fig. 13: Aggregated weekly footfall counts compared with the first three components
of the PCA.
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For South Cross Station (Figure 13a) we see a steady increase in pedestrian foot-
fall between 2010 and 2020, followed by a sharp drop during the COVID-19 pandemic.
Looking at the decomposition we can see that contribution due to lunchtime sup-
pression remains small during the entire time, while the change only comes with the
busyness and commuter rush components. Although footfall at the site appears to be
increasing, it is a long way from its pre-COVID levels which may reflect larger num-
bers of people working from home after the pandemic and hence not returning to the
area. This is potentially valuable insight for policy makers as it suggests that addi-
tional footfall might be encouraged through secondary means, such as making on-site
working more popular to encourage greater commuting, rather than through direct
initiatives that improve the attractiveness of the area.

Considering Lygon Street (Figure 13b), we see a steady decline in footfall between
2014 and 2022, which becomes more chaotic during COVID-19. Considering the PCA
components, we can see that this decline has been driven by a decrease in over-
all busyness and a small decline in lunchtime suppression, while commuter rushes
have actually increased over time. This suggests that although Lygon St. is gradually
becoming less busy, it may be transitioning into a more commuter-oriented location.

7 Conclusions, Limitations and Future Work

This paper has demonstrated how the use of Principal Component Analysis (PCA) can
lead to insight into the key temporal signatures that underpin urban footfall. By using
PCA, it is possible to reduce a complex, noisy time-series to a more comprehensible
number of components, and then analyse these components to draw inferences about
urban space usage more broadly. This final section will discuss the limitations of the
work and outline avenues for future research.

An obvious drawback with the approach relates to the validation of the identified
activities. Although the components that we extract appear to be related to well-
known activities, such as ‘9-5’ commuting, we do not have any information about the
activities that the individuals who contribute to the footfall counts are actually doing.
Although the patterns match expectations and findings in previous work, such as the
‘three peaks’ identified by others (Kim 2020; Dobler et al. 2021), and it is difficult to
imagine an alternative explanation for these structures, further work would be needed
to validate these assumptions. There are several possible avenues for validation. For
example, it could involve the use of activity surveys in the region, either via a new,
bespoke survey, or through the analysis of existing mobility surveys such as the UK
National Travel Survey that collects information on “how, why, when and where people
travel”(Department for Transport 2024). Alternatively, validation could be achieved
through triangulation with alternative data-driven mobility estimates, such as the
LandScan or Population 24/7 products (see Richardson (2020) for further detail) or
via a more nuanced analysis of individual movement traces, such as those that are
created passively through mobile phone use.

A second issue relates to bias and representation. Although Melbourne has a very
large number of publicly-available footfall sensors – the largest number for a city
available globally as far as we are aware – we have not attempted to analyse the equity
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in their spatial distribution. Evidence from other places suggests that sensors such
as these are not typically distributed across the population equitably (Robinson and
Franklin 2020; Robinson et al. 2022) and instead cluster in areas that are well known by
the researchers tasked with deploying them or in places where, for a variety of reasons,
their deployment is relatively straightforward from an administrative/infrastructure
perspective. The result is that, unless the sensor locations have been carefully planned,
they are unlikely to provide a ‘true’ picture of the variety in footfall patterns that
occur throughout the city. Future work could attempt to explore this question by
analysing the demographics of the city more broadly and assessing the degree to
which the sensor locations capture the behaviour of all residents, although this will
of course be complicated by the fact that while the sensors measure outdoor activity,
most demographic data sets will capture residential characteristics. Again, qualitative
surveys of the people who visit different parts of the city might help.

The generalisability of the work comes in to question because we do not attempt
to apply the method to places other than Melbourne, Australia. That said, the pat-
terns that we uncover are not especially surprising; they are similar to those found
cities such as New York (Dobler et al. 2021) and Seoul (Kim 2020) so may well be
representative of other major cities in ‘Global North’ countries. Data permitting, it
would be interesting to apply the method in a variety of different places to determine
whether the same key footfall components can explain such a large part of the over-
all variance. Similarly we base most of the analysis on data for the 2018-2019 period
in order to avoid the huge disruption to footfall patterns that occurred during the
COVID-19 pandemic. Although unlikely, as there is nothing to suggest that 2018-2019
was an exceptional period in Melbourne’s history (unlike, say, 2020), it is possible that
had the key temporal signatures might be different were another time period chosen.
A related issue is that while PCA effectively uncovers regular temporal patterns in
footfall data, it lacks the capability to detect anomalies and special events. Here we
have focussed on more regular ‘signatures’, but future work will aim to complement
the current analysis with methods that enhance the identification of such variations.

In conclusion, in this paper we apply the technique of Principal Component Anal-
ysis (PCA) to footfall count data from Melbourne, Australia. Interestingly the three
components that explain most of the variability in the footfall patterns across the city
are recognisable as typical activity patterns, such as ‘9-5’ commuting or leisure activ-
ities during evenings and weekends. Further analysing the components themselves,
and their interactions, offers the opportunity to better understand the dynamics of
pedestrian behaviour in the city from a data-driven / quantitative perspective to com-
plement qualitative work. Immediate plans for future research include (i) assessing the
generalisability of the work by replicating the study across a larger number of cities
and (ii) exploring the demographics of the city in more detail to better understand
the cause of the observed patterns.

Data Availability Statement. The code and data that underpin the work in this
paper are all publicly available as follows:

• The underlying pedestrian count data are available from the City of Melbourne Open
Data Portal, specifically the ‘Pedestrian Counting System’: https://data.melbourne.
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vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/
information/.

• The full source code is publicly available at the following GitHub repository: https:
//github.com/nickmalleson/melbourne-timeseries

• The code repository at the point of paper acceptance has been tagged and assigned
the following DOI: https://doi.org/10.5281/zenodo.15297542.

• The code has been designed to download the required data on first use. However,
in case the data cannot be obtained in the future, a full copy of the code repository
including the required data has been archived with Figshare at: https://dx.doi.org/
10.6084/m9.figshare.28882904
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Appendix A Interpretation of the Components in
3D

Figure A1 illustrates the values of the three most important components (busyness,
commuter rushes and lunchtime suppression) for ever sensor and every day. Note that
interpretation of the 3D plot is considerably easier when these are viewed interactively
so that they can be zoomed and rotated. To this end, an html file has been included
in the Supplementary Information that provides a 3D interactive plot that allows the
reader to explore the point cloud in more detail.

The most striking immediate observation from Figure A1 is the cone shape: as the
busyness component increases there is a much greater spread in the values of the other
two components (both positive and negative). This is interesting but not unexpected;
if the value of the first component is large then the other components must necessarily
have particularly large or small values to have a noticeable impact on the final footfall
counts. More broadly, the analysis of individual sensors using interactive 3D plots such
as this could produce unexpected insights into the dynamics of urban footfall.

(a) 3D visualisation from two different angles (only 30% of all observations
are shown for clarity).

(b) 2D plots for the same observations (all points shown)

Fig. A1: Visualisation of the first 3 principal components for every sensor and day.
Colours are chosen randomly and uniquely to represent the different sensors.
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Response to Reviewers (2)

We would like to thank the reviewers and the editor for their further comments in
response to our first revisions. We have outlined our responses to each comment in
the following sections. In addition, we have followed the editor’s suggestions regarding
code & data availability (which we strongly support) and have now updated the Data
Availability Statement as follows:

• The underlying pedestrian count data are available from the City of Melbourne Open
Data Portal, specifically the ‘Pedestrian Counting System’: https://data.melbourne.
vic.gov.au/explore/dataset/pedestrian-counting-system-monthly-counts-per-hour/
information/.

• The full source code is publicly available at the following GitHub repository: https:
//github.com/nickmalleson/melbourne-timeseries

• The code repository at the point of paper acceptance has been tagged and assigned
the following DOI: https://doi.org/10.5281/zenodo.15297542.

• The code has been designed to download the required data on first use. However,
in case the data cannot be obtained in the future, a full copy of the code repository
including the required data has been archived with Figshare at: https://dx.doi.org/
10.6084/m9.figshare.28882904

Reviewer 3

Question 3.1 Regarding the use of commas, I would kindly encourage the authors
to revisit the rules pertaining to subordinate clauses. Specifically, when a subordinate
clause precedes the main clause, a comma is typically required. This is a straightfor-
ward grammatical point, and I had hoped the authors might take the opportunity to
verify and incorporate this suggestion throughout the text.

Response 3.1 Agreed; we have been through the document again and looked
specifically for the use of commas and (subordinate) clauses, adding commas where
appropriate.

Question 3.2 Concerning the code availability: I had previously recommended shar-
ing the code via platforms such as Figshare. It is indeed common practice to share code
in a way that allows reviewers to access and verify it, while keeping it private until
publication. Figshare allows for such an approach, sharing the code anonymously but
not publicly. I encourage the authors to consider this solution from now on in their
submission. Also, please include a Code Availability statement in the manuscript with
the corresponding link upon acceptance. I recommend that the code be clearly com-
mented, include usage examples, and, if data sharing is restricted, provide synthetic
data to demonstrate its functionality.
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Response 3.2 We agree entirely and have made the code available both through
GitHub (with a snapshot DOI taken at the point of paper acceptance) and the full
repository, including data, available on FigShare. The Data Availability Statement
has been updated to reflect this.

Question 3.3 I noticed a few minor issues that have arisen, which I would like to
share constructively. I am mindful that academic writing styles can differ, and my
intention is to offer suggestions that may help improve clarity and readability:
Page 6, Line 39: The brief mention of the dataset here feels slightly confusing, as the
detailed description is provided in the following section. Simply noting that the dataset
spans multiple locations and a time period may suffice, as I initially had the impres-
sion there were two separate datasets and had to re-read the section to clarify.
Section 3.2: While the writing is accessible and clear, it leans somewhat toward lay-
man’s terms. Given the scientific audience of the journal, I suggest refining this section
to make it more concise and aligned with academic standards, without losing its clar-
ity.
Figures: Please consider running all figures through a color blindness simulator. Even
without color vision deficiencies, I found Figures 4 and 11 challenging to look at.
Enhancing the color schemes could improve accessibility for a broader readership.

Response 3.3 Thank you, we have made the changes re. the data explanation. We
have decided not to rewrite Section 3.2 though as it isn’t something that any other
reviewers have commended on and our feeling is that the lay explanation is important
for those who will be unfamiliar with the method (even in the Journal of Geographical
Systems it is unlikely to be a method that many readers will be familiar with). We’ve
also decided not to revisit the figures as these were deemed acceptable previously and
we’re not able to change the colours in the basemap in Figure 4 anyway (it’s an OSM
default).

Reviewer 4

Question 4.1 A few remaining minor points to tidy up:
p2, line 40 rephrase to avoid the second use of ”distinct” within 6 words
p4, line 36 I’m pleased to see those references to ambient/day time/temporary popu-
lations. However, these are not used consistently, even by authors that you cite - for
example, Whipp et al. treat ”ambient” population as time-specific but excluding those
at places of residence or using modes of transit, while the Landscan work mentioned
by Panczak et al. considers ”ambient” as an average population over a 24 hour period
- neither of which is the same as ”day time” or ”temporary”. Their terminological
disagreements are not your problem, but I’d recommend your statement on line 39
should say something like ”These all refer to different measures of the dynamic pop-
ulations present in an area...” (or similar) which would be more accurate than the
current version.
p19, line 38 ”This implies that when the area is busier this is can be” - delete ”is”
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p20, line 10 ”but not relationship” - should be ”no relationship”?
I note that the reference list doesn’t yet seem to have been prepared in the
JGSY/Springer style

Response 4.1 Thank you, we agree with all of the above and have made the appro-
priate changes. We now also apply the Springer Nature journal style, including for the
references.
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