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The composite fermion Fermi liquid (CFL) state at ν = 1/2 filling of a Landau level is a paradigmatic non-
Fermi liquid borne out purely by Coulomb interactions. But in what ways is this exotic state of matter different
from a Fermi liquid? The CFL entanglement entropy was indeed found to exhibit a significant enhancement
compared to free electrons [J. Shao et al., Phys. Rev. Lett. 114, 206402 (2015)], which was subsequently
ruled out as a finite-size effect by the study of a lattice CFL analog [R. V. Mishmash and O. I. Motrunich,
Phys. Rev. B 94, 081110(R) (2016)]. Moreover, the enhancement was not observed in a quasi-one-dimensional
limit of the Coulomb ground state at ν = 1/2 [S. D. Geraedts et al., Science 352, 197 (2016)]. Here, we
revisit the problem of entanglement scaling in the CFL state realized in a two-dimensional electron gas. Using
Monte Carlo evaluation of the second Rényi entropy S2 for the CFL variational wave function, we show that
the entanglement enhancement is present not only at ν = 1/2, but also at ν = 1/4, as well as in bosonic CFL
states at ν = 1 and ν = 1/3 fillings. In all cases, we find the scaling of S2 with subsystem size to be enhanced
compared to the noninteracting case, and insensitive to the choice of geometry and projection to the lowest
Landau level. We also demonstrate that for CFL states, the variance of the particle number in a subsystem
obeys area-law scaling with a universal subleading corner contribution, in stark contrast with free fermions.
Our results establish the enhanced entanglement scaling and suppressed charge fluctuations as fingerprints of
non-Fermi-liquid correlations in CFL states.
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I. INTRODUCTION

The fundamental quasiparticles of fractional quantum Hall
states are composite fermions (CFs)—electrons dressed by
an even number of vortices [1]. At even-denominator fillings
of the lowest Landau level (LLL), the CFs can form a com-
pressible state—the “composite fermion Fermi liquid” (CFL)
[2–4], which has been observed in numerous experiments [5].
The CFL state has also been argued to emerge in systems with
flat bands in the absence of a magnetic field, such as twisted
moiré materials [6,7].

Flux attachment—the mechanism behind the formation of
CFs [2,8,9]—couples the Fermi surface of CFs with an in-
ternal statistical U(1) gauge field, placing the CFLs inside a
larger class of “non-Fermi liquids” (NFLs) (see Ref. [10] for a
recent review). On the one hand, the CFL is a pristine example
of a stable NFL phase that emerges solely due to electron-
electron interactions. On the other hand, the existence of
well-defined CF quasiparticles implies there may be a quali-
tative similarity between CFL and conventional Fermi liquids
[11–13]. Indeed, the Fermi wave vector of CFs is consistent
with that derived from the electron density [14–16] and it also
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satisfies the Luttinger theorem [17,18]. Thus, pinpointing the
NFL nature of the CFL is a nontrivial task.

One sensitive diagnostic of a quantum state is its bipartite
entanglement entropy. The entanglement entropy scaling
in noninteracting Fermi liquids obeys the well-known
Widom formula [19–21], wherein the “area law”—ubiquitous
to gapped systems—gets modified by a multiplicative
logarithmic correction. It has been argued that turning on
interactions does not modify the scaling [22], leaving open
the value of the prefactor [23,24]. Previous numerical tests of
this hypothesis for the CFL state have arrived at conflicting
conclusions. Infinite density matrix renormalization group
(iDMRG) study of the Coulomb ground state at ν = 1/2
revealed no sign of correction to the Widom formula
[25]. For the continuum CFL variational wave function
of Rezayi and Read [26], Ref. [27] found a significant
multiplicative prefactor to the entanglement entropy
scaling (≈2 in system sizes of the order of 40 electrons).
Lastly, Ref. [28] also found an enhancement for a lattice
analog of the CFL wave function. However, based on the
scaling of different contributions to the entanglement from
the sign and modulus of the wave function, Ref. [28] ruled
out the enhancement as a finite-size effect. These studies
therefore raise an important question: Is there any distinctive
entanglement signature of the CFL state in the thermodynamic
limit?

Here we report a systematic study of entanglement in
several CFLs described by the Rezayi-Read wave function
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VOINEA, PU, BALRAM, AND PAPIĆ PHYSICAL REVIEW B 111, 115119 (2025)

[26], known to have a large overlap with the LLL Coulomb
ground state [29,30]. We assume full spin polarization and
compare the fermionic CFLs at fillings ν = 1/2 and ν = 1/4,
which are distinguished by the number of vortices attached
to each electron (two and four, respectively), and contrast
those against an odd number of vortices in bosonic CFLs at
ν = 1 and ν = 1/3 fillings. We employ Monte Carlo tech-
niques to evaluate the second Rényi entropy using the SWAP

algorithm [31]. In all of the considered CFL states, we find
a pronounced enhancement of entanglement scaling, consis-
tent with Ref. [27], up to the largest accessible system sizes
(N � 60). At the same time, we reconcile these findings with
entropy decompositions considered in Ref. [28] by showing
that the latter is more sensitive to finite-size effects and LLL
projection compared to the total entropy. We demonstrate the
robustness of our conclusions in sphere and torus geometries.
Finally, we use the same setup to evaluate charge fluctuations
in a subsystem, for which analytical predictions are available
[32]. We confirm that charge fluctuations in the CFL state
follow the expected area-law scaling, in sharp contrast with
free fermions. Moreover, within the same range of system
sizes, we accurately extract the subleading corner contribution
to the charge fluctuations, in agreement with the expected
“superuniversal” value [32] that also holds for gapped [33,34]
and critical [35,36] states in (2+1) dimension.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the CFL wave functions on the torus
and sphere geometries and evaluate their entanglement en-
tropy. Section III contains the results for charge fluctuations
in the same CFL states. In Sec. IV, we discuss the scaling of
entanglement entropy in the context of modulus and sign en-
tropy decompositions, carefully contrasting the results against
free fermions. Our conclusions and a discussion of open
questions are presented in Sec. V, while the Appendices con-
tain further technical details, including a description of the
Monte Carlo algorithm and the LLL projection of the wave
functions.

II. THE CFL WAVE FUNCTION
AND ITS RÉNYI ENTROPY

The essential physics of the CFL state at filling factor ν =
1/m is captured by the ansatz wave function [2,26],

�CFL
m (z1, . . . , zN ) = Det[χn(z j, z∗

j )]ψL
m(z1, . . . , zN ), (1)

expressed in terms of particle coordinates z j = x j + iy j . The
first term in Eq. (1) is a Slater determinant of single-particle
orbitals χn occupied by CFs in zero magnetic field, while
the second is the Laughlin-Jastrow wave function at filling
factor ν = 1/m [37]. Due to the antisymmetry of the Slater
determinant, these wave functions describe fermionic CFL
states for m even and bosonic CFL states for m odd. As
discussed below, the wave functions of Eq. (1) can be adapted
to the spherical and toroidal geometries considered in this
work; see Refs. [26,38,39]. Moreover, the wave function of
Eq. (1) is not constrained to reside in the LLL. Therefore,
to make contact with previous work, we will project the
wave function to the LLL using the Jain-Kamilla (JK) method
[27,40–42]. Nevertheless, we will probe the sensitivity of

our results by also studying the unprojected wave function
as in Eq. (1).

The central object of our study is the second Rényi entropy
of the reduced density matrix ρ̂A of region A,

S2 = − ln
(
trA ρ̂2

A

)
, ρ̂A= trĀ

∣∣�CFL
m

〉〈
�CFL

m

∣∣, (2)

obtained by tracing over the complement Ā of region A. We
typically take A to be a circle of radius rA, although in Sec. III
we will also consider a square-shaped region to determine
corner contributions to charge fluctuations in A. To extract
the scaling, we fix a large system size and vary rA. S2 can
be conveniently evaluated via variational Monte Carlo by re-
placing the trace with an expectation value of a SWAP operator
between two copies of the system [31], which is reviewed in
Appendix A.

For any wave function � that can be written as a Slater de-
terminant, � = Det[φm(rn)], where the single-particle orbitals
φm are orthonormalized over the full space, the entanglement
entropy can be efficiently computed using the correlation ma-
trix A [43]. The matrix elements of A are given by the overlap
integrals on the subsystem, Amn = ∫

A dr φ∗
m(r)φn(r). Denot-

ing the eigenvalues of A by am, the second Rényi entropy is
given by [44,45]

Sfree
2 = −

∑
m

ln
[
a2

m + (1 − am)2
]
. (3)

Explicit expressions for Amn in different geometries consid-
ered in this work are given in Appendix B. With this, one can
use Eq. (3) to efficiently evaluate the Rényi entropy of free
fermions in systems of finite size.

In the asymptotic limit, for free fermions in two dimensions
(2D), the area-law scaling of S2 is violated by a term that
depends log-linearly on the dimensionless quantity λ ≡ kF rA,
with kF denoting the Fermi momentum. The violation is given
by the Widom formula [19–21],

Sfree
2 = κwλ ln λ + · · · , (4)

where κw is the Widom coefficient that depends solely on the
geometry and effective central charge of a (1+1)-dimensional
chiral relativistic fermion [46,47]. For a circular 2D Fermi
surface, we have κw = 1/4. One of the goals of this paper
is to ascertain whether the entropy of CFL states follows the
scaling S2 = κλ ln λ + · · · , analogous to Eq. (4), and whether
κ is the same as κw. In the remainder of this section, we
directly evaluate the S2 Rényi entropy for the wave func-
tions in Eq. (1) on the torus and sphere, and compare them
against Eq. (4).

A. Torus

On the torus, the CFL state at filling factor ν = 1/m is
described by the wave function in Eq. (1), where we take the
single-particle orbitals to be plane waves, χn(r j ) = exp(ikn ·
r j ), with kn the wave vectors of the occupied states of the
Fermi sea [26]. The latter can be determined from an em-
pirical rule given in Refs. [27,38,39]. On the other hand, the
Laughlin-Jastrow part of the wave function ψL

m has a more
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FIG. 1. (a),(b) S2 Rényi entropy for (a) projected and (b) unprojected CFL wave functions at fillings ν = 1/m, with m = 1, 2, 3, 4. For
all fillings, S2 exhibits a multiplicative correction ∼1.7 to the Widom formula, given by Eq. (4). The 2kF Friedel oscillations [2] are visible
in all cases. All data are for N = 37 particles on a square torus. The symbols represent Monte Carlo data, while the continuous black line
is the exact-diagonalization result for free fermions. (c) Extrapolations of the ratio between the slope κ (S2 vs λ ln λ) of the CFL at fillings
ν = 1/2 and ν = 1 and the free-fermion slope κw. We used system sizes N = 12–60 and data points in the range which yield the extrapolated
free-fermion slope ≈0.25; see Appendix D for details.

complicated form given by

ψL
m = ϑ

[
N−1

2
m(N−1)

2

](
m

∑
zi

L1

∣∣∣∣mτ

) ∏
i< j

{
ϑ

[
1
2
1
2

](
zi − z j

L1

∣∣∣∣τ
)}m

× exp

(∑
i

z2
i − ∣∣z2

i

∣∣
4�2

)
, (5)

where the torus periodicity is ensured by the Jacobi ϑ func-
tions with rational characteristics [48–50]. The Jacobi ϑ

functions explicitly depend on the modular parameter τ of
the torus and one of its dimensions, L1, where � denotes the
magnetic length. The ϑ function in the first line of Eq. (5)
describes the center of mass of the particles, and we have
implicitly chosen it to carry zero momentum and obey strictly
periodic conditions for the torus [51]. The remaining terms
in Eq. (5) represent a periodized version of the familiar
Laughlin-Jastrow factor in the infinite disk geometry [37].

While the wave function ψL
m in Eq. (5) is fully within the

LLL, the multiplication via plane waves χn(r j ) brings the total
wave function �CFL

m outside the LLL. Following Ref. [52], we
obtain the family of LLL-projected CFL wave functions,

�CFL,proj[α]
m = ϑ

[
N−1

2
m(N−1)

2

](
m

(∑
zi + i�2 ∑

ki
)

L1

∣∣∣∣mτ

)

× Det
[
g[α]

nl

]
exp

(∑
i

z2
i − ∣∣z2

i

∣∣
4�2

)
, (6)

where the key consequence of LLL projection are the CF
“single-particle” orbitals gα

nl ,

g[α]
nl = ekn(kn+2kn )�2/4ei(kn+kn )zl /2

×
m/2∏
p=1

∏
j �=l

ϑ

[
1
2
1
2

](
zl + iαpkn�

2 − z j

L1

∣∣∣∣τ
)

, (7)

where α = (α1, . . . , αm/2) are the corresponding JK projec-
tion coefficients. Torus periodicity enforces the constraint∑m/2

p=1 αp = m.

Note that gα
nl in Eq. (7) depend on the coordinates of

all the particles, and hence they are complicated many-body
functions that only formally resemble single-particle orbitals.
Essentially, the LLL projection shifts the attached vortices by
an amount proportional to the wave number of the CF. The
scheme in Eq. (6) encompasses fermionic CFL wave functions
with even m; for bosons, one needs to attach one additional
set of Jastrows outside the wave function for m � 3 and
remove one for m = 1. In Appendix C, we verify the con-
sistency of our results for different choices of α, showing
that in general, our results are insensitive to the details of the
projection.

In Figs. 1(a) and 1(b), we show the evaluated S2 for
bosonic and fermionic CFL states at fillings ν = 1/m,
with m=1, 2, 3, 4. Based on our free-fermion benchmarks
presented in Appendix D, to minimize the finite-size effect,
we harvest data points such that the subsystem area ranges
from 1% to 30% of the total area and use a fixed Fermi
momentum of kF = √

2ν/�. The extrapolated slope κ , in
units of the Widom slope κW, is plotted in Fig. 1(c) as a
function of inverse system size.

Our results for ν = 1/2 in Fig. 1(a) are consistent with
Ref. [27] and scaling in Eq. (4), with the coefficient κ ≈ 1.7κw

significantly violating the Widom formula. By comparing the
circular and square subregions, we find the violation to be
independent of the subregion shape; see Appendix D. Another
thing to note is that attaching a different number of vortices
only has a weak effect on the slope κ , as seen from the
parallel lines in Fig. 1(a). Moreover, LLL projection also has
an almost negligible effect on κ , except for the bosonic ν = 1
CFL state, as illustrated in Fig. 1(c). The stronger effect of
LLL projection on ν = 1 is expected based on the attached
single vortex. Next, we show that similar results are obtained
for CFL states on the sphere.

B. Sphere

The unprojected CFL wave function on the sphere is of
the form in Eq. (1), where the single-particle orbitals are the
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standard spherical harmonics, χn(r j ) = YLnMn (θ j, ϕ j ), where
L, M stand for the angular momentum and its z component,
respectively, while θ j and φ j are the polar and azimuthal
angles describing the position of the jth particle in terms
of spherical angle � j . The spherical Laughlin-Jastrow wave
function has a compact expression,

ψL
m =

∏
i< j

(uiv j − viu j )
m, (8)

in spherical spinor coordinates [53],

u j = cos(θ j/2)eiφ j/2, v j = sin(θ j/2)e−iφ j/2. (9)

Note that the Widom formula for free fermions can also be
appropriately modified for the sphere geometry, as shown in
Appendix E.

Before presenting the results, we briefly explain how to
perform the LLL projection on the sphere. Similar to the
torus, while Eq. (8) describes a proper LLL state, the spher-
ical harmonics have components in arbitrary LLs. Let us
first treat the state at ν = 1/2, with two vortices attached,
i.e., �CFL

1/2 =PLLL
∏

j<k (u jvk−ukv j )2�FS, where �FS is the
filled-shell wave function on the sphere at zero field that is
analogous to that of a Fermi sea [26]. The projected state
can be evaluated as a Slater determinant of CF wave func-
tions Y CF

0LM which, similarly to the torus geometry, depend
on the coordinates of all particles through the Jastrow fac-
tors Jj=

∏
k �= j (u jvk−ukv j ). We quote the final expression

here:

Y CF
0LM (� j ) = N0,L,M (−1)L−M (2Q + 1)!

(2Q + L + 1)!
uM

j v−M
j

×
L∑

s=0

(−1)s

(
L
s

)(
L

L − M − s

)
us

jv
L−s
j

×
[(

∂

∂u j

)s(
∂

∂v j

)L−s

Jj

]
, (10)

where N0,L,M is a normalization factor, and the flux for the
physical electrons is 2Q = 2(N−1). Given that we only have
one power of Jastrow factors, the derivatives can be evaluated
as follows [9]:(

∂

∂u j

)s(
∂

∂v j

)L−s

Jj

= Jj

∑ s∏
i=0

vki

u jvki − ukiv j

L−s∏
i=0

−uli

u jvli − uliv j
, (11)

where the sum runs over all possibilities of choosing s parti-
cles {ki} and L−s particles {li}, all distinct. The Jastrow factors
Jj can be factored out of the determinant postprojection and
their product is the square of the complete Jastrow factor, i.e.,∏

j J j = ∏
i<k (uivk − ukvi )2 ≡ ψL

2 .
The above construction produces CFL states at general

fillings. For the fermionic state at ν = 1/4, we choose to
only project with two Jastrow factors, leaving the other two
outside—this is similar to the α = (4, 0) state on the torus.
For the bosonic states at ν = 1 and ν = 1/3, we need to divide
or multiply by a single Jastrow factor, respectively [30,54],
again mirroring the construction on the torus. It is known

that the microscopic CFL wave function is not very sensitive
to the number of Jastrows placed inside the LLL-projection
operator [55,56]. Note that ν = 1 is a special case as the
hardcore constraint is not enforced properly, which can result
in instability after projection. To fix this, we implicitly enforce
a nonzero hardcore radius in our Monte Carlo simulation.

Figure 2 demonstrates the similarity of CFL results on the
sphere with those previously presented for the torus geome-
try. This consistency highlights the robustness of our results.
Furthermore, for the sequence of system sizes N = n2 that
we consider on the sphere, the CFL is a uniform angular
momentum L = 0 state, which removes some of the ambigu-
ity associated with the definition of the Fermi momentum on
the torus.

III. CHARGE FLUCTUATIONS

In systems with a U(1) symmetry, entanglement can be
directly related to the fluctuations of particle number, N̂A,
measured on a subsystem:

�2NA ≡ 〈
N̂2

A

〉 − 〈N̂A〉2. (12)

For example, in noninteracting 2D Fermi liquids, S2 and �2NA

differ only by a multiplicative constant [57,58]. Similarly,
in a NFL, charge fluctuations are expected to closely track
entanglement entropy [22]. Recently, the scaling of charge
cumulants or “disorder operators” was indeed shown to ex-
hibit a logarithmic violation of the area law in NFLs at a
quantum critical point [59]. Since �2NA can be computed
with a similar Monte Carlo method for the same system sizes
as S2, we can leverage the better analytical understanding
of charge fluctuations to support our previous entanglement
results.

Remarkably, Fig. 3 shows that �2NA in CFL states, with
and without LLL projection, obeys an area law. This implies
that charge fluctuations of the physical electrons forming the
CFL are gapped [32,60], in stark contrast to ordinary Fermi
liquids. While it is well known that the ν=1/2 CFL state
does not exhibit a quantized Hall resistance [61], transport
experiments probe a gap to creating or removing fraction-
alized excitations. By contrast, �2NA probes the fluctuation
of electrons in a subsystem and is therefore more similar to
scanning tunneling spectroscopy experiments [62–66], which
indeed observe a Coulomb gap at ν=1/2. This is because the
electrons in the CFL exhibit an effectively finite correlation
length leading to an exponentially suppressed tunneling den-
sity of states [67–70]. The area law for �2NA obeyed by the
microscopic CFL wave function is clearly demonstrated here.

In spatially isotropic systems, the static structure factor
sq governs the behavior of �2NA [34]. For CFL states, the
LLL-projected structure factor takes the form s̄q ∼ q3 ln(1/q)
in the long-wavelength limit [2,11], with inter-Landau-level
gapped modes contributing an additional term ∼q2 to sq. The
former enforces an area-law scaling, while the latter adds
a “superuniversal” constant term in the presence of sharp
corners. The general form is

�2NA = aλ − b(θ ) + · · · ,

b(θ ) = ν

4π2
[1 + (π − θ ) cot θ ], (13)
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FIG. 2. S2 Rényi entropy of projected and unprojected CFL states on the sphere at fillings ν = 1/m, with m = 1, 2, 3, 4. The projected
data are for the system size N = 49, while the unprojected data are for N = 64. The continuous black line is the free-fermion data obtained by
exact diagonalization. All filling factors show an enhanced slope compared to the Widom value, and ν = 1 shows an increase after projection,
similar to the torus geometry.

where a is a nonuniversal coefficient, and b(θ ) is a constant
contribution due to a bipartition containing a single corner

with an opening angle θ [32]. In Fig. 3, for simplicity, we
consider a square subsystem.

FIG. 3. Charge fluctuations across the square-shaped bipartition for CFL states at different filling factors. In contrast to free fermions (solid
black line), the charge fluctuations in CFL states are strongly suppressed and obey area-law scaling. The top row shows the fluctuations divided
by λ and plotted as a function of ln λ, while the bottom row shows the raw value plotted on a linear λ scale. Insets to the bottom plots show fits
to the area law (colored dashed lines). LLL projection alters the area-law coefficient, but preserves the universal corner contribution. Table I
shows the extracted corner contributions, which are proportional to the filling factor.
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VOINEA, PU, BALRAM, AND PAPIĆ PHYSICAL REVIEW B 111, 115119 (2025)

TABLE I. Extracted corner contributions to charge fluctuations
in different CFL states, with or without LLL projection. The system
size is N = 37 particles for all fillings.

ν = 1 ν = 1/2 ν = 1/3 ν = 1/4

4π 2btheory 1 0.5 1/3 0.25

4π 2bproj 1.04(9) 0.53(4) 0.38(6) 0.28(6)

4π 2bunproj 0.93(3) 0.48(4) 0.39(4) 0.27(5)

From the intercept of �2NA vs λ, we determined b(π/2) in
Table I, which is in good agreement with Eq. (13). Note that
while projection places the wave functions of Eq. (1) com-
pletely inside the LLL, we do not project the density operator,
and therefore the associated gapped modes are not removed;
hence both projected and unprojected wave functions exhibit
approximately the same corner contribution.

IV. MODULUS AND SIGN STRUCTURE

While Fig. 1 strongly suggests that κ exceeds the Widom
value, it is important to understand where this enhancement
is structurally encoded in a CFL wave function and whether
or not it should be interpreted as a finite-size effect [28]. An
idea first put forward in Refs. [71,72] is to decompose the
total entropy in a way inspired by SWAP,

S2(�) = S2,p + S2,mod + S2,sgn. (14)

The first term represents the probability that the two copies
are “swappable,” while the last two terms are the “mod”
and “sgn” contributions; see Appendix A. Adding the first
two contributions together yields S2(|�|)—the entropy of the
absolute value of the wave function, while S2,sgn stems from an
interplay between the absolute value and sign structure of �.

The hope behind the decomposition of Eq. (14) is that
the sign structure of the wave function carries the leading
contribution to the entanglement as N→∞. While there are
examples of wave functions with provable large sgn entangle-
ment [73,74], there are also instances where the mod entropy
is not dominated by that of the sign [75]. Thus, the scaling
of different terms with N in Eq. (14) is not rigorously under-
stood in general. In fact, even for free fermions, the scalings
of S2(|�|) and S2,sgn are not known analytically. Intuitively,
the reason for this is that the decomposition in Eq. (14) re-
places a tractable free-fermion problem with an effectively
“many-body” object that no longer has a simple descrip-
tion in terms of correlation matrices [43]. Moreover, S2(|�|)
and S2,sgn carry nontrivial finite-size dependence due to the
mixing of subleading [O(λ) and O(ln λ)] terms. Our Monte
Carlo analysis for free fermions presented below is consistent
with S2,sgn carrying the dominant λ ln λ dependence; however,
both S2(|�|) and S2,sgn suffer from much more pronounced
finite-size effects compared to the total entropy S2. Below we
discuss in detail the entropy decompositions for free fermions
and then apply the same considerations to the CFL case.

A. Mod and sign entropy for free fermions

As mentioned previously, the scaling of different contribu-
tions to the entropy in Eq. (14) is not rigorously known, even

for free fermions where the full entropy has an established
analytic expression. Figure 4(a) contrasts the full S2 entropy
for free fermions against its decompositions in Eq. (14) ob-
tained via Monte Carlo; see Figs. 4(b)–4(d). While the full
entropy can be computed for large free-fermion systems con-
taining thousands of particles, the evaluation of mod-sign en-
tropy contributions, to the best of our knowledge, can only be
done with Monte Carlo. This limits the accessible system sizes
to N � 100, which is similar to the range for the CFL states.

Within the range N � 100, we observe the full entropy
S2 steadily converging to the Widom slope in Fig. 4(a). Fig-
ures 4(b) and 4(c) illustrate the importance of considering
the p and mod contributions to the entropy separately. They
each appear to converge nicely to the respective scalings,
S2,p ∼ O(ln λ) and S2,mod ∼ O(λ). However, if we add them
together to make up S2(|�|) [see Fig. 4(c)], the latter con-
verges nonmonotonically when plotted as S2(|�|)/λ vs ln λ.
If we estimate the slope of S2(|�|) by adding the fits, we
obtain the solid line in Fig. 4(c), which suggests that our
system sizes are not large enough to see the expected area-
law scaling S2(|�|) ∼ λ in the thermodynamic limit. This
adversely impacts the scaling of the sign entropy in Fig. 4(d),
which overshoots the Widom slope to compensate for the
downturn in S2(|�|). By plotting the Widom slope minus the
extrapolation of S2(|�|) using a solid line in Fig. 4(d), we see
that it might only approach the Widom scaling in much larger
system sizes (ln λ � 4). At the same time, the full entropy in
Fig. 4(a) tracks the Widom scaling much more closely even
in smaller system sizes. As the range of system sizes in this
example is comparable to the CFL case, the usefulness of mod
and sign decompositions over the full entropy is questionable.

B. Mod and sign entropy for CFL

Similar issues are observed in the sign entropy of projected
and unprojected CFL states; see Figs. 5(a) and 5(b). Unlike the
full entropy, which is largely insensitive to the LLL projection,
the sign entropies are significantly altered by it, although they
still appear to capture the logarithmic violation of the area
law. In particular, S2,sgn of the unprojected CFL states tracks
the sign entropy of free fermions, which is revealed more
clearly by plotting their difference in Fig. 5(d), while the
ratio is shown in the inset. By contrast, within the same range
of system sizes, the difference S2,sgn−Sfree

2,sgn increases with λ

for the projected CFL states in Fig. 5(c), consistent with an
enhancement.

As the physical content and scaling properties of the sign
entropy are unclear, one should not view the results in Fig. 5 as
more compelling than the full entropy in Fig. 1. Nevertheless,
if one assumes that S2,sgn may carry the full λ ln λ depen-
dence, it is interesting to ponder two scenarios that would
make Figs. 1 and 5 consistent. The first possibility is that
there may be an intrinsic difference between projected and
unprojected CFL states, such that only the former exhibits an
enhanced entanglement growth. While this is counterintuitive,
LLL projection could alter the coefficient of entanglement
scaling, unlike other universal topological properties. The
second option, proposed by Ref. [28], is to conclude there
is no enhancement and place trust in Figs. 5(b)–5(d) above
all others. This would require the lines in Figs. 5(a)–5(c) to
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FIG. 4. Comparison of the full S2 Rényi entropy and its SWAP decomposition, given by Eq. (14), for free fermions on the sphere. (a) Total
S2 entropy, computed via Monte Carlo (markers), while exact-diagonalization result (solid line) is for a large system size N = 625. All system
sizes steadily approach the Widom slope κw = 0.25 (dashed line). (b) S2,p and S2,mod that sum up to the absolute value entropy S2(|�|). S2,p

appears to scale logarithmically with the subsystem size, while S2,mod follows an area law. Black lines are λ → ∞ extrapolations. (c) The
absolute value entropy S2(|�|) = S2,p + S2,mod. The black line is the sum of the extrapolations in (b), which eventually settles to an area law
for very large systems. However, unlike the individual decompositions in (b), their sum here appears far from the asymptotic scaling regime.
(d) The sign entropy S2,sgn. The dashed line is the Widom slope, while the continuous black line is the Widom slope minus the extrapolation of
S2(|�|). This highlights the difficulty in extracting the Widom slope solely from the sign term: the continuous and dashed lines only become
parallel for ln λ � 4, effectively requiring much larger system sizes to infer the correct scaling compared to the full entropy in (a).

FIG. 5. Sign entropy for (a) projected and (b) unprojected CFL states for N = 37 particles on a torus. For comparison, we also show the
result for free fermions, with the same data plotted in (a) and (b). Unprojected CFL states behave similarly to free fermions, while projected
wave functions show an enhanced slope. This is revealed by plotting the difference of S2,sgn for the ν = 1/2 CFL relative to free fermions in
(c) and (d): the difference (c) grows in the projected case, while (d) it decays towards zero in the unprojected case. Insets in (c) and (d) show
the ratio of the CFL sign entropy to that of free fermions, which shows qualitatively similar behavior.

115119-7
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ultimately undergo a downturn, with a corresponding re-
duction of slope in Fig. 1. Based on the existing data, we
estimate that observing this would require system sizes N �
300, which are significantly beyond current computational
capability.

V. CONCLUSIONS AND DISCUSSION

We have evaluated the scaling of S2 Rényi entropy of
CFL states at different fillings ν = 1/m and showed that
it obeys the Widom scaling as in ordinary Fermi liquids,
but with an enhanced prefactor. We have found an enhance-
ment in both the sphere and torus geometry; moreover, for
m � 2, the enhancement is essentially unaffected by the
LLL projection. We have corroborated these conclusions by
demonstrating that the wave functions in Eq. (1) encode the
expected area law for charge fluctuations with a universal
corner contribution. Moreover, we pointed out the difficulties
of interpreting the entropy scalings of the modulus and sign
parts of the wave function, arguing that the total entropy is a
more robust quantity in the range of numerically accessible
system sizes.

Our results for m = 2 are in agreement with Ref. [27],
while the discrepancy with Ref. [28] is, at least partly, due to
the LLL projection which was not explicitly enforced on the
lattice. In fact, our unprojected results in Fig. 5(b) are qual-
itatively similar to Ref. [28]; by contrast, the LLL-projected
results in Fig. 1 show a visible departure from Ref. [28],
e.g., the entropy of the bosonic ν = 1 CFL is similar to that
of the fermionic ν = 1/2 CFL state after LLL projection,
unlike their lattice analogs. These differences point to a subtle
role of LLL projection, precluding direct comparisons be-
tween continuum and lattice versions of the CFL state. This
could potentially imply that the entanglement scaling may
depend on the microscopic details of flux attachment (see
Appendix F). Unfortunately, as we explained, settling this
question numerically requires access to system sizes several
times larger than the current computational facility.

One remaining enigma is how to reconcile our results with
the iDMRG study of the ν = 1/2 CFL state on an infinite
cylinder, where no enhancement to the Widom formula was
found [25]. Two important differences in the setup of Ref. [25]
are the quasi-1D geometry, which can impact the behavior
of the 2D structure factor [76], and the study of the ground
state of the Coulomb interaction rather than a variational wave
function. Properties of the CFL for long-range interactions
are known to be more similar to those of an ordinary Fermi
liquid, while the differences are amplified by shorter-range
interactions [2]. While our wave function [Eq. (1)] is not an
exact ground state of any known Hamiltonian, it would be
interesting to repeat the analysis of Ref. [25] and check the
impact of short-range interaction on κ .

Ultimately, the enhanced entanglement scaling in CFL
states should be understood analytically. We expect that
further progress could be made using multidimensional
bosonization [60,77] or by finding other observables whose
fluctuations violate the area law, as recently achieved for the
gapless Mott insulator with a spinon Fermi surface [32,59].
This understanding may shed light on other pertinent ques-
tions, such as whether the Chern band projection similarly

FIG. 6. Illustration of the SWAP process. We have two copies of
the full system, whose particles are labeled with different colors, and
each copy is divided into two regions separated by the dashed circle.
Through the SWAP process, we interchange the particle coordinates
inside the circle between the two copies while keeping the outside
coordinates unchanged.

enhances the entanglement of a CFL in zero magnetic field
[6,7] or whether the latter also depends on band geometry and
Chern number.
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APPENDIX A: SWAP ALGORITHM
AND ENTROPY DECOMPOSITION

Following Refs. [31,71], in our Monte Carlo evaluations
of S2 Rényi entropy, we replace the partial trace with an
expectation value 〈SWAPA〉 of the SWAP operator between two
copies of the system, as illustrated in Fig. 6. This expecta-
tion value can be naturally broken down into a product of
three terms:

〈SWAPA〉 = PSWAP 〈SWAPmod〉〈SWAPsgn〉. (A1)
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The first term, PSWAP, represents the probability that the two
copies are “swappable,” for which we must have the same
number of particles, N1 = N2,

PSWAP =
∫

dαdβ |�(α1, β1)|2|�(α2, β2)|2δN1,N2∫
dαdβ |�(α1, β1)|2|�(α2, β2)|2 , (A2)

where α = (α1, α2) and β = (β1, β2) denote the sets of co-
ordinates for the particles inside or outside the bipartition

contour, respectively. The resulting entropy S2,p is the higher
Rényi counterpart of the von Neumann number entropy [78],
which can be generalized as Sα,p = 1

1−α
ln

∑
NA

p(NA)α , where
p(NA) is the probability of having NA particles in the defined
subregion.

The last two terms in Eq. (A1) are the “mod” and “sgn”
contributions, which are evaluated only in the subspace of
swappable copies (N1 = N2),

〈SWAPmod〉 =
∫

dαdβ δN1,N2 |ψ (α1, β1)|2|ψ (α2, β2)|2
∣∣∣ψ (α2,β1 )ψ (α1,β2 )
ψ (α1,β1 )ψ (α2,β2 )

∣∣∣∫
dαdβ δN1,N2 |ψ (α1, β1)|2|ψ (α2, β2)|2 , (A3)

〈SWAPsgn〉 =
∫

dαdβ δN1,N2 |ψ (α2, β1)ψ (α1, β2)ψ (α1, β1)ψ (α2, β2)| eiθ (α,β)∫
dαdβ δN1,N2 |ψ (α2, β1)ψ (α1, β2)ψ (α1, β1)ψ (α2, β2)| . (A4)

In the sign contribution, the angle θ (α,β) is defined as

exp iθ (α,β) = ψ (α1, β2)∗ψ (α2, β1)∗ψ (α1, β1)ψ (α2, β2)

|ψ (α1, β2)ψ (α2, β1)ψ (α1, β1)ψ (α2, β2)| .

(A5)

The contributions PSWAP, 〈SWAPmod〉, and 〈SWAPsgn〉 yield
separate contributions to the total Rényi entropy,

S2 = S2,p + S2,mod + S2,sgn. (A6)

In previous works, such as Ref. [28], the first two contri-
butions to the entropy were lumped together because S2,p +
S2,mod ≡ S2(|�|) can be interpreted as the entropy of the abso-
lute value of the wave function �. While this may be useful in
certain cases [72], our data below suggests this is not helpful
for gapless CFL states since S2,p and S2,mod exhibit different
scaling with λ. Hence, we individually study the three distinct
contributions to S2.

APPENDIX B: OVERLAP INTEGRALS

To evaluate S2 Rényi entropy for free fermions in a finite-
size system, we use Eq. (3) which requires knowledge of the
overlap integrals on the subsystem, Amn. In the torus geom-
etry with a circular subregion A, the overlap matrix elements
evaluate to

Atorus
mn =

∫
A

dr φ∗
m(r)φn(r) = 1

L2

∫
A

dr ei(kn−km )·r

= 2π

L2

rA

|kn − km|J1(|kn − km|rA), (B1)

where J1 is the Bessel function of the first kind. On the sphere,
for a spherical cap subregion, we obtain

Asphere
mn =

∫
A

d�Y ∗
LmMm

(�)YLnMn (�)

= 2πNLmMmNLnMnδMm,Mn

×
∫ 1

cos θA

dx PMm
Lm

(x)PMn
Ln

(x), (B2)

where NLM =
√

2L+1
4π

(L+M )!
(L−M )! is a normalization constant and

the associated Legendre polynomial integrals can be com-
puted recursively.

APPENDIX C: COMPARISON OF RÉNYI ENTROPIES
OBTAINED WITH DIFFERENT JAIN-KAMILLA

PROJECTIONS

To verify the consistency of our results for different choices
of α, Fig. 7 shows that the S2 Rényi entropy scaling is
nearly unchanged for two choices α = (2, 2) and α = (4, 0)
at ν = 1/4. Moreover, even the individual contributions to the
entropy, S2,p, S2,mod, and S2,sgn, discussed in Appendix A, are
essentially the same for the two α choices. This shows that
S2 Rényi entropy is insensitive to the details of JK projection
coefficients, unlike some other quantities such as the Hall
viscosity in Ref. [79].

APPENDIX D: SLOPE EXTRAPOLATION
AND SHAPE DEPENDENCE

OF THE ENTANGLEMENT SCALING

Here we present additional data on the slope extrapola-
tions used in Fig. 1(c) of the main text. Figure 8(a) shows
the data points used at system sizes N ∈ {12, 21, 32, 37, 60}
for the projected CFL wave function at ν = 1/2. We fix
the smallest value to ln λ ≈ 0.5 regardless of system size,
while the endpoint increases with N such that ln λend ∈
{1.33, 1.51, 1.59, 1.66, 1.75}. These values are chosen to
maximize the range of data points used at each sys-
tem size, while still correctly extrapolating the correct
Widom coefficient in the thermodynamic limit—see inset
of Fig. 8(a).

Figures 8(b) and 8(c) show a comparison between systems
with subregions of circular and square shape, respectively. We
find the ratio of the slopes to be approximately independent
of the subregion geometry. This indicates that the CFL en-
tanglement scaling still encodes the geometric information in
the Widom formula, with the violation limited to a numerical
overall prefactor.
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FIG. 7. The S2 Rényi entropy (left panel) and its decomposition (right panel) for the two choices of JK projection coefficients, α = (2, 2)
and α = (4, 0), at filling factor ν = 1/4. The differences are seen to be minimal; the slope, in particular, agrees within the error bars, suggesting
that details of the JK projection scheme are unimportant in determining the entanglement scaling. All data are for the system size of N = 37
electrons on the torus.

APPENDIX E: THE WIDOM FORMULA ON THE SPHERE

The intuitive derivation of the Widom formula given in
Ref. [46] requires a few modifications in the spherical geom-
etry. Suppose we have N = n2 particles filling up n angular
momentum shells. The 2n−1 states of the last filled shell (the
equivalent of the Fermi surface in the thermodynamic limit)
are the ones that will contribute to the entanglement entropy.
Therefore, one needs to replace the integral over the Fermi
surface in the Widom formula,

κ (α)
w = ceff (1 + α)

12α

1

2

∫
∂�

dSx

∫
∂�

dSk
|n̂x · n̂k|

2π
, (E1)

with a discrete sum over these modes. Here, ceff denotes the
effective central charge of a (1+1)-dimensional chiral rela-
tivistic fermion, the vectors n̂x and n̂k are unit normals for the

real-space boundary and the Fermi surface, respectively, and α

denotes the Rényi index (we will mainly focus on α = 2). The
flux factor |n̂x · n̂k|/2π needs to be replaced by 1/2π , account-
ing for the rotational symmetry of the cap around the axis, and
the double counting factor of 1/2 becomes unnecessary. Then,
the Rényi entropy for a spherical cap of angle θ is

Sα = ceff (1 + α)

12α
ln(R sin θ )

2n−1∑
i=1

∫
∂�

dSx

2π

= ceff (1 + α)

12α
(2

√
N − 1) sin θ ln(R sin θ ). (E2)

To enable a comparison between this and CFL states, we
need to control the particle density through the flux. This, in
turn, affects the definition of the radius R. For the CFL, the
radius of the sphere is R = √

Q and the maximum occupied
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FIG. 8. Slope extrapolation and shape dependence of the entanglement scaling. (a) We extract the S2 slope from a subset of data points in
the λ range, shown here for various system sizes indicated in the legend. Solid lines are free-fermion data, while markers denote the projected
CFL data at ν = 1/2. The range of λ values is chosen with free fermions as a benchmark, such that the correct Widom slope is recovered in the
thermodynamic limit (inset). (b),(c) The dependence of the entanglement scaling on the shape of the subregion, i.e., (b) circle or (c) square. S2

for free fermions (solid lines) and the projected CFL state at ν = 1/2 (markers), for system size N = 37. The ratio of slopes is approximately
independent of subregion geometry.
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FIG. 9. Difference in sign entropy, S2,sgn − Sfree
2,sgn, between the

flux-attached CFL at filling ν = 1/2 and free fermions, on the sphere.
We notice that the entanglement scaling of the sign entropy is con-
siderably enhanced.

effective angular momentum is Lmax = √
N . Setting α = 2,

the radius of the cap to R sin θ = √
Q sin θ , and the effective

Fermi wave number kF =Lmax/R = √
N/Q, we express the

entropy in terms of the dimensionless length λs=kF
√

Q sin θ ,

S2 =
(

1

4
− 1

8
√

N

)
λs ln λs ≈ 1

4
λs ln λs, (E3)

in agreement with the torus in the large-N limit. Note that
our derivation here does not capture finite-size effects re-
lated to the curvature of the sphere, which diminishes in the
limit N → ∞.

APPENDIX F: FLUX-ATTACHED WAVE FUNCTIONS

In the main text, we have mentioned the possibility of the
Widom formula losing its “universal” geometric character in
NFLs, such that the coefficient of the leading term depends
on microscopic details of flux attachment. To further explore
this, we calculate the Rényi entropy and its decomposition in
“flux-attached” wave functions, where the Jastrow factors are
replaced by their phases,

�CFL,flux
m = Det[χn(z j )]

∏
i< j

(
(zi−z j )

|zi − z j |
)m

e− 1
4

∑
k |zk |2 . (F1)

For such a wave function, the mod entropy is identical to that
of free fermions, placing any potential enhancement solely in
the sign structure of the wave function.

Figure 9 shows the results for S2,sgn of the state in Eq. (F1),
with m = 2 in the spherical geometry. We see that the sign
entropy is significantly enhanced, even surpassing the stan-
dard vortex-attached wave functions discussed in the main
text, which is in good agreement with the lattice realization
of the flux-attached wave function [80]. Unfortunately, we are
unable to efficiently project this wave function as a significant
proportion of it resides outside the lowest Landau level.
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